
Copyright 2016 © Control Technology Corporation

All Rights Reserved.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 2
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 3
Document 951-534101-038

CONTROL TECHNOLOGY CORPORATION

M3-41 EtherCAT Applications Guide

EtherCAT
Applications

Guide
April 23, 2017

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 4
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 5
Document 951-534101-038

 WARNING: Use of CTC Controllers and software is to be done only by experienced and
qualified personnel who are responsible for the application and use of control equipment like the CTC
controllers. These individuals must satisfy themselves that all necessary steps have been taken to
assure that each application and use meets all performance and safety requirements, including any
applicable laws, regulations, codes and/or standards. The information in this document is given as a
general guide and all examples are for illustrative purposes only and are not intended for use in the
actual application of CTC product. CTC products are not designed, sold, or marketed for use in any
particular application or installation; this responsibility resides solely with the user. CTC does not
assume any responsibility or liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software described in this
document is provided under license agreement and may be used and copied only in accordance with the
terms of the license agreement. The information, drawings, and illustrations contained herein are the
property of Control Technology Corporation. No part of this manual may be reproduced or distributed by
any means, electronic or mechanical, for any purpose other than the purchaser’s personal use, without the
express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware revision levels.
Some features may not be supported in earlier revisions. See www.ctc-control.com for the availability of
firmware updates or contact CTC Technical Support.

Model Number Hardware Revision Firmware Revision

5300/Incentive
M3-41

All Revisions >= V050090R70.01
>= V1.72

EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.

BACnet® is a registered trademark of American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE).

Modbus® is a registered trademark of Schneider Electric, licensed to the Modbus Organization, Inc.

INtime® is a registered trademark of TenAsys Corporation, Beverton OR.

Windows® is a registered trademark of Microsoft Corporation, Redmond, WA.

http://www.ctc-control.com/

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 6
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 7
Document 951-534101-038

TABLE OF CONTENTS

[1] OVERVIEW ... 13

[2] BOOT SEQUENCE (CONTROLLER)... 21

[3] DRIVES & I/O MAPPING .. 25

DRIVES & LOCAL I/O .. 26

[4] DRIVES: MODES OF OPERATION & GENERAL PROGRAMMING ... 27

CYCLIC SYNCHRONOUS POSITION MODE (CSP) ... 28
PROFILE VELOCITY MODE ... 29
INTERPOLATED POSITION MODE .. 30
PROFILE POSITION MODE ... 30
HOMING MODE.. 31
GEARING/TRACKING & LOCAL QUADRATURE ENCODERS .. 32
MOVE ON A GEAR .. 34
CAMMING MOVES AND OPTIONAL TIMEOUTS .. 37
SEGMENTED MOVES .. 38
SLEWED MOVE .. 39
LINEAR INTERPOLATION (2D) .. 39
LINEAR INTERPOLATION (3D) .. 41
CIRCULAR INTERPOLATION (2D) .. 43
CAMMING & SPLINES (2D/3D) – LINEAR, CUBIC & QUADRATIC... 48
TORQUE CONTROL .. 51
RESTARTING ETHERCAT PROGRAMMATICALLY .. 53
SPECIAL REGISTER ACCESS ... 53
GLOBAL MSB REGISTERS AND FLAGS ... 54
ACCESSING PROPERTIES OF ANOTHER AXIS .. 54
DRIVE TYPE & AXIS NUMBER .. 55
DRIVE OBJECT ACCESS (SDO) ... 55

[5] REGISTRATION, ABSOLUTE POSITIONING, & DISTRIBUTED CLOCK ... 57

REGISTRATION .. 57
ABSOLUTE VERSUS INCREMENTAL POSITIONING MODES .. 59
DISTRIBUTED CLOCK & DC SYNC.. 60
ETHERCAT MASTER CONTROL LOOP CYCLE TIME .. 62

[6] ETHERCAT IO, PLS, & PWM ... 65

INPUTS/OUTPUTS ... 65
ETHERCAT IO CONFIGURATION .. 68
MAPPABLE INPUT IO & COUNTERS .. 69
PULSE & PWM GENERATION... 70
PLS OUTPUTS ... 72

[7] ERROR HANDLING ... 77

RETRY LOGIC .. 77
DRIVE DIAGNOSTIC VARIABLES AND REGISTERS ... 77
MSB ‘WSTATUS’ VARIABLE BIT DEFINITIONS ... 78
MSB ‘ERRORTYPE’ VARIABLE VALUE DEFINITIONS .. 79
MSB ‘LAST_ALSTATUSCODE’ VARIABLE VALUE DEFINITIONS ... 81

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 8
Document 951-534101-038

[8] QUICKBUILDER ETHERCAT EXPLORER ... 83

QUICKBUILDER ETHERCAT EXPLORER STATUS WINDOW ... 83
ETHERCAT EXPLORER PROPERTIES ... 87
LOG BUFFER TIMINGS ... 89
ETHERCAT MASTER ENI CONFIGURATION FILES .. 90
USER OPTIONS .. 91

[9] TELNET COMMANDS... 95

STATUS COMMANDS .. 95
NETWORK COMMANDS .. 95
MESSAGE LOG COMMANDS ... 96
CONFIGURATION FILE COMMANDS .. 96
FIRMWARE UPDATE COMMANDS ... 97
LICENSE COMMANDS ... 97

[10] INCENTIVE PC RUNTIME... 99

INCENTIVE RUNTIME ... 100
QUICKBUILDER PROGRAMMING FOR WINDOWS® .. 102
INCENTIVE INSTALLATION OVERVIEW ... 103
STARTUP AND NETWORK CONFIGURATION .. 105
MAC ADDRESS FOR LARGE SYSTEMS .. 111
FILE SYSTEM ... 112
DEMO MODE AND LICENSING .. 116

TenAsys INtime Licensing .. 116
Incentive Licensing ... 118

WINDOWS® UPDATES .. 118
SERIAL PORTS ... 119
ETHERCAT ETHERNET ADAPTER... 122
SYSTEM MANAGEMENT INTERRUPT DETECTION .. 123
PLATFORM EVALUATION ... 125
CTC INCENTIVE® .NET API .. 127
.NET API SAMPLE PROGRAM OVERVIEW ... 130
.NET API OPENING A CONNECTION LOCALLY AND REMOTE ... 132
SIMPLE API PROGRAMMING CONCEPTS ... 135

PLClogic Class .. 135
Axis Class .. 138
RuntimeManagement Class .. 140

HOT SWAP OF ETHERCAT DEVICES ... 143
AxisSupervisor Class – online/offline Methods ... 144
Offline/Online Example .. 150

REMOVAL OF CTPLC_1 FOR STANDALONE OPERATION ... 151
QUICKBUILDER PROGRAMMING AND ATOMICITY .. 155
SOME COMMON ISSUES AND RESOLUTIONS .. 156

Shutdown and Restart Leave Power Switch Lit ... 156
Bridged Network Fails after Windows Shutdown .. 156

[A] ABB .. 157

DC SYNC .. 157
DRIVE CONFIGURATION ... 158

[B] ADVANCED MOTION CONTROLS .. 159

DRIVE INFORMATION & FIRMWARE ... 159
STATION ALIAS ... 160
DC SYNC .. 160
INPUTS/OUTPUTS ... 160

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 9
Document 951-534101-038

COMMUNICATIONS ERROR ... 163
DRIVEWARE ... 164
ETHERCAT EXPLORER VIEW ... 175

[C] COPLEY (ACCELNET & XENUS PLUS) .. 177

STATION ALIAS ... 177
ETHERCAT EXPLORER VIEW (XENUS DUAL AXIS) .. 179

[D] ELMO (NOT RELEASED) .. 181

DRIVE INFORMATION & FIRMWARE ... 181

[E] EMERSON (CONTROL TECHNIQUES) ... 183

DRIVE INFORMATION & FIRMWARE ... 183
INPUTS/OUTPUTS ... 184
DC SYNC .. 185
DRIVE ENABLE COMMAND .. 185
STATION ALIAS ... 186
MENU TO OBJECT MAPPING ... 186
RPM LIMITING .. 186

[F] IAI .. 187

PARAMETER INFORMATION FROM TEST SETUP ... 187
SPECIAL VARIABLE MAPPING .. 190
CONTROL OUTPUT MAPPING ... 191
CONTROL STATUS MAPPING .. 193
OPERATION ... 195
ERRORS AND ALARMS ... 199

[G] KOLLMORGEN .. 201

DRIVE INFORMATION & FIRMWARE ... 201
POSITIONING MODE ... 202
POWERUP DELAY .. 202

[H] LINMOT ... 203

OVERVIEW .. 203
I/O .. 204
MOTOR VOLTAGE LEVELS ... 204
 MOTOR WIZARD ... 205
CONTROL PARAMETER A/B ... 206
INTF FILE UPGRADE (.HX3) .. 206
TEST MSB... 207
HOMING MSB ... 209
LINMOT-TALK CONTROL PANEL ... 209
ETHERCAT EXPLORER VIEW ... 211

[I] MITSUBISHI.. 213

OVERVIEW .. 213
CN3 CONNECTOR .. 214
MR CONFIGURATOR2 .. 215
MR CONFIGURATOR2 MISCELLANEOUS ... 220
ETHERCAT EXPLORER VIEW ... 223

[J] NUMATICS (EMERSON) .. 225

VALVE MODULES .. 225
INPUT MAPPING (REQUIRED FOR NEW CONTROLLERS) ... 225
FIRMWARE UPDATES ... 226

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 10
Document 951-534101-038

POWER CONNECTOR .. 228

[K] OMRON GX-JC06 ETHERCAT JUNCTION SLAVES .. 229

CABLING ... 229
EXAMPLE WITH M3-41 MODULE .. 230

[L] SANYO DENKI ... 231

DRIVE INFORMATION & FIRMWARE ... 231
STATION ALIAS ... 232
SANYO DENKI DRIVE MODE TRANSITIONS ... 233
SANYO DENKI POWER-UP DELAY .. 233
R ADVANCED MODEL – SETUP SOFTWARE ... 234
ETHERCAT EXPLORER VIEW ... 238

[M] SMC CORPORATION .. 239

EX600 FIELDBUS SYSTEM ... 239
DC SYNC .. 240
SDO CONFIGURATION ... 240

[N] TURCK .. 243

SYNCHRONIZATION VIA HARDWARE USING THE CFG-SWITCH .. 243
DIAGNOSTIC LEDS .. 244
ETHERCAT CONNECTOR ... 245
RFID .. 245
RFID PROPERTY VARIABLES ... 246
TAG INFO .. 250
TRANS INFO ... 251
STRINGS .. 251
PROGRAMMING EXAMPLES .. 252

[O] YASKAWA ... 257

STATION ALIAS ... 257
YASKAWA POSITION LAG & PERR .. 257
DRIVE IO CONNECTOR MAPPING ... 259
MSB ‘ERRORREGISTER’ VARIABLE VALUE DEFINITIONS ... 259
MSB ‘ERRORCODE’ VARIABLE VALUE DEFINITIONS.. 259
ETHERCAT EXPLORER VIEW ... 261

[P] GENERAL ANOMALIES AND TIPS ... 263

NETWORK SWITCHES ... 263
MSBS ... 263
PPR/MPPR .. 263

[Q] TEST SUITE ... 265

MSB TEST MODULE .. 265

[R] INCENTIVE ETHERCAT MASTER & M3-41A FIRMWARE REVISIONS .. 271

V1.72 (INCENTIVE ONLY ... 271
V1.71 .. 271
V1.70 .. 271
V1.67 .. 271
V1.66 .. 272
V1.65 .. 272
V1.64 .. 272
V1.63 .. 272
V1.62 .. 272

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 11
Document 951-534101-038

V1.61 .. 273
V1.60 .. 273
V1.59 .. 273
V1.58 .. 273
V1.57 .. 273
V1.56 .. 273
V1.55 .. 274
V1.54 .. 274

[S] INCENTIVE PCLOGIC PROCESS ... 275

R70.01 .. 275
R69.99 .. 275

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 12
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 13
Document 951-534101-038

[1] Overview

This manual is intended to be used in conjunction with the Model 5300 QuickMotion
Reference Guide and an understanding of that manual is assumed. The model 5300 M3-
40 motion module supports local drives and I/O; this manual discusses CTC motion
control as it pertains to the M3-41 hardware and software module. It is an advanced
EtherCAT Master providing distributed motion control using the CAN application protocol
over EtherCAT. This includes both servo drives, RFID readers, and I/O devices.

Unlike EtherCAT Masters from other vendors, the M3-41 attempts to isolate the user from the complexity
of the EtherCAT environment by automatically scanning the network and configuring supported devices.
The programming interface uses the same high-level language that the M3-40 series of modules uses:
QuickBuilder MSBs (Motion Sequence Blocks). You no longer have to deal with a complex configurator,
poking drive objects, or figuring out how an interface works. Each of the supported motion and/or I/O
devices has been verified with the M3-41, and all setup and initialization is done for you. This greatly
simplifies an EtherCAT installation, enabling you to concentrate on motion control and your system, not a
complicated configurator. Multiple EtherCAT Master Network modules (M3-41) can be intermixed with
other networks such as BACnet®, Modbus®, and other modules offered within the embedded 5300
controller family.

The M3-41 EtherCAT Master is available both as a hardware device, module within the 5300 Controller, or
as a soft device, executing in real-time on a Windows® based platform. In both environments the same
application programming environment is used, QuickBuilder. Additionally, a .Net API called Incentive,
which exposes the entire MSB language is available on a Windows® platform. The biggest difference
between the two is the PC environment is limited to EtherCAT only IO while the embedded 5300 controller
has numerous local IO and network possibilities, in addition to EtherCAT. Execution on a Windows based
PC presents the developer with an open and diverse architecture with which to implement their
automation solution. Below is a quick comparison of the two environments:

Feature Embedded
5300 PLC

Soft 5300PC PLC,
Dual Core
Processor

Soft 5300PC PLC,
Quad Core
Processor

Executes QuickBuilder Yes Yes Yes
Programmable using ‘C’ steps Yes Yes Yes
Modbus, CTC Binary, UDP, TCP Yes Yes Yes
Serial Port Support Yes Yes Yes

CHAPTER

1

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 14
Document 951-534101-038

Feature Embedded
5300 PLC

Soft 5300PC PLC,
Dual Core
Processor

Soft 5300PC PLC,
Quad Core
Processor

QuickBuilder Performance 1 X 1X to 4 X 2.3 to 8 X
Local IO Expansion modules Yes 2/4/8 No No
Axes/EtherCAT Network 16 8 (Atom)

16 (i7)
64 (I210)

32 (other)
Max EtherCAT Networks 4 1 2
EtherCAT Segmentation No Yes Yes
Fast Packet Retry on Loss Yes No No
Turck RFID Channels/Network 16 8 (Atom)

16 (i7)
32

Scan Rates 500us-4ms 500us-4ms 500us-4ms
BACnet Support Yes TBD TBD
Digital IN/Digital OUT 1024 1024 1024
Analog IN/Analog OUT 256 256 256

Many factors affect the maximum number of axis/network with the Soft 5300PC. The usage of an

Intel I210 network adapter also significantly boosts performance. This adapter is able to periodically
transmit packets via hardware whereas others (Realtek) place the overhead on the 5300PC software, thus
limiting performance.

The following motion control devices are currently supported, with more available in the future:

Cyclic Sync

Position
Interpolate

d Homing
Profile

Position
Profile

Velocity

Registration

ABB
MicroFlex
e150

Not

supported
by manuf

Not

supported
by manuf

Not

supported
by manuf

Not

supported
by manuf

Probe 1 & 2

ADVANCED
Motion
Controls
(Digiflex DPE)

Not

supported
by manuf.

Copley
Accelnet (AEP-
055-18)

Copley Xenus
Plus 2 Axis
(XE2-230-20)

Elmo Gold1
(Not

Not

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 15
Document 951-534101-038

Cyclic Sync

Position
Interpolate

d Homing
Profile

Position
Profile

Velocity

Registration

Released) supported

Emerson2

Digitax ST &
Unidrive SP
(single axis)

Not

supported

Not
supported
by manuf.

Not
supported
by manuf.

IAI ACON
Controller3

Not
supported
by manuf.

Not
supported
by manuf.

Not
supported
by manuf.

Kollmorgen
AKD4

Not
supported

Not
supported

Probe 1

LINMOT
C1250 &
E14505

Not
supported
by manuf.

Not
supported
by manuf

Not
supported

by manuf

Not
supported
by manuf.

Mitsubishi
J46

Not

supported
by manuf.

Not

supported
by manuf

Not

supported
by manuf

Probe 1 & 2

Sanyo Denki
SANMotion
RS2E

Not
supported
by manuf.

Probe 1 & 2

Yaskawa
Sigma 5
(Rotary and
Linear)

Probe 1 & 2

Virtual Axis7

1Elmo support is not currently released but is functional for test purposes.
2Emerson must have DC Sync enabled prior to ‘drive enable’ for all operations.
3IAI ACON Controllers do not support Profile Position mode but use a proprietary setting similar to it with
simulation provided by the M3-41 module. Only Full Direct Value Mode is supported (3).
4Support for Kollmorgen Interpolated Position mode was removed to allow PDO space for registration.
Cyclic Sync Position mode is the preferred mode.
5Due to timing issues with LinMOT drives a cycle time of 2 mS or slower must be used or a PVT overflow
error may occur within the drive.
6Probe 1 & 2 Registration has been implemented but not fully tested for this drive. Mitsubishi cannot run
any slower than 2 ms scan rate (manufacturer limitation).

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 16
Document 951-534101-038

7A Virtual Axis does not impact the number of online drives licensed although does count towards the
limitation of 16 axis/M3-41 module.

Firmware Versions:

 Kollmorgen V1.8.0.3 (must be this or greater to support Cyclic Sync Position mode)

 Elmo V1.1.6.4

 Emerson SM-EtherCAT V1.07.01, Unidrive SP02X1 V1.15, Digitax DST1201 V1.06

 Yaskawa V3.05

 ABB MicroFlex e150 build 5711.4.0

 LinMOT – See appendix.

Supported I/O Devices:

Beckhoff (8 bit digital IO boundaries only)

 EK1100 – EtherCAT Coupler

 Digital Inputs – EL1018

 Digital Outputs – EL2008

 Analog Inputs – EL3102, EL3112, EL 3122, EL3142, EL3152, EL3162

 Analog Outputs – EL4032, EL4102, EL4112, EL4122, EL4132

Omron

 GX-JC06 – EtherCAT Junction Slave, 6 port.

 Pending: NX-ECC201, NX-ECC202, and NX-ECC203 EtherCAT Couplers with following NX- modules:

o ID4342 DIN-8 NPN 24VDC
o ID4442 DIN-8 PNP 24VDC
o ID5142-1 DIN-16 N/PNP 24VDC
o ID5142-5 DIN-16 N/PNP 24VDC
o ID5342 DIN-16 NPN 24VDC
o ID5442 DIN-16 PNP 24VDC
o ID6142-5 DIN-32 N/PNP 24VDC
o ID6142-6 DIN-32 N/PNP 24VDC
o OD4121 DOUT-8 TNPN 12-24VDC
o OD4256 DOUT-8 TPNP 12-24VDC
o OD5121-1 DOUT-16 TNPN 12-24DC
o OD5121-5 DOUT-16 TNPN 12-24DC
o OD5121 DOUT-16 TNPN 12-24VDC
o OD5256-1 DOUT-16 TPNP 24VDC
o OD5256-5 DOUT-16 TPNP 24VDC
o OD5256 DOUT-16 TPNP 24VDC
o OD6121 DOUT-32 TNPN 12-24DC
o OD6121-6 DOUT-32 TNPN 12-24DC
o OD6256-5 DOUT-32 TPNP 24VDC
o PC0010 IOG 16 term
Free-run mode only.

Numatics Incorporated (Emerson) 501/G3 Series (1.1 Build 42194, Boot 1.1 Build 41544)

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 17
Document 951-534101-038

 240-310 EtherCAT Module

 219-828 Valve Driver Output Module

 425186-001 Atlas Valve Driver Output Module (P599AE42518800x)

 240-203 16DI PNP Terminal Strip

 240-204 16DI NPN Terminal Strip

 240-205 16DI PNP M12 x 8

 240-206 8DI PNP M12 x 8

 240-207 16DO PNP M12 x 8

 240-208 8DO PNP M12 x 8

 240-209 16DI NPN M12 x 8

 240-210 8DI NPN M12 x 8

 240-211 8DI/8DO PNP M12 x 8

 240-300 8DO High Current PNP M12 x 4

 240-316 8DI PNP Terminal Strip

 240-323 16DI PNP 19 Pin

 240-330 16DO PNP Terminal Strip

SMC Corporation EX600 (8 bit digital IO boundaries only, not first slave due to clock issues)

 Digital Inputs – EX600-DX*B, C, C1, D, E, F modules

 Digital Outputs – EX600-DY*B, E, F modules

 Digital Input/Outputs – EX600-DM*E, F modules

 Analog Inputs – EX600-AXA module

 Analog Outputs – EX600-AYA module

 Analog Input/Outputs – EX600-AMB module

 Valves – EX600-SEC*, 8, 16, and 24 valves

Wago 750-354 EtherCAT Coupler

 Digital Inputs – 750-4XX modules (non-8 bit boundaries supported)

 Digital Outputs – 750-5XX modules (non-8 bit boundaries supported)

 Analog Inputs – 750-452, 453, 454, 455, 456, 457, 459, 460, 461, 462, 464, 465, 466, 467,

468, 469, 470, 472, 473, 474, 475, 476, 477, 478, 479, 480, 630

 Analog Outputs – 750-550, 551, 552, 553, 554, 555, 556, 557, 559, 560, 562, 563, 565

Turck BL20-E-GW-EC EtherCAT Coupler

 Digital Inputs (non-8 bit boundaries supported)

o BL20-2DI-24VDC-P (2 digital inputs, 24VDC PNP switching)

o BL20-2DI-24VDC-N (2 digital inputs, 24VDC NPN switching)

o BL20-2DI-120/230VAC (2 digital inputs, 120/230VAC)

o BL20-4DI-24VDC-P (4 digital inputs, 24VDC PNP switching)

o BL20-4DI-24VDC-N (4 digital inputs, 24VDC NPN switching)

o BL-20-E-8DI-24VDC-P (8 digital inputs, 24VDC PNP switching)

o BL-20-E-16DI-24VDC-P (16 digital inputs, 24VDC PNP switching)

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 18
Document 951-534101-038

o BL-20-16DI-24VDC-P P (16 digital inputs, 24VDC PNP switching, optocouplers)

o BL-20-32DI-24VDC-P (32 digital inputs, 24VDC PNP switching, optocouplers)

 Digital Outputs (non-8 bit boundaries supported)

o BL20-2DO-24VDC-0.5A-P (2 digital outputs, 24VDC PNP switching, 0.5 Amp)

o BL20-2DO-24VDC-2A-P (2 digital outputs, 24VDC PNP switching, 2 Amp)

o BL20-2DO-120/230VAC-0.5A (2 digital outputs, 120/230VAC)

o BL20-2DO-R-NO (2 relay outputs, normally open)

o BL20-2DO-R-NC (2 relay outputs, normally closed)

o BL20-2DO-R-CO (2 relay outputs)

o BL20-4DO-24VDC-0.5A-N (4 digital outputs, 24VDC NPN switching)

o BL20-4DO-24VDC-0.5A-P (4 digital outputs, 24VDC PNP switching)

o BL-20-E-8DO-24VDC-0.5A-P (8 digital outputs, 24VDC PNP switching)

o BL-20-E-16DO-24VDC-0.5A-P (16 digital outputs, 24VDC PNP switching)

o BL-20-16DO-24VDC-0.5A-P (16 digital outputs, 24VDC PNP switching,

optocouplers)

o BL-20-32DO-24VDC-0.5A-P (32 digital outputs, 24VDC PNP switching,

optocouplers)

 Analog Inputs

o BL20-E-8AI-U/I-4PT/NI (8 analog inputs, U/I configurable, -10/0..+10VDC &

0/4..20MA)

o BL20-2AI-U (2 analog inputs, U/I configurable, -10/0..+10VDC & 0/4..20MA)

o BL20-2AI-I (2 analog inputs, 0/4..20MA)

o BL20-1AI-I (1 analog input, 0/4..20MA)

o BL20-1AI-U (1 analog input, -10/0..+10VDC)

o BL20-2AI-PT/NI-2/3 Temp (2 analog inputs for temperature measurement)

o BL20-4AI-U/I (4 analog inputs, U/I configurable)

o BL20-2AI-THERMO-PI (2 analog inputs for thermocouples)

 Analog Outputs

o BL20-E-4AO-U/I (4 analog outputs, configurable, -10/0..+10VDC & 0/4..20MA)

o BL20-1AO-I (1 analog output, 0/4..20MA)

o BL20-2AO-I (2 analog outputs, 0/4..20MA)

o BL20-2AO-I (2 analog outputs, -10/0..+10VDC)

 RFID Reader

o BL20-2RFID-S (2 channel RFID reader)

Only digital input and digital output modules evenly divisible by 8 are supported on all slaves

except Wago and Turck; this keeps the EtherCAT packet aligned for faster operation. Usage of non 8 bit
divisible digital IO on Wago and Turck will affect performance due to the bit shifting required during each
control loop. This typically reduces the total axes supported by 1, depending on the number of IO points.
If hundreds of mis-aligned IO are used the performance impact will be greater and will require specific

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 19
Document 951-534101-038

application testing. Additionally SMC Corp devices must not be the first slave device, they do not
support ARMW EtherCAT packets required for clock synchronization.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 20
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 21
Document 951-534101-038

[2] Boot Sequence (Controller)

The M3-41 is reset during power up or hardware reset of the model 5300 controller.
Prior to the controller running its QuickBuilder application program, the M3-41 module
scans the EtherCAT network and auto-configures all the drives and I/O it discovers.
These resources are then reported back to the controller so it can continue its boot
sequence. Once booted, no devices can be added or removed from the network without
resetting the model 5300 controller.

The boot sequence begins with the M3-41 card sending a broadcast on the EtherCAT network to determine
how many slaves are present, at which point the following occurs:

1. If the Power Up Delay QuickBuilder option is set, the module will initialize it’s peripherals,

Ethernet, etc., and then delay the specified number of seconds.

2. Each slave is interrogated and specific information is read from its EEPROM.

3. Topology, available mailboxes, and distributed clocks are determined.

4. The slave is placed in the PRE_OP state.

5. Non-volatile memory is checked to see if a configuration file is present.

a. Configuration File present:

i. Its contents are checked against what is observed on the network. The

number and type of slaves, (VendorID and ProductCode), and position on the

network (PhysAdr/Configured Address) must match for booting to continue.

ii. If they do not match, the network waits 5 seconds and rescans, starting at step

1. This is repeated up to 4 times, after which the boot cycle is aborted and it

is up to the user to intervene, by modifying either the network or the

configuration file. If the ‘Retry Forever’ User Option is active, the retry

count is ignored and the module continues to rescan the network until the

configuration file is verified against that of the network. Once a match is

found the boot operation continues to step 6. If no match is found, scanning

continues.

b. Configuration File not present:

i. Operation continues to step 6.

CHAPTER

2

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 22
Document 951-534101-038

6. If the QuickBuilder Verify Delay option is set, and this is the first time here, the module will

delay the required number of seconds and then branch back to Step 2, re-broadcasting the

network for the required devices. The second time here the delay will once again occur but

it will then branch to Step 7.

7. Slave-specific information is sent to the slave to configure it, and the PDOs (Process Data

Objects) are initialized as required for M3-41 operation. For drives, properties such as

velocity, position, I/O, status, and control words are set up.

8. The PDO information is mapped based on the required input and output size. During

Master scanning each slave will place its data at the appropriate offset position within the

EtherCAT packet, as it makes its way along the network bus.

9. The slave is placed in the SAFE_OP state.

10. The first slave device that can support a distributed clock is determined and delay times for

each slave are calculated and loaded into the slave internal objects. Distributed clock is

always used, referencing the first slave that supports it. When the master scan loop

executes, its time is modified each cycle to match that of the referenced slave. The Master

reads the first slave clock and writes to all other slaves (0x910 object) on every scan cycle.

The Master adjusts its scan cycle using a programmable interrupt timer that resides within

an FPGA, with a granularity of 10 nS.

11. EtherCAT Master drivers are now installed for all drives and I/O discovered on the network.

This includes any virtual drives defined. Dual-ported memory tables are updated to notify

the main controller and its QuickBuilder program what resources are available.

a. All servo drives should be installed in sequence. The first becomes axis 1, the

second is axis 2, etc. This assumes that each drive’s address is set to 0.

b. If the address switches are used, they may be set from 1 to 16, each representing an

axis to which MSBs are assigned. No two drives can have the same address (except

for 0).

c. Some drives have problems with their address switches, in which case the Station

Alias setting must be programmed into the EEPROM using an EtherCAT

Configurator, such as the Beckhoff ET9000.

12. The EtherCAT Master begins periodic scanning, adjusting the time as needed to sync to the

slave device supplying the distributed clock.

13. The slaves are now placed in the OPERATIONAL state.

14. If all slaves reach the OPERATIONAL state, the QuickBuilder MSBs will begin executing,

one for each of the slave servo drives discovered. I/O devices become available for access

from the main controller, appearing as regular I/O (both analog and digital).

15. The MSB should now turn DC Sync on via the MSB instruction if it will be used. This is

required for Emerson/Control Techniques and ABB drives.

16. A ‘drive enable’ command must be executed within the servo-controlled MSB in order for

the power-up commands to be initiated to the slave’s amplifier. If a drive input is

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 23
Document 951-534101-038

programmed as a hardware disable, and it is active, the MSB will hang executing the ‘drive

enable’ command until the hardware enable is active.

17. A ‘drive disable’ command removes power from the amplifier; the MSB will still execute.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 24
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 25
Document 951-534101-038

[3] Drives & I/O Mapping

QuickBuilder assigns drive and I/O as it sees them, sequentially on the local backplane.
EtherCAT is simply an extension of the backplane — as each device is seen, it is added to
the local I/O and drive table. Thus the first device on the network has its I/O added to
the end of the local 5300 rack I/O table as it is placed online. EtherCAT devices are
typically addressed by their sequence of daisy chained wiring. By default each EtherCAT
device has an automatically assigned ‘Configured Address’. The lower part of this

address is masked with 0x00ff and the result becomes the default address. Axis numbers are assigned as
they appear on the network. The problem with this approach is that the addresses can change as devices
are moved in the daisy chain of wiring. This may be fine with I/O, but does not work for mapping MSBs to
the drives they are controlling. Insertion of a new drive will shift all the following axis numbers up by one.
To resolve this, if the ‘Station Alias’ is nonzero it will override the automatic numbering and be used as the
Axis assignment.

I/O may be intermixed with drives, in any order.

The I/O will be ignored in the numbering of the axes. Using the Station Alias enables you to insert other
devices and change wiring without worrying about your MSBs controlling the wrong drive. Most Station
Aliases are set using the drive’s dip switches. Due to a firmware anomaly, Kollmorgen devices typically
must have their addresses set with the EtherCAT configurator and programmed to their individual
EEPROMs.

Optionally, virtual drives can be defined, starting as the first or added after the online drives. These drives
run in Cyclic Sync Position mode only and execute the same as online drives. In many cases a virtual drive
will be configured as a master and an online drive will track to its position. A virtual drive counts towards
the 16 axis module limit since it calculated all target information identical to a real drive. The
eCAT_driveType variable will contain a 9 for a Virtual axis.

The EtherCAT Master can only assign I/O and axis numbers based upon what devices
respond on the network. Configuration files must be used in a production environment to
ensure all the required devices are online prior to executing their controller MSBs.
Differing devices power up at different times and may not initially respond to the
EtherCAT Master online broadcast. Having a configuration file to compare against
informs the master that it must wait for devices to come online prior to proceeding with
the boot operation. Reference the EtherCAT Explorer chapter for information on how to

CHAPTER

3

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 26
Document 951-534101-038

automatically create a configuration file.

Drives & Local I/O

Some drives support inputs and outputs at the remote drive level. The MSB property ‘dins’ represents the
raw inputs provided by the drive, up to 32 inputs (object 0x60FD.0). The first 10 inputs may be accessed
using ‘din1’ to ‘din10’ bit properties; as with the M3-40 modules.

Outputs operate as they do on the M3-40 module, limited to 8 outputs at the remote drive level (object
0x60FE.1). Use the ‘setout’ and ‘clrout’ MSB instructions for access, where the first output is 1.

Local I/O is also present on the M3-41 module. This module has 6 inputs and 2 outputs which are global to
all MSBs. The outputs are referenced as 9 and 10 when using the ‘setout’/’clrout’ instructions. The MSB
property ‘global_inputs’ is used to read the 6 inputs, with the first bit being the first input. The MSB
property ‘global_outputs’ can be used in addition to ‘setout’/’clrout’ for read/write operations of the local
outputs.

Local global Inputs, P1 connector pins:

P1 -11 DIN1
P1-13 DIN2
P1-15 DIN3
P1 -12 DIN4
P1-14 DIN5
P1-16 DIN6

Local global Outputs, P1 connector pins:

P1 -9 DOUT1
P1-10 DOUT2

1. ‘global_inputs’ and ‘global_outputs’ axis properties may be accessed by QuickBuilder using the

Axis name/property method: axisname.property. These two properties will contain the same value on all
EtherCAT axes.

2. Chapter 6 discusses additional IO capabilities available from the MSB language using various IO
arrays. These arrays give access not only to drive and module based IO but remote EtherCAT IO blocks such
as those from Wago, Turck and Beckhoff. Some of the features include PLS, PWM, pulse, and atomic multi-
bit access of 32 drive inputs/outputs, local and remote IO.

3. M3-41 soft PC Version only supports drive I/O.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 27
Document 951-534101-038

[4] Drives: Modes of Operation

& General Programming

CTC’s programming environment allows you to place a drive in a number of different
modes, each offering unique features. The MSB ‘cmode’ variable controls the active
mode that a drive runs in when motion commands are executed. The variable can be
set programmatically and/or its initial value set via the QuickBuilder axis property sheet.
The following values are currently supported for programming entry:

$CYCLIC_SYNC_POSITION_MODE 0
$PROFILE_VELOCITY_MODE 1
$INTERPOLATED_POSITION_MODE 3
$PROFILE_POSITION_MODE 4
$PROFILE_TORQUE_MODE 5 (not supported, reference Chapter 4, Torque Control)
$HOMING_MODE 8

 When setting ‘cmode’, either the constant predefined name can be used (starting with $) or the

immediate numeric value. When using the constant make sure it is spelled correctly or it will be defined as
a user variable with a default value of 0.

By default all drives are placed in Cyclic Sync Position mode at power up unless overridden by the
QuickBuilder axis property sheet. This allows direct control of all motion by the M3-41 module. Initially the
current position becomes the base position and is cyclically written to each drive as a holding position until
commanded differently. The amplifier is only turned on once the ‘drive enable’ command is executed. This
results in a special power-up sequence. The ‘drive enable’ command waits until the drive is powered up
before it allows additional commands to be executed.

A typical simple move is displayed below:

cmode = $CYCLIC_SYNC_POSITION_MODE; // CSP mode (default)

[top]

move at 1 for 2;

wait for in position;

delay 1000 ms;

move at 1 for -2;

wait for in position;

delay 1000 ms;

goto top;

CHAPTER

4

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 28
Document 951-534101-038

In the above example, the drive will move at 1 rev/sec for 2 revolutions and then move back 2 revolutions.
The move is a relative move, since it does not designate an actual position. The delay is arbitrary and for
viewing purposes only.

To run in Profile Position mode, simply change cmode to a 4 or $PROFILE_POSITION_MODE and execute
the same commands.

Cyclic Synchronous Position Mode (CSP)

Cyclic sync position mode provides linear interpolation, where the drive will always insert a delay of one
position command. It gives the EtherCAT Master the greatest flexibility since it is directing the drive exactly
where to go on each scan cycle (delayed one scan cycle by the drive). The trajectory is calculated on the fly
by the M3-41 module. It also takes the most overhead, as each drive requires around 50µS for this
calculation. It is the preferred mode for M3-41 operation.

Example:

// This is a background MSB. Make sure inposw is set for the drive,

// typically .001 for 1048576 ppr. Also set the ppr and mppr. For

// Yaskawa this is typically 1048576. Enable the drive, turning power

// on to the amplifier. The current position will be constantly

// updated so the drive does not move.

drive enable;

zero feedback position;

// CSP mode is the default but set anyway for documentation purposes

// and await any drive settling.

cmode = $CYCLIC_SYNC_POSITION_MODE;

wait for in position;

[top]

// Begin the move, 1 rev/second for 2 revolutions

move at 1 for 2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do a relative move back 2 revolutions at 1 rev/second

move at 1 for -2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do it again, forever...

goto top;

When moving out of a Profile mode and back into CSP mode, make sure the following is executed first:

cmode = $CYCLIC_SYNC_POSITION_MODE;

wait for in position;

Reference the DC Sync section of this manual for additional information when using CSP mode.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 29
Document 951-534101-038

Profile Velocity Mode

In Profile Velocity mode, the speed is output in accordance with the Profile acceleration and Profile
deceleration. The drive attempts to maintain the velocity commanded. CSP mode can also be used for
constant velocity, but when using Profile Mode, control loop time is optimized since the EtherCAT Master
does not have to constantly calculate the trajectory for that drive. The following is a simple example of
Profile Velocity Mode:

vmax = 100; // Max velocity.

stoprate = 1; // This is the rate (rev/sec) used on Yaskawa and

// Copley drives for decel when STOP.

invel_t = 1; // Time required, in milliseconds to be at target

 // velocity before considered AT TARGET.

invel_w = .01; // Must be at target velocity +/- (.01 X target vel)

 // with drive AT TARGET to satisfy move.

 // If target is 0 then +/- .01 rev/sec

[top]

cmode = $PROFILE_VELOCITY_MODE; // Profile Velocity mode

// When in velocity mode distance is just sign of direction.

move at 2 for 1;

wait for in position; // This is when attain requested velocity

delay 5000 ms;

// Now speed up to 20 rev/sec in the same direction.

move at 20 for 1;

wait for in position;

delay 1000 ms;

// If the motor is not tuned may never get to here but

// this is the proper way to stop in velocity mode.

move at 0 for 1;

wait for in position;

// Ensure stopped before changing to another mode, like CSP.

stop;

wait for in position;

goto top;

The EtherCAT Master uses the properties ‘invel_t’ (at velocity time) and ‘invel_w’ (at velocity

window) to monitor when the drive is actually AT TARGET in Profile Velocity mode.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 30
Document 951-534101-038

Interpolated Position Mode

Interpolated position mode is used to control multiple coordinated axes or a single axis with the need for
time-interpolation of setpoint data. In interpolated position mode, the trajectory is calculated by the
EtherCAT Master and passed to the amplifier’s interpolated position buffer as a set of points. The amplifier
reads the points from the buffer and performs linear or cubic interpolation between them. This mode is
provided for compatibility with some drives with the preferred mode being CSP. The following is a simple
example of Interpolated Position Mode:

// This is a background MSB. Make sure inposw is set for the drive,

// typically .001 for 1048576 ppr. Also set the ppr and mppr. For

// Yaskawa this is typically 1048576.

// Enable the drive, turning power on to the amplifier. The current

// position will be constantly updated so the drive does not move.

drive enable;

zero feedback position;

// Make sure we are stopped and are in CSP mode

cmode = $CYCLIC_SYNC_POSITION_MODE;

wait for in position;

// Drop into Interpolated Position Mode

cmode = $INTERPOLATED_POSITION_MODE;

[top]

// Begin the move, 1 rev/second for 2 revolutions

move at 1 for 2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do a relative move back 2 revolutions at 1 rev/second

move at 1 for -2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do it again, forever...

goto top;

Profile Position Mode

In Profile Position mode the drive is given a velocity, and acceleration, and final position to move to and it
calculates the trajectory. There is lower overhead on the EtherCAT Master when using Profile Position
Mode than for Cyclic Sync Position, since no trajectory needs to be calculated but it does impact the cyclic
nature of other drives running in CSP mode given the initial SDO transmissions for profile setup. The
following is a simple example of Profile Position Mode:

// Place the drive in Profile Position mode (Note Profile Position is

// not supported by Kollmorgen).

cmode = $PROFILE_POSITION_MODE;

[top]

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 31
Document 951-534101-038

// Set Profile Velocity (0x6081) to 5 rev/sec, acc (0x6083), and dec

// (0x6084). Request move of 2 revolutions

move at 5 for 2;

// Wait until drive says we are in position

wait for in position;

delay 1000 ms; // Delay for visual

// Set Profile Velocity (0x6081) to 5 rev/sec, acc (0x6083), and dec

// (0x6084). Request move of -2 revolutions, relatively back to 0.

move at 5 for -2;

// Wait until drive says we are in position

wait for in position;

delay 1000 ms; // Delay for visual

goto top; // Continue forever

The properties of inpos_w variable (in position window) and inpos_t variable (in position time) can

be set prior to initiating the command. ‘inpos_t’ maps to object 0x6068 and ‘inpos_w’ maps directly to the
drive property ‘inposw’. ‘inpos_t’ is used in Profile Position mode to set the length of time a drive must be
in the commanded position before it is determined to be ‘in position’ (inpos variable).

Homing Mode

In Homing mode the drive finds the home position based on a supplied motion profile and the designated
homing method (0x6098 object). Most homing methods are generic but not all are supported by every
drive. Consult the drive manufacturer’s manual to determine your drive’s homing methods.

Before requesting a Homing Move, set the following parameters:

 inpos_t – The number of milliseconds the drive should settle after finding home before the
move is considered complete.

 homing_speed1 – Some homing modes require multiple speeds, with this one being the
speed to the switch.

 homing_speed2 – Some homing modes require multiple speeds, with this one being the

speed to zero or the index pulse.

 homing_method – The method that the drive manufacturer designates for the desired move.
For example, 33 homes to the index pulse, while 34 does the same thing but in the opposite

direction. There are numerous modes available, all controlled by the drive itself. The MSB

is simply setting the move up for the drive to take control.

Once the above parameters are defined, ‘cmode’ is set to $HOMING_MODE (8) to command Homing mode
and a move absolute command to 0 is initiated. The acceleration value in the move command will be used
for the homing acceleration and deceleration rate. The move will not start until the ‘move’ command is
executed. For example: ‘move to 0 using 10000,10000;’ initiates the drive homing move with an
acceleration/deceleration profile of 10000 rev/sec2. This is the value written to object 0x609A, Homing
Acceleration. Note that some drives, such as Mitsubishi call this an acceleration/deceleration constant
where upon the raw value is written. For example for a time constant of 0 on Mitsubishi the command
would be: ‘move to 0 using 0, 0;’. Check the manufacturers manual for the meaning of object 0x609a.
Note that Mitsubishi currently does not support the object but may in the future.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 32
Document 951-534101-038

The following is a simple example of Homing Mode:

drive enable;

zero feedback position;

// Let the drive home to the index pulse

[home]

inpos_t = 250; // 250 millisecond settling (can make it anything want

// but this is the time the drive will wait at position

// before notifying QuickBuilder MSB that it is home.

homing_method = 34; // Yaskawa method setting for home to index pulse

homing_speed1 = 1; // homing_speed1 is not used but set for default anyways

homing_speed2 = 1; // in mode 34 only the homing_speed2 is used

cmode = $HOMING_MODE; // Homing mode for drive

move to 0 using 10000,10000; // Tell the drive to initiate the move with

// accel of 10000.

wait for in position; // The drive will stop once it sees the index

// pulse and tpos = fpos at that position

 // therefore we will have an offset past home in

// tpos/fpos, not really absolute 0.

// Using CSP mode we can move back to absolute home position or 'zero

// feedback' to 0 out tpos/fpos.

// Drop back to CSP mode so we command the drive

cmode = $CYCLIC_SYNC_POSITION_MODE;

move at .1 to 0 using 10000,10000; // Do any kind of absolute move back

// to 0 to remove our offset.

wait for in position; // Wait until move is complete

// We are now at home, 0.

The properties of inpos_w variable (in position window) and inpos_t variable (in position time) can

be set prior to initiating the command. ‘inpos_t’ maps to object 0x6068 and ‘inpos_w’ maps directly to the
drive property ‘inposw’. ‘inpos_t’ is used in Homing mode to set the settling time a drive must be in the
commanded position before it is determined to be ‘in position’ (inpos variable).

Gearing/Tracking & Local Quadrature Encoders

Gearing and tracking modes work the same as with the M3-40 module, with a few enhancements to allow
for the larger number of axes.

Any axis can track another axis by simply dropping into tracking mode. To reference which axis to track,
use the variable ‘master_feedback’, which by default is 1. Set this variable to the axis you wish to track, set
whether to reference fpos or tpos of the master axis, and then drop into tracking mode. The following is a
simple example of Tracking Mode:

cmode = $CYCLIC_SYNC_POSITION_MODE;

// Establish which axis we are for, axisnum is our axis number

// and is a new available property.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 33
Document 951-534101-038

AxisNum = axisnum;

// ******** TRACKING MODE **********

[SetTracking]

zero master counters;

master_feedback = 1; // Set we will track axis 1

// Set the feedback mode first so when enter tracking it is referencing

// correct master. ‘set master feedback’ references the other axis

// fposc or feedback position. ‘set master target1’ references the other

// axis tpos position.

set master feedback;

set mode tracking; // Enter tracking mode

gear at 1:4;

[stall]

goto stall;

As described in the example there are two major ways to track the master axis:

set master feedback – tracks fpos (encoder feedback) of the master.
set master target1 – tracks tpos (target position) of the master.

With an analog servo fpos (encoder feedback position) is typically used. When using EtherCAT tpos (target
position) may be more accurate, depending on the drive’s lag. Lag is the time it takes for the drive to take a
commanded position and make it current. Different drives have different averaging or smoothing
algorithms as they calculate their next profile. For example ‘fpos’ will also lag more than ‘tpos’ since it will
take the drive time to catch up to the commanded position. The benefit of tracking ‘fpos’ is when the
master is in a high torque situation, with a larger position error, the slave will track the actual position
rather than the desired position (tpos). Which to use will be application and drive dependent, with the
preference towards ‘fpos’.

Another option available on the M3-41 hardware module is the provision for directly connecting up to 3
local quadrature encoders. These encoders can be used as master references by the EtherCAT axis. To
reference these encoders, the master_feedback variable is set to 1001, 1002, or 1003, for each of the
respective encoder inputs. Once master_feedback is referencing a local encoder, its present value will
appear in ‘mpos’ and ‘mposc’ MSB variables. In addition, all local encoder counts can be accessed using the
‘ctr’ array, index 5 to 7 from an MSB, or ctr5, ctr6, and ctr7 from QuickBuilder.

Master_feedback = 1001, ctr[5]/ctr5, P1 connector pins:

P1-19 A0+
P1-20 A0-
P1-21 B0-
P1-22 B0+

Master_feedback = 1002, ctr[6]/ctr6, P1 connector pins:

P1-23 A1+
P1-24 A1-
P1-25 B1-

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 34
Document 951-534101-038

P1-26 B1+

Master_feedback = 1003, ctr[7]/ctr7, P1 connector pins:

P1-27 A2+
P1-28 A2-
P1-29 B2-
P1-30 B2+

Power and ground for the encoder can be sourced from the +5V/GND connector on the model 5300

power supply. Additionally, when using ‘set master target1’, it is best to set the lower numbered axis as
the master otherwise the position loop update will be delayed by one control loop cycle on the slave
device. In most instances this delay is irrelevant.

Tracking operation can be modified with two variables, perrlimit and vcmd. During tracking operations the
amount the slave axis master position has moved, each servo cycle, will be multiplied by ‘vcmd’. By default
this is 1.0 but may be modified to any positive value. A second variable ‘perrlimit’ can be used to dump the
error when it reaches the value set in ‘perrlimit’. This is useful in winding operations. Setting ‘perrlimit’ to
0 disables this feature and is the default.

Move on a Gear

One of the new features introduced on the M3-41 module is the ability to be geared to a master axis and
then do a ‘move’ command (CSP mode only) which will transpose that move commands profile on top of
that tracking the master axis. This is useful in a number of applications, particularly where the slave may be
tracking with a master but needs to catch up to that axis and maintain gearing.

Specific property variables:

tracking_pstate – Read only, contains the current execution state of the drive during a ‘move on a gear’
operation. ‘pstate’ must be in TRACKING mode for this property to be valid.

tracking_tpos – Read only, same as ‘tpos’ property but used only for ‘move on a gear’ operation. It will
depict the relative position reference with an initial position of 0. This is then added to the tracked position
as calculated from the master position.

tracking_tposc = Read only, number of counts required for the ‘move on a gear’ move for this increment of
its profile.

tracking_sign – Read only, 0 if not used, 1 for positive rotation, -1 for negative rotation when adding
‘tracking_tposc’ to ‘tposc’ to derive resulting motion.

tracking_status – Read only, contains the current state of the move as referenced by the ‘QS2_Status’
property.

 NOT_INITIALIZED = 0
 STOPPED_READY = 1

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 35
Document 951-534101-038

 ACCELERATING = 3
 AT_MAX_SPEED = 4
 DECEL_TO_NEW_MAX_SPEED = 5
 DECEL_TO_STOP = 6

The below example is two axes, where the second axis is the master:

MSB axis 2, Master Axis (can be virtual axis):

/**************** ENABLE DRIVE *******************/

delay 1000 ms;

 [Drive_Enable]

drive enable; // Enable the drive

set common bit 1 true; // Tell slave drive is enabled and it can gear

wait common bit 0 true; // Wait for slave to be geared

[loop]

move at 10 for 1000000; // make a long move

wait for in position;

delay 1000;

goto loop; // repeat

MSB axis 1, Slave Axis (start this axis first):

/**************** ENABLE DRIVE *******************/

// Clear common bits used to handshake with the master

set common bit 0 false;

set common bit 1 false;

[Drive_Enable]

drive enable;

wait common bit 1 true; // Wait for master to tell us its drive is enabled

zero master counters;

master_feedback = 2; // Reference axis 2 for fposc so we can track

set master feedback;

set mode tracking; // Enable tracking mode

// Set our gear ratio

gear at 1:1;

set common bit 0 true; // tell master we are all geared and ready to go

[reverse]

delay 3000 ms; // Track 1:1 with master at speed of master

move at 5 for 50; // Simulate catching up to Master.

 // If Master at 10 rev/s then doing 15 rev/sec

// during move, ‘wait for in position’ not usable.

[stall]

if tracking_pstate != 2 goto stall; // wait for move to COMPLETE

goto reverse;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 36
Document 951-534101-038

Only ‘move’ commands can be executed while in TRACKING mode. Slew and camming are not

supported by the slave axis.

Axis property ‘pstate’ and ‘tracking_pstate’, where ‘pstate’ is equal to TRACKING mode for ‘move

on a gear’ to occur, both can have the following values:

 IDLE = 0, // Ready to run new move command
 RUNNING = 1, // Processing sub-steps
 COMPLETE = 2, // Done running, awaiting IDLE to begin new move
 STOP = 3, // Stop
 SLEWSTOP = 4, // Slewed stop
 SLEWING = 5, // Slewing
 PRESPLINE = 6, // Pre 'SPLINE' move
 PRECAM = 7, // Pre 'CAM' move
 PRECAM_REVERSE=8, // Run cam table in reverse
 CONT_CAM=9, // Continue cam from where stopped (assumes did jog)
 INSPLINE=10, // In 'SPLINE' move
 INCAM=11, // In 'CAM' move
 TABLESTOP=12, // Stop table
 TRACKING=13, // Geared mode, state of ‘pstate’ when

// ‘tracking_pstate’ valid
 PRETRACKING=14, // Initialization for TRACKING (geared) mode
 EXIT_TRACKING=15,
 ECAT_COMPLETE_PENDING=16,
 ECAT_PROFILE_POS_INIT=17,
 ECAT_PROFILE_POS_STARTING1=18,
 ECAT_PROFILE_POS_STARTING1A=19,
 ECAT_PROFILE_POS_STARTING2=20,
 ECAT_PROFILE_POS_RUNNING=21,
 ECAT_PROFILE_POS_WAIT_INPOS=22,
 ECAT_PROFILE_VEL_INIT=23,
 ECAT_PROFILE_VEL_WAIT_DELAY1=24,
 ECAT_PROFILE_VEL_WAIT_DELAY2=25,
 ECAT_PROFILE_VEL_WAIT_DELAY3=26,
 ECAT_PROFILE_VEL_WAIT=27,
 ECAT_PROFILE_TORQUE_INIT=28,
 ECAT_PROFILE_INIT_CSP=29,
 ECAT_PROFILE_INIT_INTERPOLATED=30,
 ECAT_PROFILE_WAIT_CSP1=31,
 ECAT_PROFILE_WAIT_CSP2=32,
 ECAT_MODE_WAIT_CSP=33,
 ECAT_MODE_WAIT_INTERPOLATED=34,
 ECAT_MODE_WAIT_PROFILE=35, //Idling, awaiting Profile request to be processed.
 ECAT_PROFILE_INIT_QSTOP=36,
 ECAT_PROFILE_WAIT_QSTOP1=37,
 ECAT_PROFILE_WAIT_QSTOP2=38,
 ECAT_PROFILE_WAIT_QSTOP=39,
 ECAT_PROFILE_AT_VEL=40,
 ECAT_PROFILE_AT_TORQUE=41,
 ECAT_HOMING_INIT=42,
 ECAT_HOMING_STARTING1=43,
 ECAT_HOMING_STARTING1A=44,
 ECAT_HOMING_STARTING2=45,

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 37
Document 951-534101-038

 ECAT_HOMING_RUNNING=46,
 ECAT_HOMING_WAIT_INPOS_KOLLMORGEN=47,
 ECAT_HOMING_WAIT_INPOS=48,
 ECAT_HOMING_WAIT_INPOS_IAI=49,
 ECAT_PROFILE_POS_WAIT_ABORTING=50,

 ECAT_OFFLINE = -1

Camming Moves and Optional Timeouts

Camming Moves are supported in Cyclic Sync Position and Interpolated Position modes. You are allowed
up to 2000 rows (master/slave entries) per table, with up to 6 tables available (numbered 0 to 5). Consult
the QuickMotion Reference Guide for more detailed information. An MSB example is as below:

drive enable;

zero feedback position;

cmode = $CYCLIC_SYNC_POSITION_MODE;

// This MSB effectively sets up a 1:1 gear ratio with the Master

// The first item in the table is master revolutions/second.

// The second entry is that of the slave, this MSB.

table 1 clear; // clear out the old data

table 1 addseries // load new data to table 1

0.000 , 0.0000: //set up a 1:1 ratio

1.000 , 1.0000:

2.000 , 3.000 :

3.000 , 5.0000:

5.000 , 0.0000; // CAMS wrap back to zero, like a mechanical cam

table 1 precompute; // compute the cam (about 1/4 sec per 1000 pts)

// The master can reference another drive with the 'set master feedback1'

// command and setting the master_feedback variable to the drive desired.

// It can also reference its own created master, as shown below.

// This master is virtual and will increment by 1000 counts every

// Control Loop tick (1 ms). This way only one drive is needed for

// testing camming.

set master virtual; // We will use our own virtual master

// Set up the number of counts to increment per control loop.

move master at 1000 forever;

// This value will be divided by ppr for actual master revs.

zero feedback position;

[top]

// With the table repeat count set to 0 it will continually recycle

// through the table, forever, until a ‘stop table’ command is executed.

// This one will do 6 test cycles, repeating the cam table.

table 1 start linear cam 1.0, 1.0, 6;

wait for in position; // Wait for CAM table to be done and exit

[loop]

activeCAM_row = 0; // This contains where the table left off when it

// exited and must be zero'd as it

 // is where it will start next time through.

delay 3000; // Stall for now...

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 38
Document 951-534101-038

goto loop;

Below, a small section of the code is re-written to show how timeouts can be used in case a move does not
occur becauseof an error condition. Timeouts can be used anywhere, not just in camming.

[top]

mytime = 10000; // About 10 seconds

set timeout mytime;

on timeout goto timedout; // We will expect the CAM move to finish in 10

 // seconds or abort.

// With the table repeat count set to 0 it will continually recycle

// through the table, forever, until a ‘stop table’ command is executed.

// This one will do 2 test cycles, repeating the cam table.

table 1 start linear cam 1.0, 1.0, 2;

wait for in position; // Wait for CAM table to be done or timeout

set timeout 0; // Cancel the timer since we finished the move

[loop]

activeCAM_row = 0; // This contains where the table left off when it

// exited and must be zero'd as it

 // is where it will start next time through.

delay 3000; // Stall for now...

goto loop;

[timedout]

// Timed out on camming table move

stop table; // Stop the camming

[stall]

i = i+1; // Increment i so know timeout worked from QuickView

goto stall;

Segmented Moves

Segmented Moves are supported in Cyclic Sync Position and Interpolated Position modes. You are allowed
up to 20 segments. As shown in the example below, first clear the segment table, then add each segment,
followed by a ‘start’ command. An MSB example:

// Enable the drive and clear our position

drive enable;

zero feedback position;

cmode = $CYCLIC_SYNC_POSITION_MODE;

// Initialize the move variables

vel1=5;

vel2=11;

rate1=50;

rate2=5;

dist1=10;

dist2=60;

stop_dist=1;

// Start the move loop

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 39
Document 951-534101-038

[top]

segmove 1 clear; // Clear any prior segments stored

// Add each of the desired segments for the move desired

segmove 1 accdec to vel1 using rate1;

segmove 1 slew until dist1;

segmove 1 accdec to vel2 using rate2;

segmove 1 slew until dist2;

segmove 1 accdec to 0 for stop_dist;

// Start the move now

segmove 1 start relative;

// Wait for it to run the segments

wait for in position;

// Delay a bit and then do it again

delay 1000 ms;

goto top;

Slewed Move

A slewed move can be used for jogging as well as other desired motions. It is basically a move at some
velocity that is reached in the time specified. An example of a slewed move:

drive enable;

zero feedback position;

cmode = $CYCLIC_SYNC_POSITION_MODE;

Speed = .5; // Set our desired slew speed

[Slew]

slew begin; // Enter slewing mode

slew at Speed in 1; // Slew to speed in 1 second

delay 5000 ms; // Maintain speed for 5 seconds

slew at 0 in 0.1; // Slew to a stop in .1 seconds

slew end; // Drop out of slewing mode

delay 1000 ms; // Pause for 1 second

Speed = Speed * -1; // Change directions and slew the other way

goto Slew;

Linear Interpolation (2D)

Two dimensional (2D) linear interpolation allows any two drives to arrive at the same point, at the same
time. This is referred to as the target X, Y position, when programming with MSB’s, with the move from the
present position to the target being interpolated.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 40
Document 951-534101-038

The controlling axis is the X axis MSB while the axis that will be controlled in unison is the Y axis. A number
of properties are available for an interpolated move:

axisY – The axis number, from 1 to N, which will be the Y axis, commanded from the X
 axis. The Y axis must be set for interpolation to occur.
vectorY – The desired Y position on an X/Y grid in user units, based upon revolutions.
Note that this value is overwritten after a circular interpolated move for diagnostic purposes.

Read only variables for viewing in the debug watch window:

angle – Read only, calculated angle of the last vector move.
magnitude – Read only, calculated size of the last vector move.
velX – Read only, calculated velocity along the X axis of the last vector move.
velY – Read only, calculated velocity along the Y axis of the last vector move.
accX – Read only, calculated acceleration along the X axis of the last vector move.
accY – Read only, calculated acceleration along the Y axis of the last vector move.
decX – Read only, calculated deceleration along the X axis of the last vector move.
decY – Read only, calculated deceleration along the Y axis of the last vector move.

Any of the normal ‘move’ commands can be used. The velocity and acceleration parameters are that of the
vector while the position information is for the X axis position. The Y axis MSB should not attempt to
control the axis while the X axis has it in motion or an error will result. Common bits can be used to
synchronize the tasks if needed. Additionally, both drives must be in CSP mode.

Sample Program:

[beginTest]

axisY = 2; // set the Y axis

delay 1000 ms; // make sure the axis is running first

speed = 40; // Set the vector velocity in rev/sec

[interpolate]

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 41
Document 951-534101-038

// For simplicity user units are 1:1 with revolutions (uun/uud)

cmode = $CYCLIC_SYNC_POSITION_MODE; // CSP mode

vectorY = 10; // Y position of 10 revolutions

// Below will make a 45 degree angle, 100 is the vector accel/decel

move at speed for 10 using 100,100; // vector move where 'for' is the

 // X position.

wait for in position; // Wait for move to finish on both X & Y axis

// move along the X Axis only

vectorY = 0;

move at speed for -10 using 100, 100;

wait for in position;

// Move along the Y Axis only, should be back to start after the move.

vectorY = -10;

move at speed for 0 using 100, 100;

wait for in position;

// should be back home now, do again

goto interpolate;

Splines may be used to with multiple X/Y vectors to provide smooth motion through multiple 2D/3D

positions residing in a table. Linear, cubic, and quadratic splines are supported.

Linear Interpolation (3D)

Three dimensional (3D) linear interpolation allows any three drives to arrive at the same point, at the same
time. This is referred to as the target X, Y, and Z position, when programming with MSB’s, with the move
from the present position to the target being interpolated.

As with 2D linear interpolation, the controlling axis is the X axis MSB while the axes that will be controlled
in unison are the Y and Z axis. A number of properties are available for an interpolated move:

axisY – The axis number, from 1 to N, which will be the Y axis, commanded from the X
 axis. The Y axis must be set for either 2D or 3D interpolation to occur.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 42
Document 951-534101-038

vectorY – The desired Y position on an X/Y/Z grid in user units, based upon revolutions. Note that
this value is overwritten after a circular interpolated move for diagnostic purposes.
axisZ – The axis number, from 1 to N, which will be the Z axis, commanded from the X
 axis.
vectorZ – The desired Z position on an X/Y/Z grid in user units, based upon revolutions.
Note that this value is overwritten after a circular interpolated move for diagnostic purposes.

Read only variables for viewing in the debug watch window:

angle – Read only, calculated angle of the last vector move.
magnitude – Read only, calculated size of the last vector move.
velX – Read only, calculated velocity along the X axis of the last vector move.
velY – Read only, calculated velocity along the Y axis of the last vector move.
velZ – Read only, calculated velocity along the Y axis of the last vector move.
accX – Read only, calculated acceleration along the X axis of the last vector move.
accY – Read only, calculated acceleration along the Y axis of the last vector move.
accZ – Read only, calculated acceleration along the Z axis of the last vector move.
decX – Read only, calculated deceleration along the X axis of the last vector move.
decY – Read only, calculated deceleration along the Y axis of the last vector move.
decZ – Read only, calculated deceleration along the Z axis of the last vector move.

Any of the normal ‘move’ commands can be used. The velocity and acceleration parameters are that of the
vector while the position information is for the X axis position. The Y/Z axis MSB’s should not attempt to
control their axis while the X axis has it in motion or an error will result. Common bits can be used to
synchronize the tasks if needed. Additionally, all 3 drives must be in CSP mode.

Sample Program:

[beginTest]

axisY = 2; // set the Y axis, required for interpolation

axisZ = 3; // set the Z axis

delay 1000 ms; // make sure the axis is running first

speed = 40; // Set the vector velocity in rev/sec

[interpolate]

// For simplicity user units are 1:1 with revolutions (uun/uud)

cmode = $CYCLIC_SYNC_POSITION_MODE; // CSP mode

vectorY = 10; // Y position of 10 revolutions

vectorZ = 20; // Z position of 20 revolutions

// Below will make a 45 degree X/Y angle, 100 is the vector accel/decel

move at speed for 10 using 100,100; // vector move where 'for' is the

 // X position.

wait for in position; // Wait for move to finish on X, Y & Z axis

// move along the X Axis only

vectorY = 0;

vectorZ = 0;

move at speed for -10 using 100, 100;

wait for in position;

// Move along the Y Axis only, should be back to start after the move.

vectorY = -10;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 43
Document 951-534101-038

vectorZ = 0;

move at speed for 0 using 100, 100;

wait for in position;

// Move along the Z Axis only, should be back to start after the move.

vectorY = 0;

vectorZ = -20;

move at speed for 0 using 100, 100;

wait for in position;

// should be back home now, do again

goto interpolate;

When running 3D linear interpolation all the vector parameters are based upon the 2D X/Y axis

calculations. The Z axis will attempt the same type of move based upon the required distance and
calculated time to target, ignoring the vector motion parameters. Since both X and Y axis arrives at the
target at the same time, moving the Z axis in this way ensures it arrives simultaneously.

Circular Interpolation (2D)

Two dimensional (2D) circular interpolation allows any two drives to work in coordinated motion to draw
an arc or full circle. This functions similarly to that of 2D linear interpolation but with the addition of a few
parameters to define the arc.

The controlling axis is the X axis MSB while the axis that will be controlled in unison is the Y axis. A number
of properties are available for an interpolated move:

axisY – The axis number, from 1 to N, which will be the Y axis, commanded from the X
 axis. The Y axis must be set for interpolation to occur.
radius – The radius in user units of the arc to be drawn. A negative radius flips the arc.
angleSweep – The desired amount of angular motion that is to occur relative to the radius center
point. A positive angleSweep rotates clockwise, negative, counter clockwise.
angleStart – The angle at which motion should start where 0 is vertical on the Y axis, minus angle
moves left, and positive angle moves right. The ‘angleSweep’ variable is added to this angle.
vectorZ – The calculated center of the arc for the X axis will be stored here for diagnostic reference,
in machine units.
vectorY – The calculated center of the arc for the Y axis will be stored here for diagnostic reference,
in machine units. Make sure you update vectorY after a circular move if the next move is linear
interpolation.

Read only variables for viewing in the debug watch window:

angle – Read only, initialized to 0 and records the calculated angle as it sweeps.
velVector – Read only, velocity in radians/second that is being used for the calculated profile.
accVector – Read only, acceleration in radians/second2 that is being used for the calculated profile.
decVector – Read only, deceleration in radians/second2 that is being used for the calculated profile.

Any of the normal ‘move’ commands can be used. The velocity and acceleration parameters are in user
units and represent the feed rate at a point on the arc. These parameters are then converted into radian

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 44
Document 951-534101-038

units. The Y axis MSB should not attempt to control the axis while the X axis has it in motion or an error
will result. Common bits can be used to synchronize the tasks if needed. Additionally, both drives must be
in CSP mode.

Below are two sets of arcs drawn, one specifying the feed rate and the second time based, with all the
needed velocity, acceleration, and deceleration dynamically calculated:

Example absolute moves:

[beginTest]

axisY = 2; // set that we will coordinate with axis 2

[top]

// CW rotation

radius = .5; // 1/2 inch radius, 5 rev/inch., uud = 5.

angleSweep = 180; // 180 degree sweep

angleStart = -90; // negative 90 degree offset on Y axis

// move at 1.5 inches/sec feed rate with accel/decel of 4 inches/sec2

// velocity / radius = rad/sec

move at 1.5 to 0 using 4,4;

wait for in position;

// CW rotation

radius = .5; // 1/2 inch radius.

angleSweep = 180;

angleStart = 0; // no offset on Y axis

// move at 1.5 inches/sec feed rate with accel/decel of 4 inches/sec2

// velocity / radius = rad/sec

move at 1.5 to 0 using 4,4;

wait for in position;

// CW rotation

radius = .5; // 1/2 inch radius.

angleSweep = 180;

angleStart = 90; // 90 degree offset on radius

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 45
Document 951-534101-038

// move at 1.5 inches/sec feed rate with accel/decel of 4 inches/sec2

// velocity / radius = rad/sec

move at 1.5 to 0 using 4,4;

wait for in position;

// CW rotation & flip

radius = -.5; // 1/2 inch radius but flip the curve, CW.

angleSweep = 180;

angleStart = 0; // no offset to the radius

// move at 1.5 inches/sec feed rate with accel/decel of 4 inches/sec2

// velocity / radius = rad/sec

move at 1.5 to 0 using 4,4;

wait for in position;

[stall]

delay 4000 ms;

// Do it again, forever...

goto top;

Example time based moves:

[beginTest]

axisY = 2; // set that we will coordinate with axis 2

[top]

// CW rotation

radius = .5; // 1/2 inch radius, 5 rev/inch., uud = 5.

angleSweep = 180; // 180 degree sweep

angleStart = -90; // negative 90 degree offset on Y axis

// draw arc in 1 second and calculate required velocity and acceleration

move in 1 to 0;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 46
Document 951-534101-038

wait for in position;

// CW rotation

radius = .5; // 1/2 inch radius.

angleSweep = 180;

angleStart = 0; // no offset on Y axis

// draw arc in 1 second and calculate required velocity and acceleration

move in 1 to 0;

wait for in position;

// CW rotation

radius = .5; // 1/2 inch radius.

angleSweep = 180;

angleStart = 90; // 90 degree offset on radius

// draw arc in 1 second and calculate required velocity and acceleration

move in 1 to 0;

wait for in position;

// CW rotation & flip

radius = -.5; // 1/2 inch radius but flip the curve, CW.

angleSweep = 180;

angleStart = 0; // no offset to the radius

// draw arc in 1 second and calculate required velocity and acceleration

move in 1 to 0;

wait for in position;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 47
Document 951-534101-038

[stall]

delay 4000 ms;

// Do it again, forever...

goto top;

Arc summary with positive/negative radius and sweep angles:

Radius = .5, angleSweep = 180, angleStart = 0

Radius = .5, angleSweep = -180, angleStart = 0

Radius = -.5, angleSweep = 180, angleStart = 0

Radius = -.5, angleSweep = -180, angleStart = 0

Radius = .5, angleSweep = 180, angleStart = -90

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 48
Document 951-534101-038

Radius = .5, angleSweep = 180, angleStart = 90

Camming & Splines (2D/3D) – Linear, Cubic & Quadratic

Camming tables in QuickMotion are two-dimensional arrays of floating-point data. There are 8

tables available for use with the M3-41, numbered 0 through 7, each having up to 2000 rows and

always 2 columns. These columns are named “x” and “y”. Although their primary use is to hold

data for spline- and CAM-based motion, they can be used to hold arbitrary data such as positions for

recipe-based motion. Although limited to 8 tables per axis, these tables can also be swapped out

dynamically and refreshed with new data when loaded from the controller file system.

Spline tables use the “x” column as time and the “y” column as a relative position. CAM tables use

the “x” column as a relative master position and the “y” column as a relative slave position.

Since spline and CAM tables use relative position data, the first point pair in these tables must be

0.0, 0.0 (time/master-position of 0, position/slave-position of 0). The exception to this is with CAM

tables where the y component can be non-zero, thereby establishing an offset. In addition, for any

tables used for spline and CAM operations, all “x” values must be increasing, that is: a given row’s

“x” must be greater than the previous row’s “x”. Also, the minimum number of rows (pairs) in

these tables is 3.

It is recommended that CAM tables and instructions be used whenever possible. Significant

enhancements have been made to camming which have currently not been carried forward to

splines. Some of this consists of the ability to start on non-zero y column values, ability to start

anywhere within a table, and forward and reverse table traversing.

Points in a spline or CAM table are also referred to as knots, as they represent critical loci that must

be passed through when interpolation occurs.

For example, in the following spline table:

0.0 0.0

1.5 2.0

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 49
Document 951-534101-038

2.0 2.5

3.0 3.0

4.0 2.0

5.0 0.0

There are 6 knots. Since this is a spline table, the last 5 knots are interpreted as follows:

 At time = 1.5 seconds, the position of the axis should be 2.0 user-units beyond where the

axis started this spline move.

 At time = 2.0 seconds, the position of the axis should be 2.5 user-units beyond where the

axis started this spline move.

 At time = 3.0 seconds, the position of the axis should be 3.0 user-units beyond where the

axis started this spline move.

 At time = 4.0 seconds, the position of the axis should be 2.0 user-units beyond where the

axis started this spline move.

 At time = 5.0 seconds, the position of the axis should be back where the axis started this

spline move.

The position of the axis between these “knots” is determined by the interpolation method specified

by the MSB code when the table is started.

The three available interpolation methods in QM for spline (and CAM tables) are:

Linear - A straight-line joins each knot.

Quadratic - A piecewise 2nd degree polynomial is fitted between this knot and the next; the

first derivative of the first point is forced to 0.

Cubic - A piecewise 3rd degree polynomial is fitted between this knot and the next two

knots; the first and second derivatives of the first point is forced to 0.

Splines and Camming work identical to the M3-40 module. The M3-41 adds the ability to

synchronize multiple axes, up to 3, using splines and camming tables. As with 2D & 3D Linear

Interpolation, the axisY and axisZ properties may be assigned to the desired axis with which to

synchronize the controlling X axis.

axisY – The axis number, from 1 to N, which will be the Y axis, commanded from the X
 axis. The Y axis must be set for either 2D or 3D interpolation to occur.
axisZ – The axis number, from 1 to N, which will be the Z axis, commanded from the X
 axis in 3D operations.

In order to operate in 2D mode the first table has its data assigned, for 3D, the first table # +1 is

used for the Y axis, first table #+2 for the Z axis. The Z axis cannot be used without the Y axis.

When the table pre-compute is executed on the first table, it will automatically computer the other

tables based upon the axisY and axisZ contents. The same is true for the ‘table start’, start the first

table and the other axis will start simultaneously. Note that there must be the exact same number of

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 50
Document 951-534101-038

entries in all tables, using the same time references for splines, or master position for camming.

Also all axis must be in Cyclic Synchronous Position (CSP) mode. The following is an example of

a 2D spline operation:

[beginTest]

// Demonstrates the three types of splines: linear, cubic,

// and quadratic

// Set the Axis to use for Y, this can be done anytime

// prior to the precompute.

axisY = 2;

// Clear the X and Y axis

table 0 clear;

table 1 clear;

// Add the spline data points for the X axis.

// First is time, send if position.

table 0 addseries

0.000 , 0.0000 : // simple spline table

0.500 , 1.0000 :

1.000 , 1.5000 :

1.500 , 2.0000 :

2.000 , 4.0000 :

2.500 , 5.0000 :

3.000 , 6.0000 :

3.500 , 5.5000 :

4.000 , 3.3000 :

4.500 , 2.0000 :

5.000 , 1.8000 :

5.500 , 1.5000 :

6.000 , 1.3000 :

6.500 , 1.1000 :

7.000 , 0.000 ;

// The Y table will be X table number + 1

// Now enter the spline data points for the Y axis.

// If Z was used it would be table #3, there

// may be up to 6 tables, 0 to 5.

table 1 addseries

0.000 , 0.0000 : // simple spline table

0.500 , 2.0000 :

1.000 , 3.0000 :

1.500 , 4.0000 :

2.000 , 8.0000 :

2.500 , 10.0000 :

3.000 , 12.0000 :

3.500 , 11.000 :

4.000 , 6.6000 :

4.500 , 4.0000 :

5.000 , 3.6000 :

5.500 , 3.0000 :

6.000 , 2.6000 :

6.500 , 2.2000 :

7.000 , 0.0000 ;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 51
Document 951-534101-038

// Now calculate the move, note that since

// axisY is set the table for X and X#+1

// will be done by this single instruction.

// If axisZ was set then table X#+2 would

// also be done.

table 0 precompute; // precomputes 1 & 2

[top]

// zero our position since table is 0 based

zero feedback position;

// Do the X & Y linear move

table 0 start linear 1.0, 1.0, 1;

wait for in position;

delay 1000;

// Do the X & Y cubic move

table 0 start cubic 1.0, 1.0, 1;

wait for in position;

delay 1000;

// Do the X & Y quadratic move

table 0 start quadratic 1.0, 1.0, 1;

wait for in position;

// pause and do again...

delay 3000;

goto top;

The resulting target positions calculated for each move type, on both axes, are shown below. The

first is a linear move, second cubic, and third quadratic, note that both axis are exactly synced and

overlaying one another:

Torque Control

Some applications, such as a press, may want to dynamically control the maximum torque applied.
Yaskawa, Sanyo Denki, and Emerson drives support a variable called ‘tmax’ which when set represents the
% of maximum torque. At power up tmax is initialized to whatever the drive default is, for example
Emerson is 175% or ‘tmax’ = 175. The variable ‘rmstrq’ represents the current torque requirements in %,

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 52
Document 951-534101-038

maximum being that set by ‘tmax’. Note that the property sheet of Quickbuilder is ignored and the actual
default powerup/reset value from the drive is read and written to ‘tmax’.

If you exceed the ‘tmax’ value and stall the drive, motion will stop and ‘inpos’ will never be set due to the
failure of ‘fpos’ (feedback position) to equal ‘tpos’ (target position). MSB programs must not use the ‘wait
for in position’ command or they will hang forever. Either the ‘pstate’ (COMPLETE, 2) or ‘QS2_status’
(STOPPED_READY, 1) may be monitored for the moves completion.

EtherCAT drive specific object access is as follows:

Emerson

tmax – 0x2004.7 / 10.0 (Symmetrical Current Limit PR4.07)
 Initialized to value in 0x2004.7 or 175.0 if not available.
rmstrq – 0x2004.4 / 10.0 (Current Demand PR4.04)

Sanyo Denki
tmax – 60E0.0 / 10.0 (positive torque %) & 60E1.0 / 10.0 (negative torque %), 0 to 500%.

Initialized to 500.0 during initialization.
rmstrq – 0x6077.0 / 10.0 (Actual torque)

Yaskawa
tmax – 0x6072.0 / 10.0 0 (Max torque)
 Initialized to value in 0x6072.0 or 300.0 if not available.
rmstrq – 0x6077.0 / 10.0 0 (Actual torque)

LinMOT
tmax – 0x13A6.0 / 10.0 (Max Current A) & 0x13BA.0 / 10.0 (Max Current B)
 Limit is expressed in Amps, not %. Initialized to value in 0x13A6.0 or 4.0 if not available.
rmstrq – 0x1b93.0 / 1000.0 (Current Demand /1000.0 = Amps)

Mitsubishi
tmax – 60E0.0 / 10.0 (positive torque %) & 60E1.0 / 10.0 (negative torque %), 0 to 100%
 Initialized to 100.0 during initialization, not read from the drive.
rmstrq – 0x6077.0 (Actual torque)

IAI
 tmax – Initialized to value from properties of drive in QuickBuilder.
 Pressing Current Limit set to (tmax/100.0) * 255.0
 Load Current Threshold set to (tlim/100.0) * 255.0
 tlim initialized to 0.

Below drives do not support the ‘tmax’ function but do provide ‘rmstrq’.

Kollmorgon

tmax – not supported
rmstrq – 0x6077.0 (Actual torque)

Advance Motion Controls
tmax – not supported
rmstrq – 0x6077.0 (Actual torque)

Copley
tmax – not supported
rmstrq – 0x6077.0 (Actual torque)

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 53
Document 951-534101-038

Elmo
tmax – not supported
rmstrq – 0x6077.0 (Actual torque)

’tmax’ must be set after ‘drive enable’ in order to take effect. Prior to ‘drive enable’ the current
value in the drive is read and ‘tmax’ is initialized to that value or the constants detailed above for
each drive. This allows the offline PDO scan to occur without changing the existing value in the

drive.

Restarting EtherCAT Programmatically

A request to restart the EtherCAT network can be made programmatically by setting the number of the
network module you wish to access (1 = first) in register 12333, followed by writing a 21930 (0x55AA) to
register 13464. The network will be taken off line, rescanned, and MSBs restarted. Monitor the online
status (13464) prior to access. Note that the I/O count will not be updated in the controller; a restart to the
network should not be used to add or remove devices without cycling power on the controller.

12333 – (R/W): Network module bank select register; each EtherCAT and other supported network
modules are selectable for further access. ‘1’ is the first module.

13464 – (R/W): Network online status; 1 = online, 0 = offline. Writing a 21930 (0x55AA) to this register
causes the network to reset and, in the case of EtherCAT, rescan all I/O and drives. MSBs will be restarted.

The network can also be restarted via telnet and the QuickBuilder EtherCAT Explorer. When

restarting the network, any axis properties that were changed programmatically from those shown on the
property sheet should be manually initialized. The restart does not re-initialize the property values; those
are only set during a hardware reset or power cycle.

Special Register Access

12333 – (R/W): Network module bank select register; each EtherCAT and other supported network
modules are selectable for further access. ‘1’ is the first module.

13464 – (R/W): Network online status; 1 = online, 0 = offline. Writing a 21930 (0x55AA) to this register will
cause the network to reset and in the case of EtherCAT, rescan all I/O and drives. MSBs will be restarted.

13025 – (RO): Number of digital inputs in the system

13026 – (RO): Number of digital outputs in the system

13027 – (RO): Number of analog inputs in the system

13028 – (RO): Number of analog outputs in the system

13029 – (RO): Number of motors (axes) in the system

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 54
Document 951-534101-038

Registers 13025 to 13029 are useful for the application to verify the number of I/O it expects to find

in the system. Some EtherCAT Masters use a specially configured XML file to simplify I/O count verification.
It is up to the application to confirm the correct number of I/O and axes during startup and notify the user
of any discrepancies.

Global MSB Registers and Flags

There are 48 double precision user variables per MSB. These variables are local to an MSB and not
available to the MSBs executing on a different axis. Global registers, which are local to each EtherCAT
Master module, can be used as a shared variable resource amongst the axes. There are 32 registers named
‘global_reg1’ to ‘global_reg32’. Storage operations consisting of arithmetic operations are atomic to each
MSB and these registers can be accessed from QuickBuilder just like axis properties. Like user variables,
global registers are double precision variables.

Global flag registers are also available, operating the same as global registers. There are 5 flags registers
named ‘global_flags1’ to ‘global_flags5’. Unlike variables the flag registers are 32 bit integers. Atomic
math operations like ‘|’, ‘&’, and arithmetic bit shifting (<<, and >>) may be used. For example:

global_flags1 = global_flags1 << 1; // shift bits left by 1.

QuickBuilder access of global registers and flags are atomic for read operations but not write. If

atomic operation is needed it is recommended common bits be used as semaphore flags and is application
dependent.

Accessing Properties of another Axis

Properties such as fpos, tpos, etc., are local to an axis and not shared with other axis MSBs. This limitation
can be overridden by using the ‘axisptr’ property of an MSB. This property controls what axis the MSB will
retrieve its property value on a read and write operation. It is typically set to the value of ‘axisnum’, which
is the axis number of that axis executing the MSB. Setting this axis number to any other value will override
what axis the property is retrieved from. An example follows:

axisptr = 3; // Monitor axis 3 until the drive is enabled and running

[stall]

if enabled > 0 goto online;

goto stall; // Wait until available

[online]

axisptr = axisnum; // Future property access will be for out axis.

Any property value can be accessed but make sure you do not attempt to mix property access of more than
one axis in a statement since all properties will reference that set by the axisptr. If you wish to read, or
write, a value a user variable should be used. For example the following reads fpos on axis 3:

axisptr = 3; // Access axis 3 properties

myvar = fpos; // read fpos from axis 3

axisptr = axisnum; // set property access back to our axis

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 55
Document 951-534101-038

Drive Type & Axis Number

The type of drive and axis number that an MSB is executing can be referenced programmatically via the
‘eCAT_driveType’ and ‘axisnum’ property variables. ‘axisnum’ contains the axis number, where 1 is the
first. ‘eCAT_driveType’ is defined as follows:

 $DRIVE_COPLEY 2
 $DRIVE_YASKAWA 3
 $DRIVE_ELMO 4
 $DRIVE_KOLLMORGEN 5
 $DRIVE_SANYO_DENKI 6
 $DRIVE_EMERSON 7
 $DRIVE_AMC 8
 $DRIVE_VIRTUAL 9
 $DRIVE_IAI_ACON_MODE3 11
 $DRIVE_ABB_MICROFLEX 12

As with ‘cmode’, either the constant name beginning with ‘$’ or the actual numeric value may be used in an
expression.

Example:

if eCAT_driveType == $DRIVE_AMC goto AMC;

if eCAT_driveType == $DRIVE_VIRTUAL goto Virtual;

Drive Object Access (SDO)

An MSB program can directly access any remote drive object, assuming the drive is in the correct state for
the write operation. This is implemented by allowing SDO (Service Data Object) reads and writes. The
command syntax is as follows:

sdo write <value>, <slave>, <object #>, <object index>, <object size, 1 to 4>;
sdo read <result storage>, <slave>, <object #>, <object index>, <object size, 1 to 4>;

If an error occurs, the MSB will enter a fault state. The Object size is the size of the data, in bytes, as
specified by the manufacturer. The <slave> is the destination of the read or write: -1 for the current slave
the MSB is operating on, or the slave index, starting at 1, as it appears in the discovery tree.

Example:

// 0x609a.00 is the homing acceleration object. This is not used

// on Yaskawa so we can use it for general storage

sdo write counter, -1, 0x609a, 1, 4;

// Read the object value back, should be the same...

sdo read counter, -1, 0x609a, 1, 4;

Many objects cannot be accessed while the drive is in the operational state, resulting in a state

error message and thus a fault. Also Virtual Drives support intermittent sdo read/writes to a specific slave,
not to -1 since it is not actually online.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 56
Document 951-534101-038

Although SDO access to slaves is supported it is suggested it be used sparingly as it limits the
bandwidth available to the cyclic PDO transmissions. It may also result in warning messages of
PDO re-transmission due to timeouts caused by SDO messaging. This is especially true when

using a 500 µS EtherCAT control loop time.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 57
Document 951-534101-038

[5] Registration, Absolute

Positioning, & Distributed

Clock

Registration

Registration allows the present servo position to be captured when an input is triggered. The standard
MSB commands can be used for registration as on the M3-40 card. Registration is only supported on
certain drives: Kollmorgen, Sanyo Denki, and Yaskawa. These drives support the Touch Probe Function
object, 0x60B8, as well as the Touch Probe Status, 0x60B9, and Touch Probe Value 1, 0x60BA. The Sanyo
Denki and Yaskawa both support Touch Probe Value 2, 0x60BC for an additional registration input.

The QuickMotion language isolates the programmer from the interaction with these objects making
registration simple to implement. The ‘set capture’ command selects the drive input probe 1 or 2. ‘set
capwin’ sets the window within which the capture is allowed to occur, the reference for comparison, as
well as optionally arming the touch probe input. The MSB instructions are summarized below:

syntax

set capture transition of input input

parameters

transition rise, fall or edge (any) (drive dependent but only rise supported)

input drive touch probe 1 or 2, reference specific drive for proper input wiring

CHAPTER

5

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 58
Document 951-534101-038

This statement initializes the parameters to be used for all captures on this axis, specifying the input

(capInput) to use. The following variables are computed and available after a successful capture:

 capposc capture position in encoder counts

 cappos capture position in user units

 capTriggered flag set to 1 when capture occurs

Note: capposc and cappos are only valid when capTriggered is a 1. Once armed capposc/cappos

will reflect the value latched when the capture input goes active but is not necessarily within the

defined capture window. capTriggered verifies the capture window against the latched

capposc/cappos, prior to setting. If more than one running MSB on an M3-41 module arms the

same input for capture, unexpected capture results may occur.

Only one input may be armed for capture at a time per axis. If another input is presently armed

when this command is issued, the other input is effectively disarmed

syntax

set capwin range start, end using reference { arm }

parameters

start Start window position to compare against reference. Reference >= start.

end End window position to compare against reference. If equals start then no window
exists and capture will occur based on input. Reference <= end.

reference the encoder count scaled reference variable to compare to:
fposc feedback position
mposc1 - mposc5 master position counters #1 through #5
mposc master position counter
smodc slave position (modulo)
smark slave marked position
tmc1 tmc2 temporary master counters #1 & #2
tsc1 tsc2 temporary slave counters #1 & #2
sdc slave decrement counter
fposc1 feedback position of axis 1 (fposcA)
fposc2 feedback position of axis 2 (fposcB)
tmodc Temporary master counter mod mmc

sfposc Secondary feedback position of axis

tposc Target position of axis

ctr0 din1 mapped input counter

ctr1 din2 mapped input counter

ctr2 din3 mapped input counter

ctr3 din4 mapped input counter

ctr4 din5 mapped input counter

ctr5 Local quadrature encoder 1
ctr6 Local quadrature encoder 2

ctr7 Local quadrature encoder 3

arm If included will arm the capture, if not arm will need to be done by a Wait or On

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 59
Document 951-534101-038

command.

This statement initializes a window to be monitored for valid captures to occur, anything outside this
window is considered invalid and ignored. If the capture occurs outside this window it will automatically be
re-armed. If ‘arm’ is specified this statement will automatically arm the capture prior to completing this
instruction. The capwinStart variable is the start of range and the capwinEnd variable is the end of range,
inclusive. The ‘capMod’ variable is used to perform a modulus on the reference value prior to comparison
to the start/end, the remainder after the modulus is the value compared. This helps in situations that may
experience rollover.

Below is an example program to latch the position whenever Touch Probe 1 occurs during a set of moves:

[beginTest]

// Setup registration

// First set which probe to use.

// Yaskawa & Sanyo Denki support Touch Probe 1 & 2.

// Kollmorgen supports only Touch Probe 1.

// Yaskawa fires on input being active, since active low this is falling edge

set capture rise of input 1; // Select probe 1 (enter 2 for probe 2)

// Clear the window so capture will happen moment probe occurs

set capwin range 0, 0 using fposc arm; // Arm at same time

// capTriggered will be set to a 1 when the capture occurs.

[run]

// Begin the move, 1 rev/second for 2 revolutions

if capTriggered != 1 goto notTriggered;

// Clear the window so capture will happen moment probe occurs

set capwin range 0, 0 using fposc arm; // Clear the range, arm at same time

 // 'wait capture' will arm as well.

[notTriggered]

move at 1 for 2;

wait for in position;

// Delay 1 second once in position

delay 3000 ms;

// Do a relative move back 2 revolutions at 1 rev/second

move at 1 for -2;

wait for in position;

// Delay 1 second once in position

delay 3000 ms;

// Do it again, forever...

goto run;

‘touchProbeStatus’ MSB variable maps directly to object 0x60b9.

Absolute versus Incremental Positioning Modes

By default the M3-41 uses Incremental Positioning mode. At power-up it records the current absolute
position and zeros it; thereby fpos and tpos are at 0. If the encoder is battery backed, you can use
Absolute Positioning mode to maintain position. This mode sets fpos and tpos to the current actual
position (0x6064). You can later clear it to 0 by using the ‘zero feedback position’ command or do moves

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 60
Document 951-534101-038

based on an offset from tpos. Regardless, Absolute Positioning mode allows you to maintain position after
a power cycle.

Enable Absolute Positioning mode by setting the encoder_mode axis property variable to a 1, prior to
executing the ‘drive enable’ command. A value of 0 is for an incremental encoder. This variable can also
be automatically set by using the axis property pull-down menu option: absolute.

For example, with Yaskawa and a circular table, this is done by using SigmaWin+. Perform this operation
with the following sequence:

1. Make sure the drive is set for Absolute Encoder (Pn002.2). If not, set it, exit the program, and re-

enter (needed to enable menu functions).

2. Set the Servopack for Multi-turn (Pn205), setting the number of revolutions of the motor to one

revolution of the circular table. Write to the drive and cycle power (note that a setting of zero is

1:1).

3. Setup->Multiturn Limit Setup is invoked. The number must match the number previously set as this

sets it in the motor; cycle power.

4. Setup->Reset Absolute Encoder, cycle power. This establishes a position within the Multi-turn

window. Example: If the Multi-turn value (Pn205) is set to ‘0’, resetting the absolute encoder places

the motor’s position somewhere between ‘0’ and ‘1048576’ counts; cycle power.

5. Setup->Search Origin is done to locate the actual rotation reference position of the motor. The

function allows you to jog the axis into the encoder’s marker position, also called the “Point of

Origin.”

Using the Multi-turn functionality of the Yaskawa drive ensures that whenever the power is cycled, the
actual position (0x6064) will be based on one rotation of the circular table. While running, the actual
position (0x6064) will increment/decrement normally as a 32-bit number.

If you wish to zero the home position, the Absolute Encoder Home Offset object (0x607C) can be set. The
value in this object is added to the Absolute Position and is the value placed in the actual position (0x6064)
object, thus zeroing position. In most drives this is the 0x607C object. The value written is the complement
of the position when at home, upon power-up. This causes fpos and the actual position (0x6064) object to
appear to be 0 at home. For Yaskawa drives, use the SigmaWin+ utility to initialize 0x607C, since it is a non-
volatile object that must be set prior to the drive being operational.

Distributed Clock & DC Sync

By default the distributed clock is always read from the first DC slave and distributed to all the slaves in the
system using the EtherCAT ARMW command. The first slave in the EtherCAT cabling that supports it will be
assigned the role of distributed clock master and the M3-41 will read the time from this slave on every
control loop cycle and write it to all following slaves on the network.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 61
Document 951-534101-038

Both 32 & 64 bit reference clocks are supported with the release of M3-41

V1.46 and above. Earlier revisions only supported 64 bit.

Currently 64-bit clocks are available in the following supported devices:

 Beckhoff EK1100 couplers

 Wago 750-354 couplers

 Omron GX-JC06 EtherCAT Junction Slaves

 Elmo Gold

 Sanyo Denki drives.

 ABB e150 Drives

 SMC Corp not supported, must not be first slave device.

Currently 32-bit clocks are available in the following supported devices:

 Yaskawa Sigma 5

 Copley Accelnet

 SMC Corp not supported, must not be first slave device.

With the Beckhoff EK1100, no other modules are needed, just the coupler as the first node. Wago requires
an IO module as well as an end module.

Currently the only drive that requires DC Sync all the time are the Emerson/Control Techniques, ABB,
Mitsubishi, and Sanyo Denki drives; all others can run in free-run mode and will interpolate the
commanded position. There are two possible syncs: Sync0 and Sync1. Sync0 alone is used more
commonly than both Sync0 and Sync1. The example below shows how to enable both. To disable Sync1 in
the example, set its shift time from Sync0 to 0.

Only Yaskawa Sigma 5 supports Sync0 & Sync1. Other drives are limited by

the manufacturer. AMC drives do not support DC Sync. Fully tested and

supported drives with DC Sync are Yaskawa, Copley, Sanyo Denki, Mitsibushi,

and Emerson. Mitsibushi and Sanyo Denki must have DC Sync enabled prior to

being operational thus they are always set to 1mS clock and 250uS offset on Sync0.

The master will attempt to sync to the clock of the slave that is assigned the role of distributed clock
master, but expect drift to occur due to variations in the operating system and interrupt overhead. The
more drives in the system, the more drift. The cyclic data will be consistent (control loop time), but the
point at which the slave receives the data will drift anywhere from a few nanoseconds up to an estimated
75µS, constantly re-syncing, with an average jitter of about 2 µS. On most drives this is not a problem as
the drive will interpolate. Many drives, such as the Yaskawa, sample at very high rates (62.5 µS). It is best
to set the dc sync to the same value as the Master PDO control loop update time.

// Activate DC Sync0 each cycle time with no Sync1, always do before

// ‘drive enable’

// dcsync <slave node or -1 for current>,

// <Sync0 Cycle Time in nanoseconds, ns>,

// <Sync1 shift from Sync0, ns>,

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 62
Document 951-534101-038

// <Sync0 shift from Cycle Time, ns>,

// <Sync start delay in ns>

// Set all parameters to 0 except the slave node to deactivate.

// Below is a 1mS Sync0 cycle time with no Sync1, control loop is 1 mS.

// Sync0 starts at cycle time and is not shifted and there is a

// 100mS delay before it all starts the first sequence.

 delay 2000 ms; // Needed for restarts so have idle time on clock off.

dcsync -1, 1000000, 0, 0, 100000000;

delay 105 ms; // starts 100 milliseconds into the future

// Enable the drive, turning power on to the amplifier. The current position

// will be constantly updated so the drive does not move.

drive enable;

It is best to use DC Sync when using Cyclic Synchronous Position mode,

especially with machining operations. Failure to enable can cause a small

amount of infrequent servo noise as the drive interpolates the commanded position.

Some devices will not operate correctly unless the DC Sync is enabled (e.g., Emerson/Control Techniques).
It is also best to set the DC Sync prior to enabling the drive since some drives, such as Emerson, require this.

When using DC Sync, or any multiple drive systems, it is best to verify all drives are enabled prior to
executing a MOVE command. The DC Sync command can take time to execute since it must place the drive
in a non-operational state, initiate numerous commands and then make it operational again. Only one DC
Sync command will execute at a time, with other axis locked out until completion. In a large system this
can cause several seconds of delay where the first drive is ready to execute but the last drive is still
enabling DC Sync and the drive. Reference Chapter 4, “Accessing Properties of Another Access”.

EtherCAT Master Control Loop Cycle Time

The M3-41 can support an EtherCAT scan time of 500 µS, 1 mS, 2 mS, or 4 mS. The User Options form
(Chapter 7), available within the EtherCAT Explorer, is used to set the desired speed. The network has to be
restarted or controller rebooted to change the control loop time.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 63
Document 951-534101-038

For most applications it is best to use the default 1 mS scan time. Drives tend to lag regardless of how fast
the position information is updated (CSP mode), this is dependent on the smoothing algorithm resident in
all drives. When running 500 µS it is recommended that no more than 4 drives be used, some
applications may support up to 6 but it is dependent on optional IO and the application program being
executed. Applications which do not use the ‘host read/write’ commands can support more drives.

One way to determine if your application is approaching the limit is to view the Log Buffers. The following
logs are from the Test Suite application in the Appendix, running two Emerson, one Sanyo Denki, and one
Yaskawa drive with a DC Sync of 500 µS:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 64
Document 951-534101-038

*** Module #1, Slot 4 ***
M3-41A ETHERCAT MASTER
INFO: Time: 2308.792, Scanning = 2, Cycle 0.5000 mS, [Overhead 0.3326 mS, Min 0.1584 mS, Max 0.4522 mS],
 Adjusted Tick 0.4992 mS, Correction -820 ns, Max Tick 0.5000 mS, [Idle Time 0.0860 mS, Min 0.0031 mS, Max 0.3465].
 [Sync Time 0.0070 mS, Min 0.0000 mS, Max 0.2500, Avg 0.0095].

Reference the ‘Overhead’ information with the Max at .4522 mS. This means that you had 500 – 452 or 48
µS of spare control loop time, worst case. Once you exceed 500 a warning will occur, 550 an error. It is
recommend that this number stay below .425 mS. This particular application timing was from a stress test
with 4 drives, each of which were reading and writing local controller registers (host read/write) while at
the same time executing motion commands. Also note the Error Time of a Max .250 mS, with an average
jitter of 9.5 µS, this is excessive but still functional.

The following is the same test with no host read/write instructions:

*** Module #1, Slot 4 ***
M3-41A ETHERCAT MASTER
INFO: Time: 2815.575, Scanning = 2, Cycle 0.5000 mS, [Overhead 0.3168 mS, Min 0.2004 mS, Max 0.4157 mS],
 Adjusted Tick 0.5000 mS, Correction -3 ns, Max Tick 0.5001 mS, [Idle Time 0.1534 mS, Min 0.0042 mS, Max 0.2542].
 [Sync Time 0.0005 mS, Min 0.0000 mS, Max 0.0651, Avg 0.0026].

Note how the ‘Overhead’ Max has dropped to .415 mS and the Error Time Max is .065 mS with an average
jitter just 2.6 µS. This application will run fine at 500 µS scan time.

DC Sync should be set to match the cycle loop time, for example, 500000 nS, not

1000000 nS if 500 µS is enabled. This is especially critical on Emerson drives. It

is also recommended that common bits be used instead of the host read/write

instruction, wherever possible.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 65
Document 951-534101-038

[6] EtherCAT IO, PLS, & PWM

Inputs/Outputs

EtherCAT IO can be accessed by QuickBuilder application programs as though it is local IO, appearing
transparently as digital and analog inputs/outputs. QuickBuilder MSB’s have additional capabilities to
access IO that is resident on a drive, the local M3-41 module, and/or remotely on a slave device such as a
Wago, Turck or Beckhoff IO block. IO can not only be accessed by an MSB controlling a physical drive but a
virtual drive, in fact, an EtherCAT network with no drives can be designed with nothing but virtual drives
controlling the IO allowing for a very flexible system.

A number of MSB IO arrays are available with the indexes into these arrays determining the source or
destination of the operation.

<index>: (may be an immediate numeric or indirect via a variable reference)

Bit oriented indexes: an array index of 1 to 32 references each input or output bit available
on the drive whose axis is assigned to the MSB. An array index of 501 to 1000 is reserved
for local module IO (global_inputs/global_outputs), where 501 is the first. An array index
of 1001 to 2025 is reserved for remote IO device blocks, such as Wago, Turck, Beckhoff,
and SMC, where 1001 is the first.

Byte oriented indexes: an array index of 1 to 4 references each input or output byte
available on the drive whose axis is assigned to the MSB. An array index of 501 to 1000 is
reserved for local module IO bytes (global_inputs/global_outputs). An array index of 1001
to 2025 is reserved for remote IO device blocks, such as Wago, Turck, Beckhoff, and SMC.

Word (32 bit) oriented indexes: An array index of 1001 to 2025 is reserved for remote
analog IO device blocks, such as Wago, Turck, Beckhoff, and SMC.

CHAPTER

6

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 66
Document 951-534101-038

Arrays:

inputs[] – Digital input bits, where 1 is the first input.
inputs8[] – Digital input bytes, atomic to the byte level, where 1 is the first byte.
outputs[] – Digital output bits, where 1 is the first output.
outputs8[] - Digital output bytes, atomic to the byte level, where 1 is the first byte.
ains[] – Analog inputs, 32 bits. If the device being accessed is 16 bits, 0x0000 is added to
the high bytes.
aouts[] – Analog outputs, 32 bits. If the device being accessed is 16 bits the data will be
truncated.

Example using Output bytes:

// Attached device is a Wago IO block with 40 digital outputs,

// 40 digital inputs, 8 analog outputs, and 8 analog inputs.

//

// Shift 8 bits on the output

//

// Write a byte output, index can be immediate numeric or variable

// reference.

[test1]

 [_begin]

outputs8[1001] = 0x01; // 1001 is the first remote 8 bit output block,

// write a 1 to first bit

[loop]

delay 250 ms;

// Shift the bit up by one and update the output

outputs8[1001] = outputs8[1001] << 1;

if (outputs8[1001] != 0) goto loop;

goto _begin;

Example using Output bits:

// Attached device is a Wago IO block with 40 digital outputs,

// 40 digital inputs, 8 analog outputs, and 8 analog inputs.

//

// Shift 8 bits on the output

//

// Write each output a bit at a time, shifting active output up by

// 1 each time.

[test2]

index = 1001;

[_begin1]

outputs[index] = 0x01; // 1001 is the first remote output block,

// write a 1 to first bit

[loop1]

delay 250 ms;

// Turn the current output off

outputs[index] = 0;

// Point to next output bit

index = index+1;

// turn the next output on

if (index != 1009) goto _begin1;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 67
Document 951-534101-038

index = 1001; // start at beginning again

goto _begin1;

Example using analog input/output:

// Test remote Analog input/outputs #5

[test3]

index = 1005;

val = 0;

[loop3]

// update the analog output value

aouts[index] = val;

// Allow analog out to stabalize

delay 250 ms;

// Analog output is looped back to Analog input via external wire

myval = ains[index];

val = val + 100; // increase analog output value

if (val <= 10000) goto loop3;

goto test3; // reset value

Example using digital input:

// Mapped global input example

// Map drive input 1 to global input 1 so can use falloff or

// riseof commands to monitor its state

Set mapped input 1 to input 501;

[top]

On fallof 1 goto falledge;

goto top;

[falledge]

// do whatever desired when falling edge detected

// and await level state again…

// … do something until back to high again …

if inputs[1] goto top;

goto falledge; // waiting for signal to go high again

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 68
Document 951-534101-038

EtherCAT IO Configuration

Some EtherCAT IO, such as Wago and Turck have modules that are configurable. If a special mode, other
than the default is needed it is suggested that either that mode be saved to the devices EEPROM using the
Beckhoff EtherCAT Configurator or a specific SDO write command be issued to the device’s configuration
object by a virtual axis, at initialization. Refer to the specific manufacture’s manual for object address
information. For Wago and Turck this is typically the 0x8000 * (slot number -1) * 0x0010 object, with each
index offering a specific property. Below shows a Turck IO device with an analog input module in slot 3 and
analog output in slot 4.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 69
Document 951-534101-038

Mappable Input IO & Counters

The first five inputs of each axis are by default mapped to the available drive inputs, with up to 32,
depending on those available for the specific drive. These inputs have a number of MSB commands
available for special handling (reference the QuickMotion Reference Guide):

on asynchevent asynchhandler
wait for transition of input { or condition }
pls output using reference definitions
set capture transition of input input

variable = ctr[n]
ctr[n] = expression
ctr[n] = offset
variable = dins
variable = din1
variable = din2
variable = din3
variable = din4
variable = din5

An additional feature is the ability to remap the first five inputs to any other available input. This can then
be used to drive the above commands, including counters, ctr0 to ctr4. The 32 bit property ‘dins’ will have
its first 5 bits originating from the mapped location, with the remainder from the drive. If the first 5 bits
are needed from the drive they can be read using the input[] array.

The command to remap an input is as follows:

syntax

set mapped input index to input input { count edge }

parameters

index The index of the mapped input assigned the input to control.
1-5 index

input the input to assign to the index

0 to disable mapping and restore to default drive input, counter disabled

1-32 on drive

501 to 1000 local to M3-41 module

1001 to 2025 remote EtherCAT IO block

edge rising or falling, optional, with default being rising

Note: index 1 is assigned to ctr0, 2 to ctr1, etc., also counter cleared upon execution.

Example:

// Map dins bits 0 to 4 to remote EtherCAT IO inputs 25 to 29.

// The counters ctr0 to ctr4 will be observed using QuickBuilder

// watch window since remote output #25 is connected to input

// #25, it will count on the rising edge once per second.

set mapped input 1 to input 1025 count rising;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 70
Document 951-534101-038

set mapped input 2 to input 1026 count falling;

set mapped input 3 to input 1027 count rising;

set mapped input 4 to input 1028 count rising;

set mapped input 5 to input 1029 count rising;

[loop]

outputs[1025] = 1;

delay 500 ms;

outputs[1025] = 0;

delay 500 ms;

goto loop;

Pulse & PWM Generation

Timed pulses and PWM can be generated using the EtherCAT control loop time as a time tick. The MSB
language has a number of instructions in this regard:

syntax

pulse_ext output for n

parameters

output the output to pulse
1-32 on drive

501 to 1000 local to M3-41 module

1001 to 2025 remote EtherCAT IO block

n the time to pulse the output, expressed as control loop ticks

(up to 5 pulsed outputs may be active at one time)

This statement causes the specified output to pulse for the specified duration of EtherCAT

control loop ticks. The output follows the same access numbering convention as the

outputs[] array. If the output is already on when this statement executes, the output state is

unchanged, however it will be turned off after the specified time.

If another statement changes the state of the output to off before the allotted duration, the

generation of the pulse is aborted. The generated pulse will be synced & set active on the

next control loop tick.

Example:

// Test pulse and output on

[test4]

pulse_ext 1002 for 500; // turn output 2 on for 500 ms

delay 1000 ms; // this should make it appear as on 1/2, off 1/2

second.

goto test4;

syntax

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 71
Document 951-534101-038

generate output output rate freq

parameters

output

the output to pulse

1-32 on drive

501 to 1000 local to M3-41 module

1001 to 2025 remote EtherCAT IO block

freq the frequency (in control loop ticks) to generate 50% duty cycle pulses; rounded to an
integer. Specifies the on time.

This statement begins or ends generation of pulses using a specific output. When a

frequency of 0 is specified, no pulse generation occurs. This effectively turns the output

back into a general-purpose output. A 50% duty cycle is generated, thus a rate of 1 would

turn the output on during one control loop cycle and off on the next. A 1 mS control loop

would yield a 500 HZ output square wave.

Example:

// Test square wave on output #1

[test5]

// Turn output 1 on for 75 ticks, off for 75 ticks

generate output 1001 rate 75;

// Turn output 2 on for 125 ticks, off for 125 ticks

generate output 1002 rate 125;

// Turn output 3 on for 250 ticks, off for 250 ticks

generate output 1003 rate 250;

// Turn output 4 on for 500 ticks, off for 500 ticks

generate output 1004 rate 500;

// Turn output 5 on for 1000 ticks, off for 1000 ticks

generate output 1005 rate 1000;

[loop5]

goto loop5; // stall, pulses will continue forever...

syntax

pwm output output on tickson off ticksoff cycles n

parameters

output

the output to pulse

1-32 on drive

501 to 1000 local to M3-41 module

1001 to 2025 remote EtherCAT IO block

tickson the number of control loop ticks to activate the output.

ticksoff the number of control loop ticks to de-activate the output.

n The number of complete PWM cycles to do prior to stopping where 0 terminates an
active PWM cycle and restores the state to an inactive output and -1 runs forever.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 72
Document 951-534101-038

This statement will generate a certain number of variable width output cycles with the desired on
and off time in control loop ticks. If the cycles or on time are 0 the PWM will terminate
immediately and the output set inactive. If the cycles is ‘-1’ the PWM will run forever or until
stopped by another instruction with cycles/on time set to 0.

Example with immediate references:

// Test PWM output on output 2

[test6]

pwm output 1002 on 125 off 1000 cycles -1;

[loop6]

goto loop6; // stall, pwm will continue forever...

Example with variable references:

// Test PWM output on output 2

[test6]

index = 1002;

ontime = 125;

offtime = 1000;

pwm_cycles = -1;

pwm output index on ontime off offtime cycles pwm_cycles;

[loop6]

goto loop6; // stall, pwm will continue forever...

Example with embedded math:

// Test PWM output on output 2

[test6]

ontime = 1000;

pwm output 1002 on (ontime/8) off 1000 cycles -1;

[loop6]

goto loop6; // stall, pwm will continue forever...

PLS Outputs

PLS, or Programmable Limit Switch, is an output which can be configured to become active at a high rate of
speed based upon some monitored event or state. Typically PLS outputs must become active faster than
instructions in an MSB can execute testing the required conditions. For example with a 500 uS control loop
the PLS output conditions and state would be tested every 500 uS, much faster than the MSB could
execute. The M3-41 allows any output that is resident on a drive, local to the M3-41 module, or a general
EtherCAT output to be used as a PLS output. The output follows the same access numbering convention as
the outputs[] array. The available commands are as follows:

syntax

set pls index to output output

parameters

index The index of the PLS assigned the output to control.
1-5 index

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 73
Document 951-534101-038

output

the output to activate under PLS control

1-32 on drive

501 to 1000 local to M3-41 module

1001 to 2025 remote EtherCAT IO block

There exist five possible PLS functions that may be active per axis. Each of these PLS functions
must be assigned the output they are to trigger when the specified event occurs. This instruction
assigns the output number to each of the PLS index functions. The index requires this assignment
in order to know what output to operate on for all the other PLS instructions. Note that the use of
this command will disable and active PLS on the specified index and clear the ‘mod’ to 0 (not used).

syntax

set pls index mod mod

parameters

index The index of the PLS assigned the output to control.
1-5 index

mod The modulus to apply to the PLS reference, whereby the remainder is the resulting
value, prior to comparison of a window value. This allows for taking into account
rollover. For example if there are 65536 counts per revolution and the reference
window is defined for the first revolution, then each revolution would be able to
reference the same set of window values. Default is 0 meaning the reference value is
not changed.

There exist five possible PLS functions that may be active per axis. Each of these PLS functions may
be assigned a modulus value to apply to the reference value prior to window comparison. For
example if ‘fposc’ is the reference and its value is 1025674 and the modules was 65536 (possibly
pulses per revolution), then the actual reference used would be 1025674 % 65536 or 42634, the
remainder.

syntax

pls index state

parameters

index The index of the PLS assigned the output to control.
1-5 index

state on or off

This statement enables (“on”) or disables (“off”) a PLS for an output active for the given

index.

 on - Enables the pls functionality initialized for a particular output with the PLS

Define statement.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 74
Document 951-534101-038

 off – Disables the pls functionality initialized for a particular output with the PLS
Define statement.

If the output is on when a PLS is disabled, it will remain on – unless the user re-enables the

PLS (to re-compute the PLS output).

pls index using reference definitions

parameters

index The index of the PLS assigned the output to control, 1 to 5.

reference the encoder count scaled reference variable to compare to:
fposc Feedback position of axis msb
mposc1 - mposc5 Master position counters #1
 through #5
mposc Master position counter
smodc Slave position (modulo)
smark Slave marked position
tmc1 tmc2 Temporary master counters #1 & #2
tsc1 tsc2 Temporary slave counters #1 & #2
sdc Slave decrement counter
fposc1 Feedback position of axis 1
 (fposcA)
fposc2 Feedback position of axis 2
 (fposcB)
tmodc Temporary master counter mod mmc
sfposc Secondary feedback position of axis
tposc Target position of axis
ctr0 din1 mapped input counter

ctr1 din2 mapped input counter

ctr2 din3 mapped input counter

ctr3 din4 mapped input counter

ctr4 din5 mapped input counter

ctr5 Local quadrature encoder 1
ctr6 Local quadrature encoder 2
ctr7 Local quadrature encoder 3

definitions a comma-separated list of up to 16 PLS definitions:

on x to y Turn output on when the reference
 is within the bounds specified
 by x through y (may be
 expressions)

This statement defines, or redefines, a PLS associated with a given output and its operation. When

a PLS is defined/re-defined it will be disabled and will not compute the state for the output. To

enable a PLS after it is defined/re-defined, a pls <index> on statement must be issued.

Example:

[beginTest]

// Assign the first remote output on a Wago IO Block to PLS index 1.

set pls 1 to output 1001;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 75
Document 951-534101-038

// Output will be on when fposc is within 100000-250000 or 1750000-3000000

pls 1 using fposc on 100000 to 250000, on 1750000 to 3000000;

// enable the PLS for index #1

pls 1 on;

// Assign the first remote output on a Wago IO Block to PLS index 1.

set pls 2 to output 1005;

// Output will be on when fposc is within10-200000 or 250000-1750000

pls 2 using fposc on 0 to 200000, on 250000 to 1750000;

// enable the PLS for index #1

pls 2 on;

[run]

// Begin the move, .05 rev/second for 2 revolutions

move at 0.05 for 2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do a relative move back 2 revolutions at .05 rev/second

move at 0.05 for -2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do it again, forever...

goto run;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 76
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 77
Document 951-534101-038

[7] Error Handling

Each drive manufacturer lists its own error codes. The combination of EtherCAT and the
many different servo drives available results in thousands of different error possibilities.
The network is continually monitored for error conditions and emergency messages from
the slave devices. In the event of an error, the MSB typically performs a Quick Stop
operation and the EtherCAT master stops scanning and awaits program RESTART. Power
to the amplifier is turned off when scanning stops, causing the servo to freewheel. Any

braking needed during this state should be considered.

Both informational and error conditions are constantly logged to a universal message buffer that resides
within the M3-41 module. The message buffer contents can be viewed in the QuickBuilder EtherCAT
Explorer or by using telnet commands.

Retry Logic

EtherCAT networks are fairly robust but intermittently a packet can be lost due to noise affecting the
cabling. The M3-41 has built in retry logic to attempt a recovery before considering a lost packet a non-
recoverable error. With poll times set to the standard 1 mS a retry will occur up to two times if a packet is
not returned within 300 uS of transmission. At a poll time of 500 uS this is shortened to 200 uS. If a retry
occurs an information message will be logged to alert the user. With the EtherCAT Master dynamically
adjusting its scan timer, the Master will quickly re-sync to the reference slave clock if a retry is successful.
Reference Chapter 7, the EtherCAT Explorer ‘User Options’, if the default retry logic needs to be modified.

Drive Diagnostic Variables and Registers

Special QuickBuilder variables and controller registers are available to monitor EtherCAT operation and
provide post analysis after faulting. The best method is by the use of the EtherCAT Explorer but in some
cases a remote HMI or user may want to access the information that the Explorer does, except at the error
code/register level.

QuickBuilder MSB variables by axis:

dwSlaveID – The EtherCAT slave ID as it appears in the EtherCAT Explorer.

CHAPTER

7

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 78
Document 951-534101-038

faulted – 0, no fault, 1 fault on this axis.
faultOpcode – Type of fault, reference following section for definition.
wStatus – Current PDO status read from the drive, object 0x6041.
wControlWord – Current PDO control command to the drive, object 0x6040, reference manufacturer
manual.
errorType – Last error type logged.
errorRegister – Object 0x1001 error register in drive if supported, see appendix for drive manufacturer.
errorCode – Last error from drive, typically object 0x603F if supported, see appendix for drive
manufacturer.
last_ALStatusCode – Additional error information from drive, object 0x134:0x135.

By 5300 Controller Register:

Register 13700 – Axis Display Index Register. Set to 0, default, 14XX0 block same as defined in the ‘Model
5300 Quick Reference Register Guide’, set to 1 and maps as follows where XX is the axis number starting
with 00 for axis 1 allowing for up to 100 drives:

Register QuickBuilder MSB
Variable

14XX0 dwSlaveID

14XX1 faulted

14XX2 faultOpcode

14XX3 wStatus

14XX4 wControlWord

14XX5 errorType

14XX6 errorRegister

14XX7 errorCode

14XX8 last_ALStatusCode

14XX9 Not Available

MSB ‘wStatus’ Variable Bit Definitions

‘wStatus’ references the drive’s last Status Word, object 0x6041, read. References the specific drive
Manufacture for AL additional details:

Bit QuickBuilder MSB
Variable

0 Ready to switch on

1 Switched on

2 Operation enabled

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 79
Document 951-534101-038

3 Fault

4 Voltage enabled

5 Quick stop

6 Switch on disabled

7 Warning

8 -

9 Remote

10 Target reached

11 Internal limit active

12 Operation mode

specific

13 Operation mode

specific

14 Torque limit active

15 -

MSB ‘errorType’ Variable Value Definitions

The ‘errorType’ variable defines the type of error that has occurred as identified by the M3-41

module. This typically allows CTC to locate where it was during software execution when the error

occurred.

errorType Description

0 INFORMATIONAL_ONLY

1 INFORMATIONAL_ONLY_MALLOCED

2 ERROR_DEFAULT

3 ERROR_ECAT_PROFILE_POS_INIT

4 ERROR_ECAT_PROFILE_POS_STARTING1

5 ERROR_ECAT_PROFILE_POS_STARTING2

6 ERROR_ECAT_PROFILE_POS_RUNNING

7 ERROR_ECAT_HOMING_INIT

8 ERROR_ECAT_HOMING_STARTING1

9 ERROR_ECAT_HOMING_STARTING1A

10 ERROR_ECAT_HOMING_STARTING2

11 ERROR_ECAT_HOMING_RUNNING

12 ERROR_ECAT_PROFILE_VEL_WAIT

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 80
Document 951-534101-038

errorType Description

13 ERROR_ECAT_PROFILE_WAIT_QSTOP

14 ERROR_RUNNING

15 ERROR_TRACKING

16 ERROR_LOST_CONNECTION

17 ERROR_Network_Interface

18 ERROR_No_Slaves_Found

19 ERROR_Not_All_Slaves_PreOp

20 ERROR_Not_All_Slaves_Operational

21 ERROR_PDO_Init_Failed

22 ERROR_ec_config_map_Failed

23 ERROR_Slave_Unknown

24 ERROR_Init_Send_Processdata

25 ERROR_Init_Receive_Processdata

26 ERROR_No_Slaves_For_DC

27 WARNING_No_Station_Alias

28 ERROR_DC_SYNC0_Failed

29 ERROR_ECATLoop_Execution_Exceed_Scantime

30 ERROR_MEMORY_BUFFER_EXCEEDED

31 ERROR_ECATLoop_Event_Timeout

32 ERROR_ECATLoop_RX_Timeout

33 ERROR_ECATLoop_TX_Timeout

34 ERROR_USER_SDO_READ

35 ERROR_USER_SDO_WRITE

36 ERROR_Profile_Thread

37 ERROR_Motion_Fault

38 ERROR_Dump

39 ERROR_USER_DCSYNC

40 ERROR_Not_All_Slaves_SafeOp

41 ERROR_Not_All_Slaves_Found

42 ERROR_Slaves_Not_Match_Expected

43 ERROR_Duplicate_Axis

44 WARNING_ECATLoop_Execution_Exceed_Scantime

45 ERROR_Slave_ALState_NotOperational

46 ERROR_ec_config_map_Too_Many_Segments

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 81
Document 951-534101-038

errorType Description

47 ERROR_Slave_Not_Synced

48 ERROR_Drive_PowerUP_Fault

49 WARNING_Too_Many_Servos

MSB ‘last_ALStatusCode’ Variable Value Definitions

References the specific drive Manufacture for AL Status Codes that are not listed below or where additional
definition is required. Codes are shown in hexadecimal representation:

AL Status Code Description

0x0000 No error

0x0001 Unspecified error

0x0002 No Memory

0x0011 Invalid requested EMS change

0x0012 Unknown requested state

0x0013 Bootstrap not supported

0x0014 No valid firmware

0x0015 Invalid mailbox configuration

0x0016 Invalid mailbox configuration

0x0017 Invalid sync manager configuration

0x0018 No valid inputs available

0x0019 No valid outputs

0x001A Synchronization error

0x001B Sync manager watchdog

0x001C Invalid Sync Manager Types

0x001D Invalid Output Configuration

0x001E Invalid Input Configuration

0x001F Invalid Watchdog configuration

0x0020 Slave needs cold start

0x0021 Slave needs INIT

0x0022 Slave needs PREOP

0x0023 Slave needs SAFEOP

0x0024 Invalid Input Mapping

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 82
Document 951-534101-038

AL Status Code Description

0x0025 Invalid Output Mapping

0x0026 Unmatched setting

0x0027 Free-run mode unsupported

0x0028 SYNC mode unsupported

0x0029 Free-run mode, 3 Buffer mode not set

0x002A Background watchdog

0x002B No valid inputs and outputs

0x002C Fatal sync error

0x002D No sync error

0x0030 Invalid DC Sync configuration

0x0031 Invalid DC Latch configuration

0x0032 PLL error

0x0033 Invalid DC IO error

0x0034 Invalid DC timeout error

0x0035 DC invalid Sync cycle time

0x0036 DC SYNC0 cycle time

0x0037 DC SYNC1 cycle time

0x0042 MBX_EOE

0x0043 MBX_COE

0x0044 MBX_FOE

0x0045 MBX_SOE

0x004F MBX_VOE

0x0050 EEProm No Access

0x0051 EEProm Error?

0x???? Unknown error, reference manuf.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 83
Document 951-534101-038

[8] QuickBuilder EtherCAT

Explorer

QuickBuilder provides a simple-to-use EtherCAT Explorer. The Explorer communicates
directly with any model 5300 that has one or more M3-41 modules and graphically
presents the network information. It also provides a high-level diagnostics capability.

QuickBuilder EtherCAT Explorer Status Window

The EtherCAT Explorer window is a feature of the QuickBuilder environment. To open the EtherCAT
Explorer, right click on the controller available in Resources. A menu of options will appear; select
‘EtherCAT Explorer’ to connect to the defined controller.

Once invoked, a window similar to the one below will appear, enabling you to monitor the model 5300's
EtherCAT module and its Master configuration.

CHAPTER

8

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 84
Document 951-534101-038

If multiple M3-41 modules are present in the 5300, a folder will appear for each module, with the slaves it
controls listed below. Here is an example of three M3-41 EtherCAT Master networks in one model 5300
controller with the first M3-41 module selected (highlighted).

The top left tree is known as the Slave Discovery Window. Both online slaves and the expected slave
configurations appear here. Select a slave entry, and the available property information appears within the
window to its right.

The window on the bottom right is known as the Message Window. As the EtherCAT Master executes,
diagnostic log information is stored in the M3-41 module. By selecting ‘Refresh Log Buffer’ the most
current contents of the log buffer will be displayed. Note that at power up the Licensing information
appears in the list, “Licensed: Drives 4…”. This is the total number of I/O and drives that your EtherCAT
Master is authorized to control.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 85
Document 951-534101-038

The panel on the lower left contains a number of buttons. Some are for global access; others are for
individual M3-41 modules. Those operating an individual EtherCAT Master Module (M3-41) require the
Slave Discovery Tree entry with the folder icon (Module #, Slot) to be selected to identify which module is
to be accessed. The following operations are available:

Refresh Slaves – Updates the Slave Discovery Window with all online slaves observed at the last restart for
all installed M3-41 modules. Each slave’s properties are also refreshed to the most current. These
properties vary by drive. Drive information will contain present PDO contents, position and state
information, etc.

Read Configs – Updates the Slave Discovery Window with any saved configuration file whose content
resides in the module’s non-volatile storage for all installed M3-41 modules. The information displayed is
what is required to be online for the network to become active.

Create Config – This button erases the non-volatile memory stored in the selected module and writes XML
information matching the current online slave’s to the EtherCAT Master module. This is an alternate
approach to using an EtherCAT Configurator, such as Beckhoff’s, allowing the configuration to be
dynamically created from within QuickBuilder. The actual creation and storage is performed by the
EtherCAT Master module, thereby requiring no file transfer. Note that this operation takes about 20
seconds to complete, because of the length of time required to erase non-volatile memory. The
appropriate Module # must be selected from within the tree list prior to pressing the Create Config button,
or an error message will be displayed:

Note that the PC runtime stores this information in a file called _slaveConfig_[MAC Address].txt

located in the _system\Programs directory.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 86
Document 951-534101-038

Configuration files must be used in a production environment to ensure all the

required devices are online prior to executing their controller MSBs. Differing

devices power up at different times and may not initially respond to the EtherCAT

Master online broadcast. Having a configuration file to compare against informs

the master that it must wait for devices to come online prior to proceeding with the

boot operation.

Erase Config – This button erases the current configuration file stored in the selected EtherCAT Master
Module’s non-volatile memory. By default, when no file is stored, and the network is restarted, no
verification of online slaves occurs, and the controller begins operation with whatever devices and I/O are
found on the network. This is known as Slave Discovery Mode and is useful when initially setting up a
network. It can take up to 20 seconds for this command to complete. The appropriate Module # must be
selected from within the tree list prior to pressing the Create Config button or an error message will be
displayed.

License – This button displays the EtherCAT Master License form for the selected module. The MAC
Address of the module appears along with the type and number of devices authorized for control by the
master. New license keys can be purchased from CTC technical support, and entered within this form to
change the current authorization.

Copy the license key you receive by email and paste it into the ‘License Key” text box. Click the

Update License button to update the number of I/O authorized. Click the Refresh button to verify

the changes have been made. You must reboot the controller for the changes to take effect at the

network level. Note that the PC runtime stores this information in a file called _ioOptions_[MAC

Address].txt located in the _system\Programs directory.

Refresh Log Buffers – This button displays log messages residing in all EtherCAT Master Modules in the
lower right window. It is useful for diagnostic purposes.
Clear Log Buffer – This button clears the log messages for the selected EtherCAT Master module. Only new
messages that occur after the clear operation will appear after the Refresh Log Buffers button is selected.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 87
Document 951-534101-038

Restart Network – This button causes the selected EtherCAT Master module to re-scan the network and
display whatever slaves are found. Prior scan results are overwritten. Available I/O in the controller will
not be updated, and a reboot is required if the configuration changes. The network will not be available
until after the restart is completed. Restarting the network is useful when connecting new slaves to the
network or after power cycling a slave to verify that it is seen on the network. Note that MSBs will also
restart.

Reboot Controller – This button causes the controller to be rebooted remotely. This is a hard reset and can
take up to 30 seconds before the controller will be back online.

User Options – This button allows customization of the EtherCAT Master parameters, such as PDO

cycle time, number of virtual drives, timeouts, and retries. Note that the PC runtime stores this

information in a file called _options_[MAC Address].txt located in the _system\Programs

directory.

EtherCAT Explorer Properties

Manuf - Manufacturer description

Grp – Group description

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 88
Document 951-534101-038

Name – Device Name

Out size – Number of bits the device consumes in the output Ethernet packet

In size – Number of bits the device consumes in the input Ethernet packet

Program Variables (MSB variables, if a drive):

pstate – present MSB program operational state
inpos – 1 if motor is in position, 0 if it is not
fpos – Current motor position in revolutions
tpos – Present target position in revolutions
perr – Present error (tpos – fpos)
vel – Present motor velocity in revolutions/second
cmode – MSB program commanded mode for the motor

DRV MODE – CANOpen DS402 mode the drive is in for motion control

PDO STATUS – Object 0x6041 representing the device state

PDO CNTLWORD – Object 0x6040 representing the currently written Control Word

PDO ACT VEL – Object 0x606C representing the current velocity

PDO ACT TORQ – Object 0x6077 representing the current torque. On some drives this is the Actual Current
when torque is not available.

PDO ACT ERR – Object 0x60F4 representing the current servo position error

PDO HOME PWRUP – Power up position first seen by the EtherCAT Master

PDO ACT POS – Object 0x6064 representing the actual current position in increments

PDO TARG POS – Object 0x607A representing the target position in increments. This is relevant in Cyclic
Sync Position and Profile Position modes. Interpolated motion mode uses 0x60C1 subindex 1.

PDO TARG VEL - Object 0x60FF representing the target velocity in increments/sec. This is only relevant in
Profile Velocity mode.

PDO DIG INP – Drive Inputs as reported by the cyclic PDO scan

State – Last seen EtherCAT state of this device

Delay – Propagation delay, in ns, of this device as cabled on the network.

FMMU – True if Fieldbus Memory Management unit is bit oriented, false if it is not.

Has DC – Set to 1 if the drive can support being the source of the distributed clock. The EtherCAT Master
selects the first device that ‘Has DC’ as the source of the clock and then periodically reads the time from

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 89
Document 951-534101-038

that device and writes it to the rest of the slaves. The Master attempts to sync its internal clock to that
device as well.

DC Parent Port – The slave named as the Distributed Clock master

DC Active – Information relative to DC Sync, if enabled

Active Ports – Each device can typically have up to 4 ports. This represents the ports being used on this
device.

Topology – Each EtherCAT slave has up to 4 internal ports, each represented by a bit.

Parent – Set to the parent node. 0 means it is the parent.

Config address – EtherCAT assigned device address representing its place with regards to being cabled on
the network. First device would be 0x1001.

Station Alias – Programmable station alias used to define axis numbers for MSB assignment

Vendor – Device vendor code

Product Code – Device product code

Rev – Firmware revision of the device

Log Buffer Timings

When the Log Buffer is viewed the first line after the module identification information contains internal
timing information. This information can be critical in troubleshooting problems or possibly preventing
them. The timing information contains the state of the EtherCAT network scanning, control loop overhead,
idle, and slave sync timings. Below was observed in a six axis system do simple back and forth motion on all
drives:

*** Module #1, Slot 4 ***
M3-41A ETHERCAT MASTER
INFO: Time: 275.943, Scanning = 2, Cycle 1.0000 mS, [Overhead 0.3180 mS, Min 0.1580 mS, Max 0.3995 mS, Avg 0.2951 mS],
 Adjusted Tick 1.0000 mS, Correction -6 ns, Max Tick 1.0000 mS, [Idle 0.6640 mS, Min 0.5234 mS, Max 0.8462].
 [Sync Error 0.0002 mS, Min 0.0000 mS, Max 0.0730, Avg 0.0022].

The following is how to interpret these timings:

[Scanning = 2] – The EtherCAT network scanner has three possible states.

 Initializing, 0.

 Scanning but for initial sync, 1.

 Online and executing, 2.

[Cycle 1.0000 mS] – Network control loop scan time, typically 1 mS or 500 µS.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 90
Document 951-534101-038

[Overhead] – The time needed to process the PDO packet from the slaves, calculate the new trajectories,
update IO, and prepare the PDO packet for transmission. The Cycle time minus the Overhead time is how
much time the rest of the system has to execute. The Overhead may never be greater than the Cycle time.
If it occurs once in a while and is less than 50 µS a warning will result and recovery attempted, otherwise a
fault error. The first time listed is the time for the last completed cycle.

[Adjusted Tick] – The time that the FPGA timer was last set to, on the last cycle. This will shift slightly to
sync with the reference slave.

[Correction] – The amount of correction added to the last time cycle in order to more closely sync to the
reference slave.

[Max Tick] – The maximum time that the FPGA timer was set to for its periodic interrupt.

[Idle] – The amount of idle time available for the rest of the system to run, with the current time for the
last completed cycle listed first.

[Sync Error] – This is the amount of error or jitter that the master has experienced while attempting to sync
to the slave reference. The first listed time is from the last completed control loop cycle. Note that the
average jitter is only 2.2 µS with a maximum of 73 µS. The 73 µS only lasts for a single cycle as corrections
are applied.

EtherCAT Master ENI Configuration Files

Standard EtherCAT configuration files can be generated either automatically, via the Create Config button
of the QuickBuilder EtherCAT Explorer, or through third-party tools such as Beckhoff’s TwinCAT or EtherCAT
Configurator. The file format stored in the M3-41 is standard XML.

To generate a configuration file using Beckhoff’s EtherCAT Configurator, first create a network of the
desired configuration and then select (as shown below) to export to an XML file (I/O-Configuration->I/O
Devices->Device 1 (EtherCAT) followed by the EtherCAT tab and the Export Configuration File option
button):

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 91
Document 951-534101-038

The saved file must be renamed to M341ACFGV0100.xml and placed in the model 5300 controller’s
_system->Firmware directory. You may set the V#### part of the file name to anything you desire, but the
first part must be M341ACFG. Use the standard firmware update commands to load the file into a module.
‘update M341ACFGV0100.xml’ for all modules in the rack, or ‘force update slot # M341ACFGV0100.xml’ for
a specific slot. Note that the ‘force update’ command is also needed if the M3-41 module I/O/Drives are
not online. The ‘update’ command only works when the card is fully operational and the I/O/Drives have
been added by the controller.

The configuration file size limit is 1,572,860 bytes. For larger configuration files, you must use

QuickBuilder to create the configuration file. This is not supported on the PC Runtime version and is not
recommended for general use. It is better to use the QuickBuilder ‘Save Config’ feature when the desired
network is present.

User Options

The EtherCAT Explorer allows the user the ability to customize the EtherCAT Master’s operation. The
customization currently supported consists of:

 Master PDO cycle loop times of 500 µS, 1 mS, 2 mS, or 4 mS.

 Automatic virtual axis creation.

 Capability to add the virtual axis to the end or beginning of those drives online.

 Retry forever option.

 PDO Timeout & retries.

 Initialization retries.

Invoking the ‘User Option’ form is done by clicking that button within the EtherCAT Explorer:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 92
Document 951-534101-038

Once invoked the currently programmed options will appear:

Module PDO Cycle Time – This option sets the EtherCAT master control loop cycle time. The default of 1
mS is typically fine but in some situations the user may wish to speed up or slow down the loop. For
example if the system is heavily loaded a 2 or 4 mS control loop will work well with most drives. Selections
of 500 µS, 1 mS, 2 mS, and 4 mS are available.

Total Virtual Axes – This option sets the number of virtual axis to ‘Add at’ the ‘Beginning’ or ‘End’ of the
online drive list. A virtual axis runs an MSB just like an online axis except that its feedback position (fpos) is
updated automatically to its incremental tpos on each control loop, thereby simulating motion. The Virtual
Axis is reported to the QuickBuilder as a normal axis.

Retry forever – This option, when selected, will cause the controller and EtherCAT network not to boot
until the stored online configuration is observed. If the option is not selected then the ‘Init Retries’
parameter within the Advanced Parameters will be referenced and that many retries attempted prior to
reporting the fault state to the controller and aborting operation.

PDO Timeout – This option should not be set unless instructed by CTC technical support. It will
automatically be optimized to the proper setting based upon the PDO Cycle time selected. The option is
the amount of time that the EtherCAT Master will wait for the response to the cyclical PDO packet
transmission. PDO Timeout X PDO Retries should be less than the cycle time to ensure no DC Sync errors.

PDO Retries – This option should not be set unless instructed by CTC technical support. It will
automatically be optimized to the proper setting based upon the PDO Cycle time selected. The option is
the number of PDO Timeouts that are allowed before aborting operation and faulting. PDO Timeout X
PDO Retries should be less than the cycle time to ensure no DC Sync errors.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 93
Document 951-534101-038

Powerup Delay – This option defines how long, in seconds, the M3-41 module should wait, after power up,
prior to beginning its identification of network slaves and initializing the EtherCAT network. It is useful
when attempting to prevent timeouts on equipment that may take a long time to power up and come
online.

Init Retries – This option is the number of times the EtherCAT Master will attempt to activate the network
and initialize devices. If a Network Configuration is saved and those devices observed online do not match
the network will be re-initialized and scanned again, with this count decremented by 1. Once a count of 0
is reached the module will abort, fault, and report an error.

Verify Delay – This option sets the amount of time, in seconds, the M3-41 module should delay after it
identifies all required slave devices online (INIT state) and initializes their PDO’s (PRE_OP state). After the
delay occurs one more INIT cycle will be done and delay prior to updating the PDO mappings within the
slave and marking the devices as online. This is required in some networks where slaves can report that
they are online and ready but in fact other equipment is powering up or the slave still needs a small
amount of time to continue initialization.

Available buttons:

Update Options – Clicking this button will cause the module to be set to the settings currently displayed.
The status window will display the results of the operation.

Refresh – Clicking this button will cause the form to be updated with the options currently programmed
within the module.

Cancel – Clicking this button will close the form, without changes and return to the EtherCAT Explorer form.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 94
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 95
Document 951-534101-038

[9] Telnet Commands

The model 5300 has an administrative mode that can be accessed via standard telnet.
The use of telnet is beyond the scope of this manual and discussion here is limited to
the specific commands available that affect the M3-41 EtherCAT module. Many of the
commands are the same as those used by the QuickBuilder EtherCAT Explorer.

Status Commands

get ethercat info all – Displays all available information for online slave devices, including mailbox
information

get ethercat info summary – Displays all available information for online slave devices, less the mailbox
information. This is what is used by the QuickBuilder EtherCAT Explorer.

get ethercat slave coe <slave #> - Displays the current PDO mapping and mailbox information for a specific
slave

Network Commands

restart ethercat networks – Restarts all EtherCAT networks. I/O and drives should remain the same. If
changes are made to any network devices, cycle power rather than using this command. Otherwise the
new modules will not be usable by the controller or a configuration error could occur.

restart ethercat network slot <slot #> – This command will restart only the EtherCAT network for the M3-
41 module in the specified slot, I/O and drives should remain the same. If changes are made to any
network devices cycle power rather than using this command. Otherwise the new modules will not be
usable by the controller or a configuration error could occur.

get ethercat mac address slot <slot # or -1 for first> - Retrieves the MAC Address of the EtherCAT Master
module

CHAPTER

9

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 96
Document 951-534101-038

Message Log Commands

clear ethercat messages – Erases the message log buffer on all M3-41 EtherCAT modules

clear ethercat messages slot <slot # > – Erases the message log buffer for only the M3-41 EtherCAT module
in the specified slot, with 1 being the first

get ethercat messages – Displays all the message log buffers of all M3-41 EtherCAT modules installed.

Configuration File Commands

erase ethercat config files – Erases the configuration files stored in the M3-41 modules. If the controller is
rebooted, the network will be used without verification.

erase ethercat config file slot <slot #> – Erases the configuration file only in the M3-41 module at the
specified slot, with 1 being the first. If the controller is rebooted, the network will be used without
verification.

generate ethercat config files – Generates an XML file of the existing online slaves and stores it to serial
flash memory of all M3-41 modules. Upon re-start, this file will be read and used to verify the slave devices
found on the network. Operation will not begin until a full match is found. The use of this command
greatly simplifies using a third-party configurator: connect all the slaves to the EtherCAT Master; confirm
they are present with the ‘get ethercat info summary’ command; and use this command to save the
configuration.

generate ethercat config file slot <slot #> – Generates an XML file of the existing online slaves and stores it
to serial flash memory for only the M3-41 module in the specified slot. Upon re-start, this file will be read
and used to verify the slave devices found on the network. Operation will not begin until a full match is
found. The use of this command greatly simplifies using a third-party configurator: connect all the slaves
to the EtherCAT Master; confirm they are present with the ‘get ethercat info summary’ command; and use
this command to save the configuration.

get ethercat expected info – Displays any saved configuration on the M3-41 module. It will be displayed in
the ‘get ethercat info summary’ format containing information such as the VendorID, Product Code, etc.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 97
Document 951-534101-038

Firmware Update Commands

update <Filename> - The ‘update’ command is the standard command supported by the model 5300 to
update online firmware modules. The file should reside in the /_system/Firmware directory and that
should be made current using the change directory command, ‘cd’. The M3-41 module supports two
different files: an .xml used as a master configuration file, as exported from a program such as TwinCat,
and a .bin file to update the module firmware. The file naming convention is fixed and must use the
following format:

M341ACFGV0100.xml – used as the configuration file. The V0100 represents the version number
and can be anything desired.

M341ASOMV0100.bin – used as the module firmware file. The V0100 represents the version
number and can be anything desired.

fupdate slot <#> <Filename> - The ‘fupdate’ command is the standard command supported by the model
5300 to update firmware modules that are offline or online. It is considered a forced update to a specific
slot, regardless of module type. The <#> represents the slot number, starting at 1, with the <Filename>
convention the same as for the ‘update’ command.

’update’ will only work if the module is fully operational and devices are online. If not online and

the controller is faulted, use the ‘fupdate’ command.

The equivalent of ‘update’ will also occur if a file is dragged and dropped onto the root 5300

directory via Internet Explorer.

License Commands

get ethercat IO enabled slot <slot # or -1 for first> - Used to display the current licensed I/O totals
authorized for use on the EtherCAT Master module.

set ethercat IO enabled slot <slot # or -1 for first> <Encrypted Key> - Used to set a new authorization
license total within the EtherCAT Master module.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 98
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 99
Document 951-534101-038

[10] Incentive PC Runtime

The 5300 Controller QuickBuilder run-time has been ported to the Windows® PC where
all your EtherCAT programs can be used on both environments with just the selection of
a translation combo box within QuickBuilder. A virtual, soft 5300 PLC, can now execute
on multiple platforms allowing for versatility in your automation decisions. In addition
to QuickBuilder a complete Incentive .Net Managed API is available allowing for
programming of all functions directly from languages such as C#, VB.Net, and C++ using

Visual Studio®. The Incentive API works both on the local computer and transparently over a network.
Complex, highly integrated solutions can now be integrated into a single platform, programmed in your
language of choice.

CHAPTER

10

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 100
Document 951-534101-038

Incentive Runtime

CTC Incentive offers system flexibility not only in its open vendor support of numerous EtherCAT drives and
IO selections but its tightly integrated programming offerings, fully supporting Microsoft Visual Studio®,
and transforming Windows® into a real-time automation environment. Standard Windows® based
programs such as HMI’s, vision systems, and custom applications run transparently, in parallel to the
Incentive real-time EtherCAT Master.

The Incentive Runtime can run on systems with:

 Windows® 7 64 bit or greater, 32 bit is not supported. Windows 10 Professional preferred.

 Dual or Quad core processors such as J1900, E3845, i5, i7. Quad core is recommended although
dual core processors may be used in smaller, cost sensitive environments with reduced
performance. 4 G memory minimum, 8G-16G recommended for efficient Windows® operation.

 Some processors may have jitter issues and need to be evaluated by CTC. Currently Intel processor
families such as Bay Trail, Haswell, and Broadwell work fine. Skylake does not work on some
systems due to multi-milliseconds cache pollution. The exceptions are those with the Q170
chipset. Kaby Lake currently has a 600uS intermittent jitter issue that Intel is aware of and may be
resolved but currently should not be used in systems with more than 4 axis, if at all. CTC is
continually evaluating systems and has partnered with Axiomtek to ensure stability.

 Solid state drives must be used to ensure data integrity of registers during shutdown as well as
support the fast access time required by the real time environment. The Samsung EVO and PRO
ssd drives are recommended.

 BIOS with limited System Management Interrupt usage. SMI’s can cause excessive jitter when not
using an I210 Ethernet Adapter and reduce performance. They can prevent the real-time operating
system from gaining control for several hundred microseconds. Refer to the section within this
chapter entitled “System Management Interrupt Detection” for additional information.

 Intel I210 Ethernet Adapter preferred (Realtek 8111E PCIe Gbe, i211 and i219 family adapters with
reduced performance). Realtek 8168E did not pass EtherCAT performance testing. Other adapters
are possible but subject to testing.

 Onboard Graphics controllers such as Intel HD typically offer better timing stability than Nvidia or
AMD.

 The BIOS of the PC must have controls to disable such things as SpeedStep, Hyper-Threading and C-
States. Failure to do so can cause excessive jitter and possible EtherCAT errors. In many cases it is
less expensive, with similar performance, to use an i5 rather than an i7 since i5 is essentially an i7
with no Hyper-Threading and a smaller cache. Secure boot must also be disabled.

 A small UPS with Windows UPS shutdown utilities is suggested for register preservation upon
power loss. Both CyberPower and APC have been tested to work well.

To optimize performance the Windows® processor can run different operating systems on each of its cores.
With CTC Incentive, in a quad core system, one core runs the QuickBuilder PLC Logic; a second core runs a
virtual EtherCAT Master, all communicating through high speed shared memory. Both of these cores run in
real-time using an operating system provided by TenAsys, called INtime. This leaves the remaining two
cores to run any normal Windows® application. A second EtherCAT Master can also be run for larger
systems, where two networks are desired, using 3 cores in real-time and leaving one core for Windows®.
For even greater flexibility the EtherCAT Master can be run standalone programmed solely by a Windows
Application (C#, VB.Net, C++., etc…), using a single core, leaving 3 cores for greater Windows performance.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 101
Document 951-534101-038

In a dual core environment, both the QuickBuilder application and EtherCAT Master are loaded as separate
processes and execute on the same core. This should only be used in smaller systems where performance
is not as important given the QuickBuilder application will affect the EtherCAT performance, and vice versa.
Quad core allows each to run at maximum speed, independently, neither affecting the other. Where
Windows® performance is more important the dual core environment can also be used on a quad core
processor. In this case Windows® would run 3 cores for itself and one for QuickBuilder/EtherCAT.

A significant improvement with the Incentive PC Runtime is that of performance. For raw QuickBuilder
execution the PC can be tailored to improve performance, especially in EtherCAT IO update rates. A simple
itineration test provided some comparison numbers showing a quad core J1900 Celeron 2GHZ 8GB ram, at
2.3 X that of a 5300 and an i7-3770 3.40GHZ 16GB ram, 5.3 X. Much of the IO speed improvement is from
the tightly coupled independent cores, each running their own environments, communicating through
shared memory. One dedicated to QuickBuilder execution and the other to EtherCAT IO and motion
control.

With the increased performance of the Incentive Runtime it also now supports up to 64 axes per network
when the I210 network controller is used at a 1 ms scan rate as compared to that of 16 per M3-41
hardware version. For large networks segmentation is also supported, where data can be chained in
multiple packets to allow for a greater number of IO and axes. With this also comes the importance of
good cabling practices as, unlike the M3-41, the PC cannot do timely packet re-transmission and still
maintain DC SYNC. A final improvement is the support of twice the number of RFID channels, 32, versus 16
of the M3-41. In summary:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 102
Document 951-534101-038

Feature 5300

M3-41
Hardware

Incentive
Soft M3-41
Dual Core

Incentive
Soft M3-41
Quad Core

Max Coordinated Axes/Network 16 8 (Atom)
16 (i7)

64 (I210)
32 (other)

Max Networks 4 1 2
QuickBuilder Performance 1 X 1X to 4 X 2.3 to 8 X
EtherCAT Segmentation No Yes Yes
Fast Packet Retry on Loss Yes No No
Turck RFID Channels 16 8 (Atom)

16 (i7)
32

Scan Rates 500us-4ms 1ms-4ms 500us-4ms

Currently 500uS, 1ms and 2ms scan rates work on all devices. 1ms is the recommended default.

4ms does not work on Mitsubishi. Remember you must set the DC SYNC SYNC0 timing to match the scan
rate or an error from the drive may occur. When using a non-I210 Ethernet Adapter it may best to offset
the SYNC0 by up to 500uS (dcsync -1, 1000000, 0, 500000, 100000000).

QuickBuilder Programming for Windows®

QuickBuilder generates ‘C’ code which can execute on multiple environments. Programming for the 5300
Controller is identical to that of the PC, you simply have to select ‘PC_Runtime’ from the Controller
Compiler property and click Translate.

This assumes that you have previously installed a copy of Microsoft’s Visual Studio® Express for Windows
Desktop, or Community Edition, and the latest QuickBuilder Support libraries. Any Visual Studio® version
greater than Visual Studio® 2012 can be used, as long as it has Desktop support and C++, this includes the
free 2015 Community version (https://www.visualstudio.com/products/visual-studio-community-vs). Just
make sure to do the custom install if installing 2015 or greater since Microsoft stopped installing C++
automatically beginning with that revision. The C++ compiler is required for QuickBuilder.

https://www.visualstudio.com/products/visual-studio-community-vs

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 103
Document 951-534101-038

When ‘Select features’ appears expand ‘Programming Languages’ and make sure to select C++ as well as
your desired languages if using the Incentive managed API.

Incentive Installation Overview

A single installation file, Incentive_Setup.msi, is available which provides the Incentive runtime, API,
documentation, QuickBuilder, CTCMon, test projects, and installation video. Incentive_Setup.msi installs
and registers the CTC_Incentive.dll, managed .Net dll, as well as provides additional folders within which
are other programs to be installed. Upon installation the directory tree will look something like:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 104
Document 951-534101-038

ctcmon – Contains an installation program called mon##setup.exe (where ## is the version). This program
will install a communications dll called ctccom32.dll as well as CTCmon. The dll may be used by any
Windows program to interact with a controller on a network or serial port. The utility is used to monitor
registers, program status, and IO via TCP, UDP, and serial ports.

Documentation – This manual in PDF format as well as the Incentive API chm help file.

IncentiveAPI_Cplus – A Visual Studio 2013 sample project using C++ with the Incentive DLL.

IncentiveAPI_CSharp - A Visual Studio 2013 sample project using C# with the Incentive DLL.

IncentiveAPI_VBNet - A Visual Studio 2013 sample project using VB.Net with the Incentive DLL.

INtime – Contains the installation programs for both a host only (remote PC with no resident runtime),
host61-17004_installer.exe (where the numerics are the revision level), as well as the realtime runtime
environment required by the EtherCAT Master, runtime61-17004_installer.exe. By default the runtime will
install as a demo for 60 days. No license is required for the host environment. Patch files are also included
and are updated as problems are identified and resolved. An older installer, runtime61-16250_installer.exe
may also be used and requires no patching. Reference the readme in the INtime_Patches sub-directory for
current patch requirements.

QuickBuilder –

 QuickBuilder_Support.msi installation program which contains the gcc compiler tools

required for translating application programs for the 5300 embedded PLC. Note that Visual

Studio 2015 Community or later is required to translate programs for execution on the PC

realtime environment (available directly from Microsoft).

 QuickBuilder_Setup.msi installs the Quickbuilder development system which by default will
install as a demo for 30 days.

 ECAT_SimpleTurn_DCSYNC1.qbp is a simple EtherCAT application program to control a
single servo motor.

 QuickBuilder_Windows_8_10_Installation.pdf contains special instruction required for

installation of QuickBuilder on that platform.

Root_Folders – Contain three subfolders, _system, 5300PC, and ramdisk, all of which should be copied to
the root directory of the C: drive. The _system and ramdisk folder contents replicate that of the 5300
embedded PLC while the 5300PC subdirectory contains the executable files for both the PLC Logic and
EtherCAT Master realtime Windows processor cores.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 105
Document 951-534101-038

Videos – This folder contains the video Incentive_Runtime_Installation.mp4. This video provides
information on how to install and setup the Incentive environment.

The recommended sequence for installation is as follows:

Application Development Only or Remote PC with no EtherCAT Master:

1. Install CTCmon – mon##setup.exe, optional for debug.

2. Install QuickBuilder_Support.msi, required for QuickBuilder programming.

3. Install QuickBuilder_Setup.msi, required for QuickBuilder programming.

4. Download and install Visual Studio 2015 or greater Community edition from

Microsoft. (https://www.visualstudio.com/downloads/)

5. Install host61-17004_installer.exe (where the numerics are the revision level).

Realtime Incentive EtherCAT Master PC:

1. Perform all Windows updates prior to installation.

2. Copy each folder found in ‘Root_Folders’ to the root of the C: drive.

3. Install runtime61-17004_installer.exe (where the numerics are the revision level).

4. Watch Incentive_Runtime_Installation.mp4 video and configure accordingly.

5. If development will be done on the same PC as the Incentive EtherCAT Master then

do installation steps 1 to 4 listed for Application Development. Installation of the

host INtime environment is not needed since it is included with the runtime. Steps 1

to 4 for Application Development may be done before or after installation of the

runtime environment.

Reference the prior sections for additional configuration and licensing issues. By default the system will
run in demo mode and licenses need to be obtained for QuickBuilder, Incentive API, and the
EtherCAT_Master. The Incentive API is an option available under the EtherCAT Master license.

Startup and Network Configuration

Upon installation the Windows® PC appears and operates identical to a normal PC. The EtherCAT
environment can be setup to run automatically when the PC boots or started/stopped manually by using a
tray icon. The environment should only be started when the EtherCAT devices are ready for operation
otherwise it will timeout and require a restart, just like the hardware based 5300 controller.

https://www.visualstudio.com/downloads/

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 106
Document 951-534101-038

To modify the properties of the 5300 real-time environment you may invoke the INtime Configuration
Manager.

If for some reason the icon for INtime does not appear in the system tray, or INtime was installed

by another user, simply run ‘intimestatus’ from a cmd window or located at “C:\Program Files
(x86)\INtime\bin”. Nothing will appear to happen but the icon will be in the system tray now. Click the
“Autostart this icon” for it to appear upon each login of this user. Note that it can take several seconds
after logging in for the icon to appear, depending upon the speed of your processor and other programs
run by your startup menu.

Select ‘Node Management’:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 107
Document 951-534101-038

If you wish to have the Incentive EtherCAT environment start automatically with Windows® you can select
‘Yes’ to the ‘Start Automatically’ prompt within the INtime Node Management screen. This must be done
for both CTPLC_1 and CTECAT_1 in a quad core system, CTECAT_1 only with dual core.

When started, Incentive will open up to two console screens, one for the EtherCAT core and one for the
QuickBuilder PLC Logic core (non-automatic mode); expect several seconds of delay, especially if the
optional LCD display is used. Diagnostic messages will be presented to these screens identical to what is
typically viewed via the EtherCAT Explorer log, remotely. Note the “OpenComm Failed” errors, that is
normal for each COM port not found and is meant to notify you that if you intend to use a serial port, none
was found.

The QuickBuilder PLC Logic core shares the main PC Ethernet adapter (bridged) and requires its own IP
address. This is the IP address which all the communication protocols will use and it is different than the
main Windows® PC even though using the same network adapter. You may assign this dynamically with

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 108
Document 951-534101-038

DHCP or use a fixed static IP address, depending upon your network. The network can start automatically,
as shown below set to ‘Yes’, or let Incentive do it, set to ‘No’. ‘No’ is the recommended selection with the
benefit of having Incentive do it being a warning message will appear on the IO console that it can take up
to 30 seconds to resolve DHCP, giving the usual visual feedback that things are running. During this time
there is no activity since Incentive does not have control therefore if set to ‘Yes’ the user can be left with a
blank Windows screen, or none at all, wondering if things have started.

The ‘Hostname’ is that which is registered with the DHCP server when requesting an IP address and/or used
by a remote Incentive API to address the computer on a network. The host path for the API would use
‘KEVIN-INTIME-NodeA’ to open a connection to the node defined below.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 109
Document 951-534101-038

In order to share the main PC network adapter a bridge must be created with the virtual TenAsys INtime
adapter. This is done by going to your Network Connections within Windows®, hold the control key and
click on the Network adapter desired as well as the TenAsys Virtual Adapter, right click and click “Bridge
Connections”. In a quad core system CTPLC_1 is used, CTECAT_1 in dual core.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 110
Document 951-534101-038

To remove the Bridge, simple right click on the adapter and click “Remove from Bridge”. The QuickBuilder
PLC Logic core will not be able to communicate via UDP or TCP without the Bridge in place. Reboot after
creation.

 In order to find out the current IP Address assigned to the 5300 PLC Logic environment reference

the CTPLC_1 IO Console. A message will appear at startup displaying that assigned either by DHCP or static
IP. CTECAT_1 IO Console will display the MAC Address of the assigned Ethernet port, typically referenced
for licensing.

Once the Bridge is created we have discovered a problem within Windows where doing a shutdown on
some systems causes the Bridge to not function anymore. This has something to do with a shutdown being
a memory image dump on Windows 10 and not really a full shutdown, more a hibernate. The resolution to
this problem is to go into ‘Power Options’ within the Control Panel, on the left side of the panel there is an
option “Choose what the power buttons do”, select that and the screen below will appear. Note that the
option “Turn on fast startup (recommended)” is grayed out. Select “Change settings that are unavailable”
and you will be able to modify it. Deselect it and you may then press the “Save Changes” button. This will
allow a full shutdown and resolve any bridge issues caused by rebooting. Note that “Restart” does not
have the issue, only “Shutdown”, due to hibernation mode being entered for fast startup.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 111
Document 951-534101-038

MAC Address for Large Systems

The MAC Address used by the INtime Bridged virtual adapter is dynamically created. In large systems there
is the potential for duplicates to occur. If this should happen or to prevent it from happening a unique MAC
Address should be used. It is recommended to use the MAC Address that appears on The CTECAT_1 screen
for your EtherCAT network. This network will be private and ensure a unique MAC Address. Thus edit the
file loader.cfg found in: C:\ProgramData\TenAsys\INtime\CTPLC_1\etc

At the end of the file is something like:

dev.ven0.macaddr=1A:EF:C8:5B:BC:00

Change the macaddr to that found on the EtherCAT IO Console screen:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 112
Document 951-534101-038

In order to use that show above the line would be changed to:

dev.ven0.macaddr=E8:EA:6A:09:2F:2C

Reboot the controller for it to take effect.

File System

The PC file system mimics that of the standard embedded 5300 controller, using two subdirectories off the
C: drive, ‘_system’ and ‘ramdisk’. The files within these directories are the same as described in the 5300
manual. The main difference is the local SATA solid state drive is used instead of the flash file system of the
5300 for the ‘_system’ directory, as well as ‘ramdisk’. As with the embedded 5300, the \ramdisk\nvar
subdirectory contains any variant storage as well as some scratch files called ‘nv#501.reg’ and
‘nv#32001.reg’ (where # is 0 or 1). These files contain the non-volatile registers 501 to 1000 and 32001 to
36000. If any of these 5300 registers are modified, these files are updated every 5 seconds and saved
during a normal shutdown for reloading at the next power-up.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 113
Document 951-534101-038

The real-time applications which run on each CPU core are maintained in the \5300PC directory,
5300PLC.rta and EtherCAT_Master.rta and are referenced from the INtime Node Management Auto Load
tab.

Auto Load configuration, starts EtherCAT from tray icon, the default for quad core:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 114
Document 951-534101-038

In a dual core system (single core used by Incentive) both EtherCAT_Master.rta and 5300PLC.rta

would be listed under CTECAT_1, CTPLC_1 would not exist (freeing up a core for Windows®). This is also
true for standalone mode, when driven solely by the Windows API.

The _system\Programs directory contains various configuration files. These files are set by using the
EtherCAT Explorer ‘User Options’, ‘Save Config, and ‘License’ forms. Since more than one EtherCAT
network can run at a time there are some files that contain the MAC Address of the EtherCAT Ethernet
adapter as part of its file name to make the name unique. Files in this directory are:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 115
Document 951-534101-038

Used by the 5300PLC.rta process –

_lcddisplay.txt : Some embedded PC devices have an LCD display for status messages to be displayed. If
present this file contains the IP address in text format, for example: 172.16.2.190
_runprogram.txt : Contains the path\filename of any QuickBuilder project to automatically startup at boot.
It is set by QuickBuilder during a download of a project file if the option is enabled in the project properties.
For example: \RAMDISK\ECAT_SimpleTurn_DCSY-CTC.gz
_Init.bin: Saves configuration information like custom serial port setting, baud rates, etc. It is automatically
created with the system defaults if it does not exist.

Used by the EtherCAT_Master.rta process –

options[MAC ADDRESS].txt : This file contains the settings from the ‘User Options’ EtherCAT Explorer
configuration form. If no file exists a file will be created with default settings of 1 mS cycle time, 300uS pdo
timeout, 5 initialization retries, and no virtual axis. Example filename: _options_E8EA6A092F2C.txt where
E8EA6A092F2C is the 6 byte mac address of the EtherCAT Ethernet network adapter being used.

ioOptions[MAC ADDRESS].txt : This file contains the license settings from the EtherCAT Explorer license
configuration form. It is an encrypted binary file. When the software is first installed a file called
license[MAC ADDRESS].txt will be emailed to you. That file should be placed in the same directory as this
file. When the _ioOptions file is not present the system will look for a valid _license file. If found that file
will be imported and the _ioOptions file generated. The _ioOptions file can also be generated from the
QuickBuilder EtherCAT Explorer configuration form, as it is with the 5300 M3-41A. In a PC system it is
typically easier to have the license file emailed to you and then placed in the _system\Programs directory
for automatic import.

license[MAC ADDRESS].txt : This file is generated by CTC Technical Support to enable the number of
drives and IO your EtherCAT runtime is licensed for. If this file and the _ioOptions file are both missing the
system will run in demo mode. In this mode EtherCAT will control up to 16 drives and 256 digital and
analog IO for a period of about 3 hours. After that the network will reset and power will have to be cycled
to restart another 3 hour period. The generation of this file requires the MAC Address of the EtherCAT
network adapter. You can get the MAC Address by starting the EtherCAT_Master.rta process and it will
appear on the console screen. Either email Technical Support or have it available when calling so that a
proper license file can be generated. Systems pre-configured by CTC will already have the license installed.
Example filename: _license_E8EA6A092F2C.txt.

log[MAC ADDRESS].txt : This file is written to with the same information as the IO diagnostic console and
provides a hard copy of each session. The file is automatically appended to. Example filename:
_log_E8EA6A092F2C.txt where E8EA6A092F2C is the 6 byte mac address of the EtherCAT Ethernet network
adapter being used.

It is recommended that an inexpensive UPS be connected to a serial port for automatic shutdown

should extended or abrupt power failures occur. The will ensure file integrity as well as preservation of
non-volatile registers.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 116
Document 951-534101-038

Demo Mode and Licensing

Both the TenAsys INtime runtime, Incentive API and EtherCAT Master can run in demo mode. Demo mode
for INtime is valid for 60 days after which the QuickBuilder EtherCAT environment must be purchased. It
cannot be extended due to limitations imposed by TenAsys. The QuickBuilder EtherCAT network will run
for up to about 3 hours continuously, before resetting. In this mode EtherCAT will control up to 16 drives
and 256 digital and analog IO. In order to purchase a full EtherCAT license please contact Control
Technology with your motion control and IO needs as well as the MAC Address of the Ethernet adapter that
will be used. From Windows the MAC Address can be found by opening a ‘cmd’ window and typing
‘ipconfig /all’. The Physical Address of your adapter is the MAC Address.

TenAsys INtime Licensing

If your INtime license has not already been installed you must send a system fingerprint to CTC (along with

purchase order) so that a license string can be generated for your system. This license is keyed to your

hard drive so should that be replaced, you will need a new license.

In order to retrieve the fingerprint go to the system tray and select ‘INtime Conguration’, right clicking on

the TenAsys INtime icon:

The INtime Configuration Panel will open. Select ‘License Manager’:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 117
Document 951-534101-038

Select ‘Get Fingerprint’ followed by ‘Copy’ or ‘Save As…’ on the Client Information form that opens:

Copy (or attach) the information into an email and send it to CTC for validation. Once validate a license
string will be generated and returned. An example of this would look something like:

*AA2KZ4OIAJ75NDSYKM6GN3ETSEVKHRA44DRS3KBJZIB8IEEWSVYY2# "16" version "", no expiration date, exclusive

Select ‘Enter String’ from the License Management screen, copy and paste the license you sent them

followed by clicking ‘OK’:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 118
Document 951-534101-038

Incentive Licensing

Your Incentive license is keyed to the MAC Address of the Ethernet port used for EtherCAT. While in demo
mode it will run for 3 hours and then need restarting. To fully unlock a license file (_license_[MAC ID].txt
must be requested from CTC which defines the number and type of IO licensed as well as to whether the
API is fully enabled. This file would be placed in the C:_system\programs directory. All _ioOptions* files
must be removed if only a EtherCAT Master. If multiple then only remove the existing _ioOptions* file that
matches the MAC Address of the network adapter used.

license[MAC ADDRESS].txt : This file is generated by CTC Technical Support to enable the
number of drives and IO your EtherCAT runtime is licensed for. If this file and the _ioOptions file
are both missing the system will run in demo mode. In this mode EtherCAT will control up to 16
drives and 256 digital and analog IO for a period of about 3 hours. After that the network will reset
and power will have to be cycled to restart another 3 hour period. The generation of this file
requires the MAC Address of the EtherCAT network adapter. You can get the MAC Address by
starting the EtherCAT_Master.rta process and it will appear on the console screen. Either email
Technical Support or have it available when calling so that a proper license file can be generated.
Systems pre-configured by CTC will already have the license installed. Example filename:
_license_E8EA6A092F2C.txt.

Windows® Updates

Windows® updates are pushed by Microsoft periodically and are required for proper operation as well as
security. With the release of Windows® 10 Micosoft forces updates rather than allowing you to be
prompted. Doing an update while you are controlling an automation environment is generally not a good
thing since in many cases Microsoft reboots the PC. Thus it is strongly suggested that updates be turned off
or at least request a prompt. On Windows® 10 you can set a connection, network or WiFi, as metered to
prevent updates. Wifi can be set within the Control Panel whereas an Ethernet network must be set via a
registry entry. There are numerous articles available about how to do this with that below being a
particularly good reference:

Windows 10 Pro (schedule updates):

http://www.windowscentral.com/how-schedule-windows-updates-windows-10
You can also go to “Settings->Advanced Options->Defer feature updates” should be selected.

Windows 10 Home & Pro (metered connection):

http://www.windowscentral.com/how-set-ethernet-connection-metered-windows-10

Failure to defer your updates until you are ready for them will cause your PC to reboot

automatically at unpredictable times due to Microsoft pushing out Windows Updates. This will cause your
real time control to stop operation as well.

http://www.windowscentral.com/how-schedule-windows-updates-windows-10
http://www.windowscentral.com/how-set-ethernet-connection-metered-windows-10

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 119
Document 951-534101-038

Serial Ports

At present time the QuickBuilder PLC Logic core will attempt to open COM1 through COM4 for its own use.
Whichever ports are found will be used by the standard CTC Binary Protocol and available for QuickBuilder
programming, those not found will cause a diagnostic warning on the Incentive PLC console screen. Serial
ports may be mapped back and forth between the INtime real-time environment or for Windows®
programming use. Mapping is required in order for ports to be disabled from Windows® and enabled for
INtime. To map serial ports between the INtime real-time environment and Windows® the Intime Device
Manager must be used:

Note to return a serial port to Windows control, right click on the COM port under INtime devices and
select ‘Pass to Windows’. To map it back select the COM port under Windows devices and select ‘Pass to
INtime with legacy IRQ’. Rebooting is required for it to map properly.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 120
Document 951-534101-038

In addition, when mapping serial ports a special driver (compc.rta) must be passed the IO address of the
port and interrupt used. This is configured within INtime Node Management, CTPLC_1 for quad core,
CTECAT_1 if dual:

Modify the ‘Parameters’ section as required. You may refer to the Windows® Device Manager->Ports
(COM & LPT) section properties to determine what is currently available and IO address:interrupts used.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 121
Document 951-534101-038

For example the parameters for COM1 with a hex address of 0x03f8, using IRQ 4, and COM2 with a hex
address of 0x02f8, IRQ 3 are shown above.

Serial ports are referenced by Incentive starting with COM1 and added sequentially. This means if COM2 is
mapped by INtime but not COM1 then COM2 will become COM1 within the Incentive environment. If
COM2 and COM3 were mapped then Incentive COM1 is Windows COM2 and Incentive COM2 is Windows
COM3. Incentive has no idea of how Windows referenced the COM ports, just each assigned will become
sequential, from 1 to 4.

Another thing to keep in mind is that you cannot change the serial port parameters while the port is open
(Windows must have the port closed), thus the registers for changing baud rate, parity, data and stop bits,
will have no effect. The proper way to set serial port parameters is via the _Init.bin file, where settings are
stored and read during initialization. The ‘set COMM#’ command, available via telnet, can be used to
retrieve and save serial port setups.

Set COMM[Port] [Baud Rate], [Data Bits], [Parity], [Stop Bits], [Protocol], [Flow Control], [Address]

Port

1, 2, 3, or 4 are valid entries as long as the port is available. Example: ‘set COMM1’, ‘set COMM2’, …

Baud Rate

Baud Rate may be one of the following (19200 is the default):

 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

Data Bits

“7” or “8” data bits with 8 being the default.

Parity

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 122
Document 951-534101-038

 “None”, “Odd”, or “Even” parity, with “None” being the default.

Stop Bits

 “1” or “2” stop bits with “1” being the default.

Protocol

Protocol may be one of below, case sensitive:

 CTC Binary (Default, compatible with CTCMON and ctccom32.dll)

 Modbus Master/RTU – controller polls the device, binary mode.

 Modbus Master/ASCII – controller polls the device, ASCII mode.

 Modbus Slave/RTU – controller polled by external device, binary mode

 Modbus Slave/ASCII – controller polled by external device, ASCII mode

 Diag. Terminal – Diagnostic Terminal

 Philips ISP – Programmable chip mode

 Scale – Custom scale protocol

Flow Control (not supported on 5300, only Incentive PC environment)

“None”, “Xon”, or “Hardware” are available options.

None – Typically 2 wire, TX/RX half duplex protocol like CTC Binary.

Xon – Xoff (0x13) is sent when receive buffer is full, Xon (0x11) when OK to send again.

Hardware – DTR is enabled when the port is open. RTS is active when OK to receive characters, CTS

controls transmitter, when not active transmission will not occur.

Address

This is the address to be used when Modbus protocols are selected. When in Master mode only a

single device may be polled. To poll multiple devices the Address register must be changed by the

Quickstep program, dynamically. An address from 1 to 255 is valid with 1 as the default.

Example:

Set COMM1 19200, 8, None, 1, CTC Binary, None, 1

You can also use ‘get COMM[#]’ to retrieve the current settings.

EtherCAT Ethernet Adapter

Within the INtime configuration screens you will notice CTECAT_1 for a single network configuration,
CTECAT_2 would be added for dual network. These are the real-time processor cores responsible for the

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 123
Document 951-534101-038

EtherCAT Master network. Reference the ‘INtime Device Manager’ for those available and/or presently
being used.

The above configuration shows a Realtek PCIe GBE Controller being used under ‘INtime devices.’
Referencing ‘Windows devices’, there are three additional adapters currently used by Windows® which are
available. The ideal adapter to use would be the I210-T1 adapter as that offers special high speed queuing
and an internal precision timer that is optimum for EtherCAT packet timing. For example the Realtek
adapter will typically be about 30 uS average jitter with a max of 200 uS (400 uS dual core) whereas the
I210 is typically has sub-microsecond average jitter and significantly offloads the processor allowing for
greater number of EtherCAT devices to be supported on a single network.

The CTECAT core will automatically detect which adapter is selected and attempt to use it. When mapping
an adapter to the INtime environment be sure to select the ‘Pass to INtime using MSI’ property. Only a
single Ethernet adapter is supported by each CTECAT core, where _1 is incremented to __2 when additional
networks are used for EtherCAT. As with serial ports, reboot after any assignment changes.

System Management Interrupt Detection

System Management Interrupts are calls made to the BIOS for special functions. This can be something as
simple as USB support for a mouse and/or keyboard versus using a PS/2 version or thermal control of the
CPU. Some SMI’s are necessary but with some BIOS’s bad practices are encounters where several hundred
microseconds of disabling control from higher levels can occur, thus ruining any real-time performance and
causing jitter.

Luckily there is software available to test a system. One free version in particular is the home version of
LatencyMon (http://www.resplendence.com/latencymon). When you download and install this two
programs are available, ‘LatencyMon’ and ‘In Depth Latency Tests.’ The ‘In Depth Latency Tests’ program
can be used to detect the effect of SMI’s with you BIOS. Something around 50 uS or less is desirable, more
can be tolerated with the I210 network adapter.

Once the program is started you may select the “Start Monitor” green icon button and let it run for about
30 seconds as you do your normal operations on the computer, access a file, web browsing, etc. Then click
the red “Stop Monitor” button:

http://www.resplendence.com/latencymon

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 124
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 125
Document 951-534101-038

The Details tab will yield a report. In this test there were 2 CPU cores found (INtime has control of the
other 2 cores during this test but typically 4 cores would be seen) with a maximum latency of 1.2 uS on one
core and 1.5 on the second core. This is excellent real-time performance. A J1900 Celeron would probably
be around 50 uS. Some BIOS vendors are as high as 200 uS which is unacceptable.

Platform Evaluation

Once the real-time environment is installed, even in demo mode, an actual evaluation of the suitability of
that PC can be made by running two programs. The first is the INtime Platform Evaluation utility. This
utility will check various BIOS settings and give warnings of things that may need changing. Additionally
IRQ routine and how the CPU cores are presently assigned are available via that tabs:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 126
Document 951-534101-038

The actual final test is the “Graphical Jitter Display”, this test actually checks the ability of the real-time
environment to run in real-time, ideally with no jitter caused by SMI’s. Upon startup you are presented
with the available cores to test (assuming they have been started). Select and test each independently:

The screen should look something like this, with no red indicators showing excessive jitter after you
perform the necessary operations on your PC:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 127
Document 951-534101-038

CTC Incentive® .Net API

CTC has created a very powerful tool for .Net programmers, a tightly integrated dynamic link library (DLL)
interface which allows users to program the PC based controller using C#, managed C++, and VB.Net. This
DLL includes the complete MSB motion control language, axis properties, registers, variant storage, as well
as the ability to access variable registers and symbolic names, both locally and over a network. It runs
standalone or in conjunction with the QuickBuilder application programs where programs can execute in
mixed mode with .Net programs controlling one aspect of the automation and QuickBuilder, another.

Typically QuickBuilder would be used where absolute real-time is required whereas .Net can be leveraged
to coordinate larger systems, perform database queries, provide vision control interfaces, complex
calculations, HMI updates, and/or real-time motion control of some of the axis, limited only by the
programmer’s imagination. The only difference between QuickBuilder and the .Net interface is that the
.Net program will execute under the Windows operating system (non-realtime) whereas QuickBuilder runs
in real-time on a dedicated processor core.

Some of the features of the API are as follows:

 Portable .Net DLL, written in C#, abstracting the user from unmanaged code.

 Sample Applications included for C#, VB.Net, and managed C++.

 Connection based high speed parallel threaded interface to both the PLC logic and EtherCAT
Master processes.

 Same exact interface whether communicating locally or over a network, simply include the defined
remote hostname for CTPLC_1 process when using the API ‘openConnection’ function in a
networked environment. Multiple connections supported, both local and networked.

 Full support and mapping of the QuickBuilder Motion language to .Net. .Net Methods mimic those
of the QuickBuilder MSB language helping to shorten learning curves when moving between
programming environments.

 Full register interface, including Variant support. Exception based error processing.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 128
Document 951-534101-038

 Requests are passed to the real-time processes where they execute using existing MSB instruction
objects, thus executes exactly as an MSB would.

 Full access to a QuickBuilder programs’ symbol tables for variable reference, both at the
QuickBuilder and MSB level. All axis properties are directly supported as well as access to user
variables. This allows QuickBuilder programs to be re-compiled, variable registers re-assigned, and
still work with .Net since the symbol name is the reference, not the low level register number.

 System state control to restart programs, restart EtherCAT, monitor current execution state, etc.
Including managing the starting and stopping of the real time operating system INtime, as well as
monitor the status of programs running on its dedicated processor cores.

 Optional standalone EtherCAT Master operation for Windows only programs. Requires only a
single core for real-time versus the preferred two when using QuickBuilder applications.

Some of the class features of the CTC_Incentive Namespace (from CTC_Incentive.chm):

Some examples of supported motion commands:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 129
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 130
Document 951-534101-038

In order to access the features of the CTC Incentive API simply add the CTC_Incentive.dll resource to your
Visual Studio project (Visual Studio 2013 or greater). This is done by right clicking on your project in the
Solution Explorer, followed by selection of Add->Reference. Once the Reference Manager appears select
Browse and browse to where you installed the dll, typically “C:\Program Files\Control Technology
Corporation\CTC_IncentiveAPI\CTC_Incentive.dll”, make the selection and it will be added as a Reference
to your .Net project. Example projects are installed with the dll installation for your review. Reference the
“CTC Incentive® .Net API User Manual” for additional details (chm help file format).

.Net API Sample Program Overview

The sample programs are available in three different languages; C#, VB.Net, and managed C++. The
Monitor checkbox, when checked, allows the program to attached to the 5300 PLC environment in a
passive, monitor only mode. When not checked, any QuickBuilder program will be shutdown, EtherCAT
network reset and the sample program will take control of the axis motion. Only one instance should be
run with the checkbox unchecked.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 131
Document 951-534101-038

Upon selection of the ‘Start Test’ button the program will first attempt to connect to the 5300 PLCLogic
process, CTPLC_1. Once connected it will check to see if ‘Monitor Only’ is selected. If not selected any
QuickBuilder program will be stopped and the EtherCAT network reset. Next the available resources will be
checked and a connection as well as a thread spawned for each axis found. A PLCLogic monitor thread will
also be spawned to periodically display register 13002, system tick, as well as the network status register.

If not monitoring, each thread will initialize the servo drive for operation and begin a back and forth move,
displaying the axis #1 feedback (fpos) position in a textbox. Either the ‘Stop Test’ button or the ‘X’ at the
upper right of the GUI form will cause the threads to stop and connections to be released.

The sample programs themselves all perform similar operations, with a few extra in the C# example, but in
different programming languages. Only one test program should control the axis at a time, the others can
execute in Monitor Only mode. If you wish more than one to run the axis then changes must be made to
ensure the EtherCAT network is not reset while the other application is running, else an error will result.
Below shows three application test programs, one for each language monitoring the PLC system timer and
axis 1.

C# has been enhanced beyond that of VB.Net and C++ to demonstrate such features as running in
Standalone mode (EtherCAT Master only), homing, new position commands, and starting/stopping the
Incentive environment:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 132
Document 951-534101-038

C# has the same basic tests of the other programming languages with the additions of some of the
enhancements discussed. Start/Stop of Incentive realtime environment is controlled by the buttons on the
lower right of the form, with the status now displaying in green, “ECAT Operational”. In an EtherCAT only
environment (usually controlled directly by a high level Windows application), the checkbox on the lower
right of the form should be checked. This allows the logic to then connect to an AxisSupervisor class to
start and stop EtherCAT.

.Net API Opening a Connection Locally and Remote

In order to establish a connection with a runtime process the ‘openConnection’ function is invoked. This
function creates two private high speed mailboxes within the Incentive runtime with which to
communicate, one for sending messages and one for receiving. The parameters passed to the
‘openConnection’ differ slightly for the PLC Logic runtime, CTPLC_1, and that of the EtherCAT Master,
CTECAT_1. The first parameter is the node name and the second mailbox name, common for all
‘openConnection’ functions. The mailbox name must be unique on every node for every connection since
the name is published globally for each node. Different nodes can have the same mailbox name since the
mapping includes the node name when addressing a mailbox.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 133
Document 951-534101-038

When running the API locally only the node name of CTPLC_1 or CTECAT_1 is used. In order to
communicate over a network the node name is expanded to include the unique Hostname assigned to
CTPLC_1 within the INtime Node Management configuration form. Thus for a local connection to the PLC
logic process, QuickBuilder program, the parameter would be CTPLC_1. For a remote host it would be
Hostname plus any domain name entered in the configuration form followed by /CTPLC_1. For example if
the Hostname was MACHINE1 with no domain information the parameter passed to ‘openConnection’

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 134
Document 951-534101-038

would be ‘MACHINE1/CTPLC_1’. With a domain of ctc-control.com it would become ‘MACHINE1.ctc-
control.com’/CTPLC_1. Note that a Hostname must be passed to ‘openConnection’ not a raw IP address.

In order for automatic remote access to work a driver must also be loaded called ‘gobs_net.rta’. This driver
is responsible for all connections to both CTPLC_1 and CTECAT_1 and will only be enabled and loaded on
the node CTPLC_1. The driver will automatically create a shared memory path to CTECAT_1.

Gobs_net uses UDP traffic on port 48271 for communication and broadcasts of Hostname information and
status periodically, therefore not relying on a DNS server or dhcp for name registration. Due to the high
volume of UDP traffic it is advisable to isolate groups of computers using Gobs_net from normal LAN traffic.
For example you would not want 100 computers on the same network running the peer to peer
communications without using a switch to isolate some of the traffic.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 135
Document 951-534101-038

Simple API Programming Concepts

PLClogic Class

All API transactions typically begin with an openConnection call (reference the Incentive.chm help file).
This establishes the communication queues between the non-realtime Windows environment and the
realtime Incentive. As detailed in the previous section you must specify a node name and desired unique
mailbox name.

The PLCLogic class is used for communications with the QuickBuilder Logic environment. There you will
primarily being accessing registers and variants. Both are where QuickBuilder programs store their
program information. Registers are of type Integer and can also be used to access IO data and certain
aspects of operation. Reference the Model 5300 Quick Reference Register Guide: http://support.ctc-
control.com/customer/techinfo/docs/5300_951/951-530006.pdf. Variants store any type of information
and can also consist of one and two dimensional tables, reference the QuickBuilder Reference Guide:
http://support.ctc-control.com/customer/techinfo/docs/5300_951/951-530020.pdf.

For the PLCLogic class you can also load the QuickBuilder symbol table for symbolic name access,
‘get_symbols’. Typically direct numeric register access is used to expedite reads since symbols tend to slow
performance. The ‘get_resources’ optionConnection option is useful to find out how much IO is present in

http://support.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf
http://support.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf
http://support.ctc-control.com/customer/techinfo/docs/5300_951/951-530020.pdf

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 136
Document 951-534101-038

the system before interacting with it. In a local environment the node name is always ‘CTPLC_1’, with a
unique ‘our_mailbox_name’:

using CTC_Incentive;
…

 Controller.PLCLogic testplc = new Controller.PLCLogic();
 int value = 0;
 try
 {
 if (testplc.openConnection(“CTPLC_1”, “PQ001”, true, false))
 {

// Connection established… Now do something, lets read system tick register 13002.
testplc.getRegister((int)Controller.PLCLogic.REGISTERS.MILLISECOND_COUNTER, ref value);
// ‘value’ now has the tick value read.

// To poke the value of 1 into register 5 you could do the following.
testplc.putRegister(5, (int)1);

 }
 }
 catch (Controller.PLCLogic.IncentivePLCException e2)
 {
 // Error processing of Incentive specific error.
 MessageBox.Show("Error occurred: " + e2.ErrMessage);
 }
 catch (Exception)
 {
 // Handle other errors...
 }

 // When all done and ready to exit your program you should close the connection.
 testplc.closeConnection();

Each thread needs its own private connection; multiple connections can be made for parallel

operations.

Beyond simple integer register storage there is also something called Variants. Variants can automatically
assume the types you wish them do. They can be integer, double, float, and/or string. As defined in the
5300 PLC manual, certain register blocks have certain storage capabilities.

1 – 500: volatile integer registers
501-1000: non-volatile integer registers
32001-36000: non-volatile integer registers
36101 – 36700: 600 volatile Variant registers
36701 – 36800: 100 non-volatile Variant registers

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 137
Document 951-534101-038

Non-volatile registers are stored on the disk, and thus the importance of a UPS, so the file storage

can be updated and closed when written to. Also the NTFS file system should be used, not FAT32.

Variants not only can be of any type they also can be one (vector) and two dimensional (table) arrays. The
getRegister and putRegister methods have optional parameters to handle this, where the basic call is the
same as previously described. The enhanced method lists the row, column, and precision:

Thus to read a double from a table, 36105[3][5], register 36105, row 3 and column 5:

 double dValue = 0;

testplc.getRegister(36105, 3, 5, 6, ref dValue);

The precision by default is set to 6. Precision is only use on a read operation where a string is involved and
defines the number of decimal places for the conversion. Therefore doing the same operation but in this
case reading the data as a string where the double value was 26.157604532678:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 138
Document 951-534101-038

 string sValue = 0;
testplc.getRegister(36105, 3, 5, 6, ref sValue);

After execution the string ‘sValue’ would contain “26.157604”.
Writing to a Variant or integer is similar to reading except instead of reference the value, it is passed to the
method:

 string sValue = “26.157604”;

testplc.putRegister(36105, 3, 5, 6, sValue);

float fValue = 2.6753;
testplc.putRegister(36105, 3, 5, 6, fValue);

Axis Class

Since Incentive consists of multiple realtime processes and threads we may also have a requirement to
access the EtherCAT environment directly. Possibly to simply read servo position, interact with MSB
(QuickBuilder Motion Sequence Blocks), or totally control motion from within our Windows program. Like
the PLCLogic class there is the Axis class. The Axis class contains the entire MSB program language,
mapped to Windows, as well as access to all motion and EtherCAT IO variables. An open connection is
required as well to establish direct communications with the EtherCAT process node, CTECAT_1 (CTECAT_2
would be a second parallel network if used).

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 139
Document 951-534101-038

In a local environment the node name is always ‘CTECAT_1’, with a unique ‘our_mailbox_name’:

using CTC_Incentive;
…

 Controller.Axis testAxis = new Controller.Axis();
 int value = 0;
 try
 {
 if (testAxis.openConnection(“CTECAT_1”, “MQ001”))
 {

// Connection established… Now do something, read the current feedback position.
double ourPos = testAxis.fpos;

// Let spin the motor 100 revolutions greater than present position.
// Velocity is 30 revs/sec, acceleration 50 revs/sec2, deceleration 250 revs/sec2.
testAxis.move_at_to(30, ourPos + 100, 50, 250);

// Lets wait until we are in position.
testAxis.wait_for_in_pos(-1);

 }
 }
 catch (Controller.Axis.IncentiveAxisException e2)
 {
 // Error processing of Incentive specific error.
 MessageBox.Show("Motion error occurred: " + e2.ErrMessage);
 }
 catch (Exception)
 {
 // Handle other errors...
 }

 // When all done and ready to exit your program you should close the connection.
 testAxis.closeConnection();

Each thread needs its own private connection; multiple connections can be made for parallel

operations. Note that each command runs as its own simulated MSB.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 140
Document 951-534101-038

The Axis move_at_to command was introduced above and is described in a bit more detail below:

RuntimeManagement Class

The Incentive API uses a realtime operating system created by TenAsys called INtime. The API contains a
system management class called RuntimeManagement. This class can be used to start and stop the INtime
nodes as well as determine what state they are in with regards to EtherCAT being executed.

The updateCurrentStateInformation method updates the class properties EtherCAT_started,
Plclogic_started, and SameCore with the proper current values:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 141
Document 951-534101-038

The start/stop methods are equally as simple:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 142
Document 951-534101-038

using CTC_Incentive;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 143
Document 951-534101-038

…

 Controller.RuntimeManagement RuntimeSystem = new Controller.RuntimeManagement(1);
 // Update the latest node execution information.
 RuntimeSystem.updateCurrentStateInformation();
 If (Plclogic_started == false)
 {
 // Start the INtime kernel on their nodes with a 5 second timeout.
 RuntimeSystem.startIncentive(5000);
 }

Hot Swap of EtherCAT Devices

The Incentive API contains methods to support the setting of slave devices to an online or offline state
within a fully active network. This can be useful when problems arise and a device needs to be replaced
without shutting the network down, such as a production environment where multiple lines are operating
in parallel.

Without any special provisions EtherCAT devices are daisy chained, into one device, out and into the next.
This means once you break the daisy chain all following devices will not respond. If a device does not
respond it is an error condition to Incentive and a network fault will occur. The way around this is to notify
Incentive the device is being taken offline and allow it to prepare for it.

Certain guidelines must be followed to have this work properly and prevent devices from faulting or gaps in
EtherCAT cabling causing packet loss:

1. All Online at Startup - It is important that when the EtherCAT network is first brought online, all
devices are present. This allows Incentive to establish the maximum required packet size for
communications and the data placement for each within a packet.

2. Offline all following devices – If removing a device you must offline that device and all following in
the daisy chain before performing service.

3. Omron EtherCAT Junction GS-JC06 – To fully take advantage of this feature it is best to use an
Omron EtherCAT junction as the first slave device. This device provides up to 5 independent
EtherCAT segments that are self-healing as well as a 64 bit clock for distribution. If you disconnect
a slave device on one of the segments the network can continue to operate the other segments.
The same rules apply with daisy chaining, all devices after the device you are powering off must be
offline as well or an error will result, with the EtherCAT junction you have up to 5 independent
segments instead of just one.

When a device is offline it is placed in its EtherCAT INIT state, outputs (off) do not change or work, and data
is not available from the device. It does replicate EtherCAT packets to the next device. It is only when you
power off the device or disconnect the EtherCAT cable that communications is affected. Normally each
slave device increments a counter in the packet, by warning Incentive you are disconnecting devices it will
know how many counts are allowed to be missing in the packet before it is a real error.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 144
Document 951-534101-038

AxisSupervisor Class – online/offline Methods

The AxisSupervisor Class is used to interface with EtherCAT at a system level. API functionality such as
restarting an EtherCAT network or placing a slave device online or offline is available. These methods are
as follows:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 145
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 146
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 147
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 148
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 149
Document 951-534101-038

If you would like to know the slave # of a particular axis you can reference that axis property

dwSlaveID. Additionally, if you would like an axis to always be assigned to a specific drive reference the
‘Station Alias’ capability in chapter 3 of this manual. Be careful when you are replacing a drive and are
using the alias feature, don’t install a new drive with the wrong alias or unknown motion could occur with
more than one drive assigned the same axis number.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 150
Document 951-534101-038

Offline/Online Example

Below is an example of a network with the first slave device being the Omron EtherCAT Junction, GX-JC06.
The slave devices are daisy chained on each port, 5 are available, each acting as a separate network
segment.

With the example configuration we could execute the offline on each slave in a group (P2, 3, or 4) and then
power down that group for service. To bring it back online simply power the devices back up, in the same
order and execute the online method.

int[] slaves = {5, 6, 7};
int lastSlave = 0;
offlineSlaves(slaves, 3, true, ref lastSlave); // Offline the 3 slave devices, slew first if axis.

… service is performed…

onlineSlaves(slaves, 3, true); // Online the 3 slave devices and restart any first MSB.

S
l
a
v
e
2

S
l
a
v
e
3

S
l
a
v
e
4

S
l
a
v
e
5

S
l
a
v
e
6

S
l
a
v
e
7

S
l
a
v
e
8

S
l
a
v
e
9

Omron
GX-JC06
EtherCAT
Junction

Master IN P2

P3

P4

P1

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 151
Document 951-534101-038

Removal of CTPLC_1 for Standalone Operation

When running in standalone operation the EtherCAT Master interfaces with a Windows program directly
and QuickBuilder is not present. In this mode we can run on a single core with just the
EtherCAT_Master.rta program running, being driven by the Incentive API. It is assumed that two cores
have been reserved for Incentive and you wish to remove CTPLC_1, freeing it up for Windows operation.

Begin by invoking the INtime Configurator, right clicking on the olive green INtime icon and selecting INtime
Configuration:

Select Node Management:

Once the Node Management screen appears select CTPLC_1, followed by Remove. Select ‘Yes’ when
prompted “Are you sure?”:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 152
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 153
Document 951-534101-038

Select the CTECAT_1 node and change the Processor core to 3, if it is not already that, and click ‘Save’:

Close the Node Management screen and exit out of the INtime Configuration Panel. You will be prompted
to reboot for the changes to take effect. Prior to rebooting we want to remove any bridged network
adapters. Invoke ‘Open Network and Sharing Center’ by right clicking on the network tray icon or using
Control Panel:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 154
Document 951-534101-038

Select ‘Change adapter settings’:

Right click on the bridged network adapters and select ‘Remove from bridge’. This is usually your main
network adapter and the TenAsys Virtual Ethernet Adapter:

You may now reboot your PC by selecting ‘Yes’ on the Local Node Configuration prompt you received when
you exited the Configurator:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 155
Document 951-534101-038

After rebooting open the INtime Configuration Panel again and you may be prompted that ‘Processor core
4 is not assigned to INtime…’, select ‘No’:

Return to the INtime Node Management screen again and select ‘System’ on the tabs. Note that Windows
now has 3 cores and core 3 is assigned to CTECAT_1:

To execute in standalone mode make sure a file called EtherCAT_Master_Only.txt exists in the C:\5300PC
directory. Contents of the file do not matter, it is just checked for its existence. You may now run your
application under full control of the CTC_Incentive API, without QuickBuilder or its CTPLC_1 process.

QuickBuilder Programming and Atomicity

This is just a quick recommendation of something to think about as you structure your QuickBuilder
program and your system architecture. Access to variables, whether normal registers or variants, is atomic
and protected during read and write access. Also when writing a QuickBuilder program things within a
conditional or loop { } are protected from having other QuickBuilder threads from accessing the same
variables. Where subtle problems can occur is in the simple instance of writing something like this with
inline code:

i = i+1;

Now that may seem straight forward and is protected between QuickBuilder threads but if you have
something on the network or via the API poking ‘i’ with a value, say a 0, the result may not always be what
you think it might. Consider the situation where QuickBuilder reads the value of ‘i’ (say containing 2), it
then adds a 1 to it but before it can be stored back to ‘i’ the network pokes a 0 in ‘i’. Well for a brief period
of time ‘i’ will be 0 but then the result of 2 + 1, or 3 will overwrite the 0. Atomicity or protection will not

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 156
Document 951-534101-038

last for the full arithmetic formula unless it is between QuickBuilder tasks. A way around this is to have the
network or API write public variables that are not involved in QuickBuilder calculations and have
QuickBuilder access those variables at the beginning of their calculations, copying them to internal
variables.

Some Common Issues and Resolutions

Shutdown and Restart Leave Power Switch Lit

Some computers have a problem with the INtime environment with Shutdown and Restart where Restart
actually attempts a Shutdown and Shutdown does close Windows but the power switch stays lit. Only way
out of this is to hold the power switch for 5 seconds to completely shutdown. This was recently observed
on a Dell Optiplex system. An easy resolution to this is a registry change:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\rtif\Parameters

Change Flags from 0x05 to 0x25.

Bridged Network Fails after Windows Shutdown

This problem is a bug in some Windows 10 network drivers. We have noticed doing a Restart of Windows
works fine but some computers after Shutdown you cannot communicate to our Incentive environment via
UDP or TCP where we share a network controller with Windows (TenAsys virtual adapter). When Windows
does a Shutdown it actually saving a memory image and not doing a full reboot. In doing so it is not
properly saving the bridged network information. The resolution is simple, have Windows do a full
shutdown (not a fast boot which is default) so a fresh memory image is loaded. The solution to this issue is
detailed in the “Startup and Network Configuration” section.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 157
Document 951-534101-038

[A] ABB

ABB manufactures a number of drives. The drive currently supported is the single axis
Microflex e150 servo drive. This section provides information that may be specific to
this manufacturer.

eCAT_driveType – 12

DC Sync

ABB drives must have DC Sync0 enabled prior to enabling the drive as well as a 32 or 64-bit slave reference
as the first node on the EtherCAT network. Reference the ‘dcsync’ command example within the main
body of this manual.

MSB code sample prior to drive enable:

// This is only needed for ABB & Emerson/Control Techniques

delay 2000 ms; // needed in case restart so syncs when cycle DC Sync on/off.

// Cycle time is 1 ms, start it 100 ms in the future.

// Note that we need to make sure that the first slave device in the EtherCAT

// Network supports 32/64-bit distributed clocks for this to work properly.

// Thus far that is Beckhoff, Wago, ABB, and Sanyo Denki.

dcsync -1, 1000000, 0, 0, 100000000;

delay 200 ms; // starts 100 milliseconds into the future

/**************** ENABLE DRIVE *******************/

[Drive_Enable]

// Issue any hardware enable output commands

//

// Power up the drive amplifier

drive enable;

Appendix

A

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 158
Document 951-534101-038

Drive Configuration

When configuring the drive and application using the ABB Mint Workbench a few parameters should be
modified from the factory defaults. The first is the Application Maximum Speed and the next is the Motor
& Drive Overload Action being set to ‘Foldback current’. Failure to modify the overload action can result in
a ‘Following Error’ as the drive attempts to increase torque to attain the commanded position from the
EtherCAT Master.

Another parameter that must be changed is the acceptable position error. This is dependent upon the ‘ppr’
of the drive. The default is typically around 1K counts but with a 512K/rev ppr this is a very small value and
can happen quite easily. Below shows a setting of 150K pulses. This is how much the commanded
EtherCAT Master position can lag before the drive issues a ‘Following Error’. A large lag is acceptable since
the drive will catch up the commanded position prior to stopping.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 159
Document 951-534101-038

[B] Advanced Motion Controls

Advanced Motion Controls (AMC) manufactures a number of drives. The drive currently
supported is the single axis DigiFlex servo drive (DPE series). This section provides
information that may be specific to this manufacturer.

eCAT_driveType – 8

Drive Information & Firmware

Appendix

B

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 160
Document 951-534101-038

Station Alias

In an EtherCAT network, slaves are automatically assigned addresses based on their position in the bus.
When a device, such as a drive, must have a fixed assigned identification that is independent of cabling, a
Station Alias is needed. Advanced Motion provides two 16-position rotary switches with hexadecimal
encoding for this purpose. This allows for a setting of 0 to 255 (FFh), where 0 defaults to the automatic
address assignment. As an example, if SW0 is set to a 1 and SW1 to an A this would be 1Ah or 1 X 16 + 10 =
26. Since the M3-41 only supports up to 16 drives SW0 would always be set to 0 and only SW1 used.
Setting both switches to 0 defaults to automatic addressing.

DC Sync

Advanced Motion Controls drives do not currently support a network-based DC Sync, only slave based.
Therefore this option is not available.

Inputs/Outputs

The inputs and outputs of the AMC drive are highly configurable and it is left to the user as to how they
should be set up and used. The MSB ‘din’ variable maps to object 0x2023.1 (Digital Input Value) and ‘dout’
maps to object 0x2001.3 (User Bit Control). These objects are part of the PDO update cycle and refreshed
every millisecond.

DriveWare can be used to configure the functionality of the inputs and outputs. (Make sure you apply the
changes to the drive and save the modified configuration to non-volatile memory.)

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 161
Document 951-534101-038

Inputs:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 162
Document 951-534101-038

Outputs:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 163
Document 951-534101-038

Communications Error

Typically when a communication error occurs it is ignored by the AMC drive. When running EtherCAT this
is not acceptable — it means the M3-41 has lost control of the drive. DriveWare allows a very detailed
configuration of what should happen when an Error Event occurs. If the “Comm Channel Error” check box
is not selected, the M3-41 module automatically enables it at the drive level with the “Disable Power
Bridge” setting. If the user selects some other setting within DriveWare (other than No Action) this setting
will override that of the M3-41 module and become the default setting.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 164
Document 951-534101-038

DriveWare

CTC used DriveWare 7.1 on a Windows 7 64-bit computer to test and configure the drives. Typically
DriveWare will be needed for tuning and limited setup. Below are some setup screens and their typical
parameters. Note that the PDO setup will be overridden by the M3-41 module and may be left at the
default.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 165
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 166
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 167
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 168
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 169
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 170
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 171
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 172
Document 951-534101-038

Comm Channel Error Event will automatically be enabled by the M3-41 module, with “Disable Power
Bridge” as the default, unless otherwise selected on the above setup screen.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 173
Document 951-534101-038

RPDO will automatically be set by the M3-41 module, overriding any setting done in the above window.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 174
Document 951-534101-038

TPDO will automatically be set by the M3-41 module, overriding any setting done in the above window.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 175
Document 951-534101-038

EtherCAT Explorer View

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 176
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 177
Document 951-534101-038

[C] Copley (Accelnet & Xenus

Plus)

Copley Controls manufactures a number of drives. The drive currently supported is the
single axis Accelnet servo drive. This section provides information that may be specific
to this manufacturer.

eCAT_driveType – 2

Station Alias

In an EtherCAT network, slaves are automatically assigned addresses based on their position in the bus.
When a device, such as a drive, must have a fixed assigned identification that is independent of cabling, a
Station Alias is needed. Accelnet provides two 16-position rotary switches with hexadecimal encoding for
this purpose. This allows for a setting of 0 to 255 (FFh), where 0 defaults to the automatic address
assignment. As an example if S1 is set to a 1 and S2 to an A this would be 1Ah or 1 X 16 + 10 = 26. Since
the M3-41 only supports up to 16 drives S1 would always be set to 0 and only S2 used.

Appendix

C

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 178
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 179
Document 951-534101-038

EtherCAT Explorer View (Xenus Dual Axis)

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 180
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 181
Document 951-534101-038

[D] Elmo (Not Released)

Elmo manufactures a number of drives. The drive currently supported is the single axis
Elmo Gold Whistle servo drive. This section provides information that may be specific to
this manufacturer.

eCAT_driveType – 4

Drive Information & Firmware

Appendix

D

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 182
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 183
Document 951-534101-038

[E] Emerson (Control Techniques)

Emerson (Control Techniques) manufactures a number of drives. The drive currently
supported is the single axis Unidrive SP and Digitax ST servo drive. This section provides
information that may be specific to this manufacturer.

eCAT_driveType – 7

Drive Information & Firmware

Digitax:

Appendix

E

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 184
Document 951-534101-038

Unidrive SP:

Inputs/Outputs

CTSoft Menu 8 is used to set up Digital I/O on the Unidrive SP. This is object 0x2008 when mapped to
EtherCAT with the subindex being the menu item number. Thus item 20 is a read-only Digital I/O state
object; item 20 in hex is subindex 0x14.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 185
Document 951-534101-038

To activate outputs, a specific ‘sdo write’ operation is required, since the Emerson drive only has single-bit
access to outputs, and the first 3 inputs are reconfigurable. In referencing the parameters as defined in the
“Advanced User Guide Unidrive SP” (Part Number 0471-0002-10), subindex 31 to 33 enables T24 to T26 as
outputs. Subindex 21 to 23 maps where the outputs would come from depending on whether an input or
output.

DC Sync

Emerson drives must have DC Sync0 enabled prior to enabling the drive as well as a 32 or 64-bit slave
reference as the first node on the EtherCAT network. Reference the ‘dcsync’ command example within the
main body of this manual.

MSB code sample prior to drive enable:

// This is only needed for Emerson/Control Techniques

delay 2000 ms; // needed in case restart so syncs when cycle DC Sync on/off.

// Cycle time is 1 ms, start it 100 ms in the future.

// Note that we need to make sure that the first slave device in the EtherCAT

// Network supports 32/64-bit distributed clocks for this to work properly.

// Thus far that is Beckhoff, Wago, and Sanyo Denki.

dcsync -1, 1000000, 0, 0, 100000000;

delay 200 ms; // starts 100 milliseconds into the future

/**************** ENABLE DRIVE *******************/

[Drive_Enable]

// Issue any hardware enable output commands

//

// Power up the drive amplifier

drive enable;

Drive Enable Command

Emerson drives appear to have an anomaly which in some cases can cause the motor to creep or move
when it is not commanded. This may have something to do with the Pr3.22 (Hard speed reference) setting
but has not been verified. During EtherCAT initialization the drive is placed in Cyclic Sync Position mode
and it target position is set equal to its present position, which should result in no motion. If an external
hardware enable is used and this enable is turned on prior to the MSB executing unpredictable results can
occur since the M3-41 is not in full control. From an EtherCAT perspective the drive is disabled via the
control word but from a drive perspective it may move based upon internal parameter settings, overriding
the EtherCAT command.

The ideal way to overcome this problem is to have the drive’s MSB issue the command to enable the
hardware enable after DC Sync has been executed but just prior to the ‘drive enable’ command. This
should be tested in a safe environment with the proper interlocks. A second approach, which has been
proven to work, would be to start the axis MSB from QuickBuilder, have the MSB enable DC Sync and just
prior to executing the ‘drive enable’ set a flag for the QuickBuilder application to observe. While the MSB
hangs in the ‘drive enable’ command waiting for the hardware enable the QuickBuilder application would

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 186
Document 951-534101-038

then activate the drives hardware enable using outputs under its control followed by monitoring the drive’s
‘enabled’ flag to know when the drive amplifier has been fully powered up and is holding position.

Station Alias

The station alias may be set through the main menu screen, selection Pr 15.03. A setting of 0 is for
automatic. Note that once an alias is set, if you cycle power, the Emerson drive will display a 0 even though
that is not what is set. This was an anomaly in Emerson’s firmware at the time testing was done. If an alias
is displayed in the QuickBuilder EtherCAT Explorer and a 0 appears in Pr 15.03, you must manually select a
different value and then go back to 0 and enter it, cycling power.

Menu to Object Mapping

The format used when mapping drive parameters to PDOs is as follows:

 Index: 0x2000 + menu number

 Sub-index: 0x00 + parameter number

 Size: Dependant on the size (in bytes) of the object to be mapped (range: 1-4)

For example Pr 20.21 would be index 0x2014, sub-index 0x15 and the size would be 4 (it is a 32-bit signed
value when referenced in the manual).

RPM Limiting

Should an issue occur where the default maximum RPM of 3000 cannot be overridden by saving the
parameters using the Emerson Configuration software, or it needs to be modified on the fly, you may do an
SDO write to object 0x6080, unsigned 32 bit integer, with the desired maximum RPM.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 187
Document 951-534101-038

[F] IAI

IAI is a manufacturer of intelligent linear actuators. The M3-41 supports the ACON
controller in Full Direct Value Mode. The IAI Windows based ROBO Cylinder Software
was used for initial setup of the controller. This section provides information that may
be specific to this manufacturer.

eCAT_driveType – 11

Parameter Information from Test Setup

Test setup: Controller – ACON-C-30I-EC-0-0, Actuator - RCA2-TF4N-I-20-4-30-A3-P

Appendix

F

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 188
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 189
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 190
Document 951-534101-038

Note that Parameter #84, Fieldbus operation mode is set to 3. This setting is required for Full Direct Value
Mode. The factory default setting is 0 therefore a change is required. Make sure the switch on the front
panel is set to Manual, modify the parameter, then click the “Load to CTL” icon. Once loaded, restore the
switch to the Auto position for EtherCAT communications.

Parameter #85 is the Fieldbus node address, in EtherCAT terminology this is the Station Alias. The factory
default is 17. For automatic axis assignment set this address to 0, otherwise an axis number from 1 to 16
that is unique for the network being controlled by the M3-41 module.

Special Variable Mapping

Due to the unique nature of the IAI interface a number of MSB variables have been mapped to be cyclically
updated on each EtherCAT scan cycle. These variables are:

Outputs:

cmode – Mode of motion control, must be set to $HOMING_MODE or $PROFILE_POSITION_MODE.

homing_speed1 – Homing speed in mm/sec. Used in conjunction with the $HOMING_MODE ‘cmode’
command.

zone_limit_pos – Zone Boundry + in mm. Positive zone boundary limit. After completion of home return,
an effective zone signal can be output separately from the zone boundaries specified by parameters. The
status signal PZONE turns ON when the current position is inside the Zone Boundary +/- boundaries.

zone_limit_neg – Zone Boundry - in mm. Negative zone boundary limit. After completion of home return,
an effective zone signal can be output separately from the zone boundaries specified by parameters. The
status signal PZONE turns ON when the current position is inside the Zone Boundary +/- boundaries.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 191
Document 951-534101-038

IAI_conrol – Maps to IAI Control Signal 1 & 2. Reference the Control Output Mapping section that follows.

tmax – Pressing Current Limit (%), specifies the current limit value to be used during the push-motion
operation. The allowable specification range is 0 to 100%. The actual settable range varies depending on
each actuator. If a move command is issued by specifying a value exceeding the maximum push-motion
current and alarm and fault will occur.

tlim – Load Current Threshold (%), sets the current threshold when whether or not the load current
exceeds the threshold is judged. The allowable range is 0 to 100% with 0 the threshold judgment if it is not
required.

Inputs:

dins – The ‘dins’ variable maps to the IAI Control Status inputs. Reference the Control Status Mapping
section that follows.

rmstrq – IAI Current in mA.

IAI_alarmcode - Maps directly to the IAI Alarm Code for general monitoring. This is the code that is
referenced when a fault occurs and an EtherCAT Explorer log is generated.

PDO Mappings for EtherCAT Explorer:

PDO CNTLWORD – IAI Control Signal 2 outputs.

PDO STATUS – IAI Control Status inputs.

Control Output Mapping

The ACON controller has two Control Signal Output blocks, 1 & 2. These can be accessed directly
referencing the ‘IAI_control’ MSB variable. Any changes to this variable will be output on the next
EtherCAT scan cycle. ‘IAI_control’ is a 32 bit value with its lower 16 bit word being Control Signal 1 and
upper 16 bits Control Signal 2:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 192
Document 951-534101-038

All but ‘b3’ is masked low level and available to the programmer. ‘b3’ is forced to 0 since the MSB

command language supports incremental commands and automatically converts to absolute. When not
using PUSH mode Control Signal 1 defaults to a 0, as does the variable ‘IAI_control’. Control Signal 1
represents bits 0 to 15 in ‘IAI_control’.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 193
Document 951-534101-038

All but ‘b4’ is masked low level and available to the programmer. ‘b4’ is controlled by the ‘drive

enable’ command, set to a 1 upon execution and defaulting to 0 at power up. The M3-41 will control RES,
HOME, and DSTR as needed under program control. RES is used to clear an alarm condition. Control Signal
2 represents bits 16 to 31 in ‘IAI_control’.

Control Status Mapping

The ACON controller has one 16 bit Control Status Input block. These can be accessed directly referencing
the ‘dins’ and ‘din#’ MSB variables. The variable is updated every scan cycle. From the IAI manual the
status flag are defined as below and represent what appears in the PDO STATUS row of the EtherCAT
Explorer.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 194
Document 951-534101-038

When referencing ‘dins’ and ‘din#’ variables the bits have been reordered to allow the use of the din1 to
din10 bit referencing within the MSB language. Thus when referencing these variables the status flags are
ordered as follows:

 * b15 - LOAD (not used)
 * b14 - TROS (not used)
 * b13 - RMDS (Auto/manual)
 * b12 - GHMS
 * b11 - PUSHS
 * b10 - PWR
 * b09 - SV
 * b08 - ALM
 * b07 - MOVE
 * b06 - HEND
 * b05 - PEND
 * b04 - EMGS
 * b03 - PSEL
 * b02 - ZONE2
 * b01 - ZONE1
 * b00 - PZONE

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 195
Document 951-534101-038

Operation

The ACON controller is initially configured using the ROBO Cylinder Software from IAI. This software allows
for the setting of Parameters in non-volatile storage within the controller via a serial cable. As previously
noted Fieldbus Operation Mode, parameter 84, should be set to a 3 for Profile Position mode type motions
and Fieldbus Node Address, parameter 85, to 0 for automatic sequential axis assignment or an axis number
from 1 to 16 (station alias). Once the parameters are saved the Manual/Auto switch on the front panel of
the controller must be set to Auto for M3-41 EtherCAT control. The address switch should also be set to 0
and the BKLS switch to NORMAL.

The ACON Controller is supported only in Full Direct Value Mode (parameter 84 = 3). This allows for the
most flexibility from an M3-41 perspective, controlling acceleration, velocity, torque, and position
dynamically. The factory default mode uses a table stored in the ACON Controllers non-volatile memory.
This mode, known as Remote I/O mode is not supported and is the least flexible.

Other parameters that may be of interest are 1/2 and 23/24 for Zone Position 1 and 2 respectively. This
controls the ZONE1 and ZONE2 bits in dins when the position is within the assigned window. Variables
zone_limit_pos/zone_limit_neg are used for the dynamic PZONE bit window control.

A properly configured IAI unit will appear online as is shown below within the EtherCAT Explorer, note the
RC-ECT-FMOD3 drive type. The FMOD3 represent Full Direct Mode, anything else appearing here means
that Parameter 84 is set wrong.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 196
Document 951-534101-038

All programming units are in mm by default and the ‘ppr’ should be set to 100 since the IAI controller is
using .01 mm per unit for default positioning, thus 100 * .01 = 1 mm/unit. Normal MSB move commands
may be used, specifying position (mm), velocity (mm/s), and acceleration (G’s).

inposw = .01; // Positioning Band, .01mm

// Zone boundary can optionally be used

zone_limit_pos = 24.0;

zone_limit_neg = 16.0; // PZONE bit in dins will go active from 16 to 24 mm

tmax = 70; // 70% Pressing Current Limit

tlim = 0; // 0 % Load Current (threshold judgement)

drive enable;

// Let the drive home

[home]

homing_speed1 = 20; // homing_speed1 is used, 20 mm/sec

cmode = $HOMING_MODE; // Homing mode for drive

move to 0 using .3,.3; // Tell the drive to initiate the Home.

wait for in position;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 197
Document 951-534101-038

delay 100 ms;

// IAI only support a full profile position type mode but we can setup the

profile.

cmode = $PROFILE_POSITION_MODE;

[top]

// Move at a velocity of up to 150 mm/sec for 5 mm

// at an acceleration of .3 G and deceleration

// of .3G incrementally

move at 150 for 5 using 0.3,0.3;

wait for in position;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

delay 100 ms;

// Move all the way back at a velocity

// of up to 200 mm/sec for -30 mm

// at an acceleration of .3 G and deceleration

// of .3G incrementally.

move at 200 for -30 using 0.3,0.3;

wait for in position;

delay 100 ms;

goto top; // repeat

By default POSITION mode is used. IAI supports a PUSH mode as well and that can be enabled by setting
bits b2 and b1 of Control Signal 1 to their proper value, with b1 ON enabling PUSH mode. When using
PUSH mode a ‘Pressing and a Miss’ flag, PSEL b4, must be monitored since this is not considered an alarm
condition and is recoverable by the program. When a miss occurs tpos will be set equal to fpos to allow
exiting from the ‘wait for in position’ instruction. The variables ztpos and zfpos will contain the values prior
to the change should they need to be referenced. Below is a code sample using the PUSH capability:

inposw = .01; // Positioning Band, .01mm

// Zone boundary can optionally be used

zone_limit_pos = 24.0;

zone_limit_neg = 16.0; // PZONE bit in dins will go active from 16 to 24 mm

tmax = 70; // 70% Pressing Current Limit

tlim = 0; // 0 % Load Current (threshold judgement)

drive enable;

// Let the drive home

[home]

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 198
Document 951-534101-038

homing_speed1 = 20; // homing_speed1 is used, 20 mm/sec

cmode = $HOMING_MODE; // Homing mode for drive

move to 0 using .3,.3; // Tell the drive to initiate the Home.

wait for in position;

delay 100 ms;

// IAI only support a full profile position type mode but we can setup the

profile.

cmode = $PROFILE_POSITION_MODE;

// enable push motion with positive direction

IAI_control = 0x00000006;

inposw = 1; // 1 mm push

[top]

// Move at a velocity of up to 150 mm/sec for 5 mm

// at an acceleration of .3 G and deceleration

// of .3G incrementally. Check for Push/Miss after move.

move at 150 for 5 using 0.3,0.3;

wait for in position;

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

move at 150 for 5 using 0.3,0.3;

wait for in position;

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

// Move all the way back at a velocity

// of up to 200 mm/sec for -30 mm

// at an acceleration of .3 G and deceleration

// of .3G incrementally.

move at 200 for -30 using 0.3,0.3;

wait for in position;

// Check for Pressing and Miss error

if (dins & 0x00000008) goto PSEL_Error;

delay 100 ms;

goto top;

[PSEL_Error]

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 199
Document 951-534101-038

i = i+1; // Press and miss error occurred

delay 1000 ms;

zero following error;

delay 1000 ms;

goto home;

Errors and Alarms

The ACON controller will generate cause an MSB fault and EtherCAT log entry under certain error
conditions, some are recoverable, and some require power cycling of the IAI Controller. Reference the IAI
Controller manual for details. In general it has been found that the Overload error, alarm code 0x00E0
requires power cycling.

The most common error is the Position Command Error, 0x00a3. This error typically occurs when a profile
parameter has been exceeded, such as velocity, acceleration, position out of range, or pressing/load
current %. Sometimes referencing the Parameter table stored within the controller, via the ROBO Cylinder
Software, is helpful in discovering what profile parameter exceeded a limit. For example for the test
cylinder used during EtherCAT integration 0.30 G’s was the maximum acceleration/deceleration allowable
by the model RCA2-TF4N-I-20-4-30-A3-P actuator. Setting this to 0.31 G’s would cause an ALM condition
and 0x00a3 error to be logged.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 200
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 201
Document 951-534101-038

[G] Kollmorgen

Kollmorgen manufactures a number of drives. The drive currently supported is the
single axis AKD servo drive. This section provides information that may be specific to
this manufacturer.

eCAT_driveType – 5

Drive Information & Firmware

Appendix

G

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 202
Document 951-534101-038

Positioning Mode

Kollmorgen AKD drives do not support Profile Position mode; Cyclic Sync Position must be used. With this
drive, the EtherCAT Master automatically switches to Cyclic Sync Position mode even if Profile Position
mode is selected. Interpolated Position mode will lag one scan cycle behind in the move operation from
that commanded.

Powerup Delay

Unlike most drives, Kollmorgen can take up to 20 seconds to power up and be recognized on the network.
Make sure all drives are powered on and ready before powering up the controller. Otherwise the drive(s)
will not be seen. If a configuration file is loaded into the EtherCAT Master, it will retry for the 20-second
period prior to aborting, allowing both the controller and the drive to be power cycled at the same time.
Combining this with Option Switch #1 (retry override, which continuously scans the network for proper
configuration when enabled) will ensure successful power up.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 203
Document 951-534101-038

[H] LinMot

LinMot manufactures a number of linear motor drives. Those currently supported are
the C1250-DS-XC-0S and the E1450-DS-QN-0S. This section provides information that
may be specific to this manufacturer.

eCAT_driveType – 15

Overview

Only CSP mode is supported with the LinMot series of drives using their CiA402 interface. Homing is done
with a series of move commands, executing a ‘zero feedback position’ to zero out the position. Position
capture is not supported, only simple moves. Default units are as follows:

Velocity – mm/s
Acceleration – mm/s2

Position – millimeters (mm)
ppr – 10000 (.0001 mm per position count)
inposw – typically .01 mm, E1450 may require a greater value depending upon load and tuning.

For proper operation you must verify the firmware revision levels installed in the drive using their LinMot-
Talk PC software. During testing a number of anomalies were discovered that required firmware updates
that at the time were not the default shipped with their LinMot-Talk software. The tested revisions are as
follows:

C1250:
Firmware Release – 6.4 Build 20151105
OS – OSSW_C1200_V6S4_b01
MC – MCSW1200_S21_V6S4_b01
INTF – IntfSWEC_SG6_V6S5_a01 (contains fixes supplied by LinMot, .HX3 file)

E1450:
Firmware Release – 6.4 Build 20151105
OS – OSSW_E1400V2_V6S4_b01
MC – MCSW1400_S32_V6S4_b01
INTF – IntfSWEC_SG6_V6S5_a01 (contains fixes supplied by LinMot, .HX3 file)

Appendix

H

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 204
Document 951-534101-038

EtherCAT Connectors:

C1250: X17 IN, X18 Out

E1450: X17 IN, X18 Out

I/O

For I/O to be functional its interface must first be enabled using LinMot-Talk:

IO maps direction to the X4 interface where X4.3 is bit 3 of the output and X4.5 is bit 5 of the input, as
referenced by LinMot-Talk.

Motor Voltage Levels

If low motor voltage is being used, for example 24V on a higher voltage motor, the warning and error
detection levels must be adjusted accordingly:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 205
Document 951-534101-038

 Motor Wizard

When using the Motor Wizard it is recommended that the “Additional Load Mass” and “Dry Friction” be set
to 0. Failure to do so can cause the LinMot drive not to track closely with the EtherCAT commanded
position.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 206
Document 951-534101-038

Control Parameter A/B

LinMot provides two sets of tuning parameters. By default Control Parameter A is used. The variable
‘tmax’ is used to set the Maximum Current, UPID 0x13A6 & 0x13BA. You may select Control Parameter B
by writing a 1 to the msb variable ‘IAI_control’.

INTF file upgrade (.HX3)

Log into the individual drive with LinMot talk then go to the Drive Toolbar and select download/Software.

A dialogue box will open, and in this window you will need to locate the file named
“IntfSWEC_SG6_V6S5_a01.HX3”. Make sure to select HX3 files from the dropdown menu outlined below:

The next popup will prompt you to erase the FLASH program, and you will select Yes.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 207
Document 951-534101-038

After installation is complete cycle power on the LinMot Drive.

Test MSB

// This is a background MSB. Make sure inposw is set for the drive, typically

// .001 for 1048576 ppr. Also set the ppr and mppr. This program will set

// the ppr and mppr to a value commonly used, it may have to be changed based

// on the user setup.

// Enable the drive, turning power on to the amplifier. The current position

// will be constantly updated so the drive does not move.

// Activate DC Sync0 each cycle time.

// dcsync <slave node or -1 for current>,

// <Sync0 Cycle Time in nanoseconds, ns>,

// <Sync1 shift from Sync0, ns>,

// <Sync0 shift from Cycle Time, ns>,

// <Sync start delay in ns>

// Set all parameters to 0 except the slave node to deactivate.

// Below is a 1ms Sync0 cycle time with no Sync1.

// Sync0 starts at cycle time and is not shifted and there is a

// 100ms delay before it all starts the first sequence.

// Set dec, acc, and max velocity.

dec = 100;

acc = 100;

vmax = 50;

driveenable = 0; // disable output control since LINMOT does not need it

drive_type = eCAT_driveType;

// Adjust the ppr and mppr based on the drive/encoder we have installed.

// This overrides that of the property sheet.

if eCAT_driveType == 2 goto Copley;

if eCAT_driveType == 3 goto Yaskawa;

if eCAT_driveType == 4 goto Elmo;

if eCAT_driveType == 5 goto Kollmorgen;

if eCAT_driveType == 6 goto Sanyo_Denki;

if eCAT_driveType == 7 goto Emerson;

if eCAT_driveType == 8 goto AMC;

if eCAT_driveType == 9 goto Virtual;

if eCAT_driveType == 12 goto ABB;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 208
Document 951-534101-038

if eCAT_driveType == 15 goto LinMot;

goto AMC;

// by default assume 1048576

[Yaskawa]

[Kollmorgen]

mppr = 1048576;

ppr = 1048576;

goto beginTest;

[ABB]

mppr = 524288;

ppr = 524288;

goto beginTest;

[Virtual]

mppr = 65536;

ppr = 65536;

// After each control loop fposc = tposc so it appears as though the axis moved during

// a move command

//set simulated feedback on;

goto beginTest;

[Copley]

[Elmo]

mppr = 8000;

ppr = 8000;

goto beginTest;

[Emerson]

mppr = 65536;

ppr = 65536;

goto beginTest;

[Sanyo_Denki]

mppr = 131072;

ppr = 131072;

goto beginTest;

[AMC]

mppr = 12000;

ppr = 12000;

goto beginTest;

[LinMot]

mppr = 10000;

ppr = 10000;

inposw = .1; // This can be tightened up after tuning, C1250 about .01, E1450 was not tuned so .1

goto beginTest;

[beginTest]

cmode = $CYCLIC_SYNC_POSITION_MODE;

//inposw=.001;

// Initialize distributed clocks

delay 3000 ms;

dcsync -1, 1000000, 0, 0, 100000000;

delay 200 ms; // starts 100 milliseconds into the future

drive enable;

delay 1000 ms;

zero feedback position; // assume current position is home and zero our position

[run]

// Begin the move, 20 mm/second for 30mm

move at 20 for 30;

wait for in position;

//setout 1,2,3,4,5,6,7,8;

// Delay 100ms once in position

delay 100 ms;

// Do a relative move back 30mm at 20 mm/second

move at 20 for -30;

wait for in position;

// Delay 100ms second once in position

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 209
Document 951-534101-038

//clrout 1,2,3,4,5,6,7,8;

delay 100 ms;

// Do it again, forever...

goto run;

Homing MSB

When homing based on torque a position error will build up. This error is generated by the LinMot drive as
the slider is stalled. Proper homing consists of moving in the direction of home while monitoring torque.
Once the desired torque level is reached ‘stop’ the motor and then move in the opposite direction the
amount of ‘perr’. Since the error was accumulated by the drive while it was stalled the move of the
amount of ‘perr’ simply syncs the position reported by the drive with that given by the program as the
target postion, removing the error. Once at that position you can clear the feedback position and begin
normal moves.

//**********************************HomeRoutine********************************

[HomeRoutine]

// A setting to define which direction we're traveling in to home the axis.

Direction = -1;

// Move the axis based on commands fed from main program for homing.

// We move some very large amount based on direction until torque is large.

move at Maxspeed to (1000000 * Direction) using Accel,Decel;

delay 10 ms;

/*** Scan for excessive torque indicating we hit something

* ...hopefully it's the end-stop

*/

[HomeMoveLoop]

// Check for user to end the move early.

if command == 0 goto StopMove;

// Check for the end-stop using accumulated torque (rmstrq).

// This value may have to be adjusted based upon the application.

if rmstrq >= .9 goto HomeStopAndZero;

if rmstrq <= -.9 goto HomeStopAndZero;

goto HomeMoveLoop; // loop until something happens

[HomeStopAndZero]

stoprate = Decel;// Set stopping decel rate

delay 10 ms;

//stop the axis because we've reached our defined torque level from above.

stop;

delay 500 ms;

// We've theoretically gone beyond the end-stop causing following-error

// to accumulated during the decel transition.

// Move back to the point where we began accumuating following-error along

// with an additional short 1mm move to us get off the end-stop.

// Direction is defined previously.

move at Maxspeed for ((perr * Direction) + (1 * -Direction));

wait for in position;

delay 500 ms;

zero feedback position; //Clear the feedback position

delay 10 ms;

goto MoveToOffsetPosition; // All set we are home, do any move needed...

LinMot-Talk Control Panel

The LinMot-Talk Control Panel can be used during drive operation to monitor operation by attaching an
RS232 port from the PC to X19, Config RS232 port. You must then use their Login function prior to
communications.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 210
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 211
Document 951-534101-038

EtherCAT Explorer View

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 212
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 213
Document 951-534101-038

[I] Mitsubishi

Mitsubishi manufactures a number of drives. That currently supported by the M3-41A is
the J4. For test purposes two drives in particular were tested: MR-J4-20TM-ECT and the
MR-J4-40TM1-ETP. This section provides information that may be specific to this
manufacturer.

eCAT_driveType – 13

Overview

Only CSP and Homing mode is supported with the Mitsubishi drives. Additionally the DC SYNC motion
control instruction is ignored since it is automatically enabled prior to network operation. Thus it is
automatically enabled by the EtherCAT Master with the SYNC0 always having an offset from the network
cycle time, typically 1 mS cycle time, with a shift of ‘cycle time/4’ or 250uS for 1 mS, whichever is smaller.
SYNC1 is not supported by the drive. Additionally, early versions of Mitsubishi firmware had jitter in their
clock when used as the master slave device. If a synchronization problem occurs it is recommended to
replace the first slave device with a different device, such as Wago, or Omron switch, otherwise contact
Mitsubishi to ensure you have the latest firmware.

For proper operation you must verify the firmware revision levels installed in the drive using their MR
Configurator2 PC software. The ‘Control mode selection’ of the drive must also be set to ‘Cyclic
synchronous mode’. Below is information on the drives used for testing, note the servo amplifier software
revision of ‘BCD-B46W500 A3’, this firmware contains clock jitter. The later revision ‘B46W500 B0’ has
corrected the problem:

Appendix

I

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 214
Document 951-534101-038

CN3 Connector

For test purposes there are three signals that must be enabled either internally using the MR Configurator2
PC based software or pins jumpered on the CN3 Connector. This consists of LSP (Limit Positive), LSN (Limit
Negative), EM2 (Enable), and DICOM. DICOM must be connected to +24V, the other signals to 24 Volt
Return or proper controlling switch.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 215
Document 951-534101-038

MR Configurator2

Connect CN5 to a USB port on your PC and then connect to the drive using the Mitsubishi MR Configurator2
(MR2) software. For the purposes of this manual version V1.51D of MR2 was used.

Make sure ‘Automatic selection for each network’ is selected.

Homing mode by the drive using Cia402 standard is supported. You may also use CSP mode and zero the
feedback when homing manually using MSB instructions. The drive should still be configured as below.

Check your ppr for MSB programming, this must be set in the properties section of the drive when using
QuickBuilder. Below shows a ppr of 419430 pulse/rev. Also look at the “Error excessive alarm level

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 216
Document 951-534101-038

setting”. This typically needs to be increased to prevent 35.1 and 52.03 alarm errors. The more the drive
lags the commanded position the larger the value would need to be (2 to 3 revs would not be
unreasonable).

You may monitor operation using the Monitor->Display All selection:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 217
Document 951-534101-038

Alarm display is also useful. Typically an 86.1 will appear, this is normal as the EtherCAT network is
restarted and is automatically cleared by the EtherCAT Master during initialization.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 218
Document 951-534101-038

If you need to override the CN3 inputs, servo parameter PA04 can be set to 2100H to disable forced stop
input and PD01 to 0C00 to disable the external limit switches.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 219
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 220
Document 951-534101-038

MR Configurator2 Miscellaneous

Other screens of interest and their settings during testing:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 221
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 222
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 223
Document 951-534101-038

EtherCAT Explorer View

Note: Rev shows 0x00020001 on the later model MR-J4-40TM1 and should be the firmware of choice.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 224
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 225
Document 951-534101-038

[J] Numatics (Emerson)

Numatics, a division of Emerson, manufactures a number solenoid valves and manifolds
as well as I/O modules. That currently supported is the 501 & G3 Series. This section
provides information that may be specific to this manufacturer.

Valve Modules

The Valve Driver Module uses the first 32 outputs regardless of how many actual valve drivers are installed.
This IO space is reserved by the Numatics controller and must be considered when mapping the 5300 IO.
Ensure that the firmware is at the proper level, 1.1.42194. This firmware has special features and firmware
enhancements for proper EtherCAT operation. Older firmware will not work properly.

Input Mapping (Required for New Controllers)

Prior to operation all Diagnostic Word & Status input bytes must be disabled or network inputs will not
be aligned. This is done using the built-in web server on the Numatics unit. Numatics has documentation
for this in chapter 10 of the “G3 Series EtherCAT Technical Manual” but in summary:

1. Make sure the Numatics controller EtherCAT Input port is connected to a network

switch, not directly to a PC, unless a crossover cable is used.

2. Set a dedicated PC Ethernet adapter port with a static IP address of 192.168.3.100

and subnet of 255.255.255.0. Nothing is listed for the DNS server.

3. On the Numatics controller you must disable EtherCAT and enable the Web Server.

This will enable TCP only on the controller and allow communications to a PC

browser. This is done using the SET/NEXT buttons on the EtherCAT controller.

Cycle power after the changes.

4. On the PC open a web browser and enter the IP address of the controller,

192.168.3.200. A web page should appear.

5. Set the Diagnostic Word and I/O (Diagnostics) Status to “Not Mapped” and select

“Update Configuration”.

Appendix

J

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 226
Document 951-534101-038

6. When complete set the controller back to EtherCAT Enabled and Web Server

Disabled, cycle power.

Firmware Updates

To update firmware the tftp protocol is used. A PC is required with a dedicated Ethernet port. That port
should be connected to a network switch, the Numatics controller should also be connected to the same
switch from the EtherCAT module. EtherCAT must be disabled and the Web Server enabled using the
SET/NEXT buttons. Numatics provides documentation on the proper update of their firmware and it can
also be provided by CTC if needed. In summary:

7. Set a dedicated PC Ethernet adapter port with a static IP address of 192.168.3.100

and subnet of 255.255.255.0. Nothing is listed for the DNS server.

8. The tftp client protocol must be enabled as a Windows Feature.

9. Cycle power on the Numatics controller with the previously described option

changes to the Numatics EtherCAT module.

10. Scroll through the EtherCAT module settings and note the MAC address of the unit.

11. Run the Numatics tftp-load.bat program.

12. Enter information for the MAC Address, you LAN Interface used, similar to below:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 227
Document 951-534101-038

13. On the Numatics controller:

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 228
Document 951-534101-038

Power Connector

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 229
Document 951-534101-038

[K] Omron GX-JC06 EtherCAT

Junction Slaves

EtherCAT devices are typically wired in a daisy chain, where an IN/OUT port exist on
each device. The Omron EtherCAT Junction Slave is similar to an Ethernet switch,
allowing for flexible cabling. Detailed information can be found on their web site:
http://www.ia.omron.com/products/family/3079/feature.html.

Cabling

Typical EtherCAT cabling as detailed by Omron:

Cabling with an EtherCAT Junction Slave:

Appendix

K

http://www.ia.omron.com/products/family/3079/feature.html

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 230
Document 951-534101-038

Example with M3-41 Module

The following example shows how address assignment is done using the Junction Slave. In this example the
M3-41 master is plugged into the Junction Slave IN port (1). The Beckhoff IO is plugged into port 4,
Emerson drives into port 5, and Sanyo Denki into port 6.

Note that the ports that are not used have no effect on the address assignment. All of the devices on a
lower number port are assigned addresses first, followed by those on the next higher port number. The
Junction Slave device itself appears as one or more slave nodes to the EtherCAT master and can operate as
a 64 bit distributed clock reference.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 231
Document 951-534101-038

[L] Sanyo Denki

Sanyo Denki manufactures a number of drives. The drive currently supported is the
single axis RS2E. The configuration utility used is “R Advanced Model – Setup Software”.
This section provides information that may be specific to this manufacturer.

eCAT_driveType – 6

Drive Information & Firmware

Appendix

L

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 232
Document 951-534101-038

Station Alias

In an EtherCAT network, slaves are automatically assigned addresses based on their position in the bus.
When a device, such as a drive, must have a fixed assigned identification that is independent of cabling, a
Station Alias is needed. Sanyo Denki provides a single 16-position rotary switch with hexadecimal encoding
for this purpose. This 4-bit switch is used to set the lower bits 3 to 0 of the alias, while bits 15 to 4 are
written using the Setup Software, with a default of 0. Since the M3-41 only supports up to 16 drives, the
single switch will suffice using the setup software defaults for the upper bits. A switch setting of 0 will
default to automatic addressing.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 233
Document 951-534101-038

Sanyo Denki Drive Mode Transitions

Unlike other drive manufacturers, Sanyo Denki requires that the Operation Enabled bit be disabled in the
control word prior to changing a drive mode (such as cyclic sync position mode to profile position mode).
To allow this to operate correctly, a 500-millisecond delay will occur during the first move instruction after
changing a mode. This will only happen once, until a mode is changed again. Additional move instructions
using the same drive mode will not be delayed.

Sanyo Denki Power-Up Delay

As just discussed the Sanyo Denki drive requires a 500-millisecond delay after a drive mode change. This
also includes transitioning to Cyclic Sync Position mode at power up. The 500-millisecond delay will occur
with the first move. Additional commands following the first move will not be delayed.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 234
Document 951-534101-038

R Advanced Model – Setup Software

CTC used R Advanced Model Setup Software, on a Windows 7 64-bit computer to test and configure the
drives. Typically R Advanced Model will be needed for tuning and limited setup. Below are some setup
screens and their typical parameters at power up (offline).

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 235
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 236
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 237
Document 951-534101-038

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 238
Document 951-534101-038

EtherCAT Explorer View

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 239
Document 951-534101-038

[M] SMC Corporation

SMC Corporation manufactures a number solenoid valves and manifolds. That currently
supported is the EX600. This section provides information that may be specific to this
manufacturer.

EX600 Fieldbus System

The valves module allows for 8 to 32 valves. A dip switch must be set to configure the number of valves
present or the wrong number of valves will be reported to EtherCAT and placed in the 5300 Output section.

Also note that diagnostics are not supported for this device.

Appendix

M

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 240
Document 951-534101-038

DC Sync

The EX600 reports within the QuickBuilder Explorer that it is capable of operating as a 64 bit distributed
clock reference. Upon testing it has been found that the device does not support the ARMW packet that
is required to distribute the clock amongst the slave devices and therefore must not be used as the first
device on the network, in a distributed clock environment.

SDO Configuration

By default, QuickBuilder uses the SMC EX600 in its default configuration. Each module has numerous
option settings which can be customized offline using an EtherCAT Configurator, such as Beckhoff’s. SMC
provides no non-EtherCAT method of configuration. Reference SMC’s Operation Manual, EX##-OMO0027
(page 68), for detailed object mapping information. Page 53 describes configuration using the Beckhoff
EtherCAT Configurator (simplified version of TwinCAT).

An alternative to using an EtherCAT Configurator would be to write to the individual objects that require
customization. This would normally be done once during initialization using the ‘sdo write’ MSB
instruction. Since the EX600 has no dedicated MSB one of the drives MSB’s must be used to issue the sdo
writes. Prior to doing any sdo writes the EX600 slave address and module slot must be determined:

Referencing the EtherCAT Explorer image, slave #2 is the SMC unit. In our example we will configure the
analog modules (EX600-AXA) for 4-20 ma loop, given the default is +/- 10V. In the EX600 rack modules 4

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 241
Document 951-534101-038

and 5 are analog input modules, each with 2 channels. According to the SMC Operations Manual, page 83,
the EX600-AXA configuration objects (in hex) start at 80x0.00 and end at 80xB.02 where the x is the
‘Module # - 1’ and the .## is the index. From the manual 80xB is the Analog Input Range setting whose
contents are defined as follows:

0 = -10…+10 V
1 = -5…+5 V
2 = -20…+20 mA
3 = 0…10 V
4 = 0…5 V
5 = 1…5 V
6 = 0…20 mA
7 = 4…20 mA

Substituting the Module #, the objects that must be written are 0x803b and 0x804b, for modules 4 and 5
respectively. The default value of 0 must be changed to 7 for 4-20 mA. A sample piece of code appears
below which is run on Slave 1, the Yaskawa drive MSB.

[beginTest]

// Setup the SMC for 4-20ma, it is slave device 2, slot 4/5 are AXA modules

// according to the EtherCAT Explorer. According to SMC slot configuration

// address for a module is 0x80#0, zero based. Thus 0x803X & 0x804X are the

// configuration blocks for the EX600-AXA modules. According to their

// Operation Manual, page 83, range parameter:

// 0x803B.01 = channel 1

// 0x803B.02 = channel 2

// 0x804B.01 = channel 3

// 0x804B.02 = channel 4

// Enumerated values that can be written and their meaning:

// 0=-10…+10 V

// 1=-5…+5 V

// 2=-20…+20 mA

// 3=0…10 V

// 4=0…5 V

// 5=1…5 V

// 6=0…20 mA

// 7=4…20 mA

// A range value of 0 is +/- 10V, 7 is for 4 - 20 ma. The configuration seems

// to be non-volatile so can also be done using the Beckhoff EtherCAT

// Configurator. Other parameters such as Monitoring Over/Under range,

// limits, etc., may be of interest and are available in their manual.

//

// Must write to SMC from a running MSB controlling a drive since it

// has no MSB itself.

// Configure all channels for 4-20ma

value = 7;

sdo write value, 2, 0x803b, 0x01, 2; // SMC EX600-AXA channel 1

delay 10ms;

sdo write value, 2, 0x803b, 0x02, 2; // SMC EX600-AXA channel 2

delay 10ms;

sdo write value, 2, 0x804b, 0x01, 2; // SMC EX600-AXA channel 3

delay 10ms;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 242
Document 951-534101-038

sdo write value, 2, 0x804b, 0x02, 2; // SMC EX600-AXA channel 4

delay 10ms;

[run]

// Begin the move, 1 rev/second for 2 revolutions

move at 1 for 2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do a relative move back 2 revolutions at 1 rev/second

move at 1 for -2;

wait for in position;

// Delay 1 second once in position

delay 1000 ms;

// Do it again, forever...

goto run;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 243
Document 951-534101-038

[N] Turck

Turck manufactures an IO controller which can operate as a slave device with the M3-41
EtherCAT network. This section discusses the implementation of the RFID reader option
within this controller. Much of the information was derived from the Turck “BLident
RFID-S Startup Guide”.

Synchronization via hardware using the CFG-Switch

Prior to operation the Turck BL-20 EtherCAT Gateway must have its detected module configuration saved
to its configured module list or an error will result preventing proper online operation. This is done by
installing the desired modules, powering the unit, removing its plastic label, and setting dip switch #1 ON.

Appendix

N

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 244
Document 951-534101-038

Diagnostic LEDs

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 245
Document 951-534101-038

EtherCAT Connector

ETH1 is the EtherCAT input connector (closest to the power connector), ETH2 is the output.

RFID

The M3-41 module is capable of supporting 16 channels of RFID. The Turck BL-2RFID-S supports 2 channels
per module; therefore up to 8 modules can be supported. The purpose of the RFID interface is to be able
to read and write RFID tags at high speed. Any size RFID tag is supported with a read/write burst of 256
bytes available with MSB programming, offset by a modifiable address register.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 246
Document 951-534101-038

The interface to the RFID channel consists of a number of properties which are mapped to the reader
interface. The M3-41 adds some unique high speed options such as ensuring the tag goes away and
becomes present before reading as well as the option to verify that the tag ID (8 byte license plate unique
to all tags) is different on the next tag seen, prior to a read or write operation.

When interfacing with the RFID reader transfers are done in groups of up to 8 bytes per access. This is
loaded into two integer arrays that are 32 deep (4 bytes per integer X 2 arrays X 32 deep = 256 bytes).
Integer arrays are used since MSB’s do not support strings. String manipulation can be done by
QuickBuilder using a high speed transfer mechanism built into the MSB ‘host read’ & ‘host write’
instructions. The ‘host read’ & ‘host write’ instructions have direct byte wide access to the integer arrays
and can transfer QuickBuilder strings to/from the RFID buffers as needed. MSB’s may also manipulate data
themselves at the integer level.

RFID Property Variables

RFID_totalChannels – Read only, represents the total number of RFID channels available in the system.

RFID_channel – Read/write, selects the RFID channel to be operated on by the properties that follow.
Entries of 1 to RFID_totalChannels are the valid selections, with 0 disabling access. All properties should be
initialized to their proper values before setting the RFID_channel to a non-zero value.

RFID_state – Read only, represents the current state of the RFID interface logic state machine as it
executes any requests issued by the RFID_control property variable. Possible values are as follows:

 RFID_OFF 0
 RFID_IDLE 1

 RFID_READING_1 2
 RFID_READING_2 3
 RFID_READING_WAIT_DONE 4

 RFID_WRITING_1 10
 RFID_WRITING_2 11
 RFID_WRITING_3 12
 RFID_WRITING_4 13
 RFID_WRITE_DONE 15

 RFID_WRITE_WAITTAG 20
 RFID_READ_WAITTAG 21

 RFID_WAITNOTAG 22
 RFID_ERROR 30

RFID_error – Read only, Turck specific error where bits 7 to 0 represent the category and bits 15 to 8 are
the description. Any time the RFID_error property is non-zero an error is present. To clear the error the
RFID reader must be reset using the RFID_control property RESET bit.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 247
Document 951-534101-038

RFID_address – Read/write, this address is forwarded to the RFID reader to determine where in its memory
block to begin accessing data for read and write operations. A value of 0 is the first address. RFID_address
is auto-incremented after any read or write by the amount in RFID_bytesTransferred therefore set it back
to the desired start location after each read or write.

RFID_index – Read/write, the index is used to select which RFID_data_readl/RFID_data_readh or
RFID_data_writel/RFID_data_writeh array item is to be operated on. Where 0 is the first item, up to 31 (32
array items for 256 bytes total possible).

 int RFID_data_readl[32];

int RFID_data_readh[32];
 int RFID_data_writel[32];
 int RFID_data_writeh[32];

RFID_data_readl – Read/write, the first 32 bit integer or 4 bytes of data transferred from the RFID tag.
This property is an array of 32 deep, indexed by the RFID_index property.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 248
Document 951-534101-038

 int RFID_data_readl[32];

RFID_data_readh – Read/write, the second 32 bit integer or 4 bytes of data transferred from the RFID tag.
This property is an array of 32 deep, indexed by the RFID_index property in parallel to RFID_data_readl.

int RFID_data_readh[32];

RFID_data_writel – Read/write, the first 32 bit integer or 4 bytes of data transferred to the RFID tag. This
property is an array of 32 deep, indexed by the RFID_index property.

 int RFID_data_writel[32];

RFID_data_writeh – Read/write, the second 32 bit integer or 4 bytes of data transferred to the RFID tag.
This property is an array of 32 deep, indexed by the RFID_index property in parallel to RFID_data_writel.

 int RFID_data_writeh[32];

RFID_status – Read/write, 32 bit integer with only the first 8 bits reflecting the status as returned by the
Turck RFID reader.

 Done – Slice is ready to receive command. This bit will be off until previous command bit is

turned off.

 Busy – Slice is currently processing command. This is normally on when transceiver is
waiting for a tag to be presented.

 Error – Slice has encountered an error during last command. Refer to Error_Cat and
Error_Desc for details. This bit is not always set so check RFID_error for nonzero.

 Trans_Conn – Transceiver is correctly connected and communicating with the slice.

 Trans_On – Transceiver has been turned on by slice.

 TP – Tag present; Tag is present in transceiver field. LED on transceiver will blink rapidly.

 TFR – Tag Fully Read; Tag has been present in transceiver field long enough so that entire

tag memory has been stored in buffer. This bit does not need to be on to indicate a command
has been completed.

RFID_control – Read/write, 32 bit integer which is used to request RFID transactions to occur, read and
writing different aspects of the tag and transceiver. Some of the bits are defined by Turck but have been
enhanced by CTC for additional features.

From Turck:

 Transceiver – Turns on and off transceiver. Used only if two transceivers are close enough
to cross talk. Otherwise this bit should be set to an "Always On". If transceiver is off, LED

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 249
Document 951-534101-038

will blink slowly (default), and be solid if transceiver is on. It is suggested to always leave

this bit set unless low power operation is required.

 Next – If turned on while command is processed, the next command run will require a new
tag id to enter the field. This bit should not be used instead reference the upper bits supplied

by CTC for similar functionality

 Tag_ID – Turn on to read the Unique Identifier (UID) from tag. These are always unique for

every tag in the world. The bit is cleared automatically when the operation is complete and

data is present or error occurred.

 Read – Turn on to read data from a tag. The bit is cleared automatically when the operation
is complete and data is present or error occurred.

 Write – Turn on to write data to a tag. The bit is cleared automatically when the operation is
complete and data is present or error occurred.

 Tag_Info – Turn on to read information about tag in field, including tag manufacturer and
memory available in tag. The bit is cleared automatically when the operation is complete

and data is present or error occurred.

 Trans_Info – Turn on to read information about transceiver connected to the channel. It can

return data such as type of transceiver, hardware and software revisions. The bit is cleared

automatically when the operation is complete and data is present or error occurred.

 Reset – Turning this bit on will reset any in-process or queued commands. Use this bit to
clear any errors that occur. This bit must be cleared manually to remove the device from

reset.

CTC bit enhancements for RFID_control property:

USER_NO_TAGFIRST – Bit 15, set this bit if no tag present is to be detected prior to starting the
requested read or write operation.

USER_READ_TAGID_FIRST – Bit 14, set this bit if the unique tag id is to be read prior to the
requested read or write operation. This bit automatically sets bit 5, Tag_ID, during operation.

USER_NEW_TAGID – Bit 12, set this bit in conjunction with Bit 14 when the tag id is to be different
than that previously read. The tag id is a unique 8 byte value present on all RFID tags. Prevents
mistakenly reading and writing the same tag. Prior to any requested read or write the tag id is read
and if different from that previously (RFID_lasttagIDl & RFID_lasttagIDh) it is stored to the
properties RFID_tagIDl and RFID_tagIDh, the requested read or write operation will then
automatically be completed.

RFID_controlActive – Read only, represents the value actually being transferred to the Turck RFID
controller at any moment. During operation bits are set/cleared automatically by the M3-41 module,
especially when transferring multiple blocks of data. Useful for diagnostic purposes.

RFID_count – Read only, represents the value actually being transferred to the Turck RFID controller as the
needed byte count. This property is automatically set based upon the RFID_bytesTotal required. Useful for
diagnostic purposes.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 250
Document 951-534101-038

 ByteCount – These 3 bits represent the number of bytes to Read or Write
o 000 = 1 byte

o 001 = 2 bytes

o 010 = 3 bytes

o 011 = 4 bytes

o 100 = 5 bytes

o 101 = 6 bytes

o 110 = 7 bytes

o 111 = 8 bytes

RFID_bytesTotal – Read/write, this property must be set to the total number of bytes to be transferred
to/from the RFID reader. If to the reader RFID_data_writel/h array is used, if from the reader
RFID_data_readl/h is used. For a single transfer this is typically set to 8. This property is also used in
conjunction with the ‘host read’ and ‘host write’ commands when transfers are done with the
RFID_data_readl and RFID_data_writel properties. These properties can be used to transfer strings
to/from Quickbuilder variants.

RFID_bytesTransferred - Read/write, this property represents the number of bytes that have been
transferred during a read/write RFID operation as well as ‘host read’ and ‘host write’. If a ‘host read’ is
used to read a QuickBuilder variant string this property will represent the length of the string after the
access.

RFID_tagIDl – Read/write, 32 bit integer, this property is automatically set when a TAG ID read operation is
performed. This property represents the lower 4 bytes.

RFID_tagIDh – Read/write, 32 bit integer, this property is automatically set when a TAG ID read operation
is performed. This property represents the upper 4 bytes.

RFID_lasttagIDl – Read/write, 32 bit integer, this property is automatically set when a TAG ID read
operation is performed and a unique id is found, different than that previously read. This property
represents the lower 4 bytes. The RFID_lasttagIDl/h is checked against the latest tag id read to ensure no
duplicates are found, if that option is enabled.

RFID_lasttagIDh – Read/write, 32 bit integer, this property is automatically set when a TAG ID read
operation is performed and a unique id is found, different than that previously read. This property
represents the upper 4 bytes. The RFID_lasttagIDl/h is checked against the latest tag id read to ensure no
duplicates are found, if that option is enabled.

TAG INFO

This command is initiated on the rising edge of the input bit. The command is executed when a tag is
present in the interface. The command returns 8 bytes of information to the "Read_Data" bytes.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 251
Document 951-534101-038

 Byte 0: Number of Memory blocks

 Byte 1: Number of Bytes per block

 Byte 2: DSFID

 Byte 3: AFI

 Byte 4: ICID

 Bytes 5-7: Always "0"

TRANS INFO

This command is initiated on the rising edge of the input bit. The command is executed immediately. The
command returns 8 bytes of information to the RFID_data_readl/h array, with the content dependent on
the value of RFID_address. Below is an example supplied by Turck.

Strings

MSB’s cannot operate directly on strings but QuickBuilder can. Thus to manipulate string data it is first
read from the Tag as 1 or more bytes of data, stored in the RFID_data_readl/h data array, and then
transferred to QuickBuilder for further processing. This is done using the ‘host write’ command referencing
the RFID_data_readl or RFID_data_writel storage locations. RFID_bytesTotal are the number of bytes to
transfer.

Assume a tag was read with 128 bytes (up to 223 bytes may be transferred with ‘host read/write’
commands):

RFID_bytesTotal = 128;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 252
Document 951-534101-038

host write RFID_data_readl,36103; // Write the integer array as bytes of a

// string, to QB automatically null

// terminated.

QB and MSB handshake as needed as the data is manipulated…

RFID_bytesTotal = 0;

host write RFID_data_writel,36103; // Read the modified string, from QB

// and store to tag write array.

// RFID_bytesTotal is set to size.

Programming Examples

// TURCK RFID TEST Application

/*

RFID_control (Read/Write)

 Bit 0 - Reset: Turning this on will reset any in-process or queued commands.

 Bit 1 - Trans_Info: Turn on to read information about transceiver connected to the

 channel. It can return data such as type of transceiver, hardware and software

 revisions. See section 2.1.5 for details.

 Bit 2 - Tag_Info: Turn on to read information about tag in field, including tag

 manufacturer and memory available in tag. See section 2.1.4 for details.

 Bit 3 - Write: Turn on to write data to a tag.

 Bit 4 - Read: Turn on to read data from a tag.

 Bit 5 - Tag_ID: Turn on to read the Unique Identifier (UID) from tag. These are always

 unique for every tag in the world.

 Bit 6 - Next: If turned on while command is processed, the next command run will require

 a new tag id to enter the field. Not used.

 Bit 7 - Transceiver: Turns on and off transceiver. Used only if two transceivers are

 close enough to cross talk. Otherwise this bit should be set to an "Always

 On". If transceiver is off, LED will blink slowly (default), and be solid if

 transceiver is on.

 Bit 12, USER_NEW_TAGID, set this bit in conjunction with Bit 14 when the tag id is

 to be different than that previously read. The tag id is a unique 8 byte value

 present on all RFID tags. Prevents mistakenly reading and writing the same tag.

 Prior to any requested read or write the tag id is read and if different from that

 previously (RFID_lasttagIDl & RFID_lasttagIDh) it is stored to the properties

 RFID_tagIDl and RFID_tagIDh, the requested read or write operation will then

 automatically be completed.

 Bit 14, USER_READ_TAGID_FIRST, set this bit if the unique tag id is to be read prior

 to the requested read or write operation. This bit automatically sets bit 5,

 Tag_ID, during operation.

 Bit 15, USER_NO_TAGFIRST, set this bit if no tag present is to be detected prior to

 starting the requested read or write operation.

RFID_count (Read only)

 // ByteCount: These 3 bits represent the number of bytes to Read or Write per block

 // o 000 = 1 byte

 // o 001 = 2 bytes

 // o 010 = 3 bytes

 // o 011 = 4 bytes

 // o 100 = 5 bytes

 // o 101 = 6 bytes

 // o 110 = 7 bytes

 // o 111 = 8 bytes

RFID_status (Read only)

 Bit 0 - Reserved

 Bit 1 - TFR ? Tag Fully Read; Tag has been present in transceiver field long enough

 so that entire tag memory has been stored in buffer. This bit does not need

 to be on to indicate a command has been completed.

 BIT 2 - TP ? Tag present; Tag is present in transceiver field. LED on transceiver

 will blink rapidly.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 253
Document 951-534101-038

 BIT 3 - Trans_On ? Transceiver has been turned on by slice.

 BIT 4 - Trans_Conn ? Transceiver is correctly connected and communicating with the

 slice.

 BIT 5 - Error ? Slice has encountered an error during last command. Refer to

 Error_Cat and Error_Desc for details.

 BIT 6 - Busy ? Slice is currently processing command. This is normally on when

 transceiver is waiting for a tag to be presented.

 BIT 7 - Done ? Slice is ready to receive command. This bit will be off until previous

 command bit is turned off.

RFID_error – Read only, Turck specific error where bits 7 to 0 represent the category

 and bits 15 to 8 are the description. Any time the RFID_error property is non-zero

 an error is present. To clear the error the RFID reader must be reset using the

 RFID_control property RESET bit.

// RFID_data_readl - data[0] - data[3]

// RFID_data_readh - data[4]-data[7]

*/

// Example to read QB variant 36102 and then write it back to 36103, row 0, column 0.

RFID_bytesTotal = 0; // Clear the total bytes to 0, it will be set to actual

 // size after the read is complete.

// Read the string "This is a test string for RFID." from QB variant 36102

host read RFID_data_writel, 36102;

host write RFID_data_writel,36103; // Write the string back again, note RFID_bytesTotal was

 // set to the total number of bytes to write by prior

 // command. You can verify with Debugger Watch Window.

// Disable RFID control prior to activating a channel

RFID_control = 0; // Init to nothing, which is default.

RFID_state = 1; // By default the state is RFID_OFF so set to RFID_IDLE for operation.

RFID_bytesTotal = 8; // Number of bytes to tranfer each time to/from the tag

// Set address of tag to start transfer on

RFID_address = 0;

RFID_channel = 1; // Set to first channel, this activates logic and scanning

delay 50 ms; // Delay a bit to let EtherCAT scan update information to reader.

// Turn Transceiver on

RFID_control = RFID_control | 0x0080;

// Wait for acknowledgement back that both the Transceiver is turned on and connected.

[wait0]

// Trans_On/Trans_Conn bits will be set when transceiver is on.

if ((RFID_status & 0x0018)!=0x0018) goto wait0;

// Reset it the Transceiver

RFID_control = RFID_control | 0x0001;

delay 250 ms; // Allow reset to probagate the network

RFID_control = RFID_control & ~0x0001; // Disable the Reset

delay 250 ms; // Allow Transceiver to come out of reset

// Wait until ready to receive a command

[wait1]

if ((RFID_status & 0x0080)==0) goto wait1;

// Read Trans Info for diagnostics reasons, not needed in actual operation.

RFID_control = RFID_control | 0x0002;

// Wait until done with command

[wait2]

if (RFID_control & 0x0002) goto wait2;

if (RFID_error !=0) goto processTransError; // Ensure no errors

// Load the data for possible later use

TransInfo_data_low = RFID_data_readl;

TransInfo_data_high = RFID_data_readh;

/*---*/

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 254
Document 951-534101-038

/*

 Test below will wait for a tag to be present then read the Tag ID

 when the tag becomes present, making sure the Tag ID is not the

 same as the previous tag. If it is go back to waiting for a new

 tag, otherwise write an incrementing number. Once written, read

 the tag back again.

*/

// Monitor for tag available to read

loopCounter = 1;

// ***** WAIT FOR TAG ******

[writeTag]

// Write the counter value when the tag becomes present

RFID_data_writel = loopCounter;

loopCounter = loopCounter + 1;

// ***** WRITE TAG ******

RFID_address = 0; // Address is auto-incremented so reset to 0

// Set wait for no tag first, then read tag id and make sure not previous before write

RFID_control= RFID_control | 0x8000 | 0x4000 | 0x1000 | 0x0008;

// Wait for write flag to turn off, meaning writing complete, then check for error.

[waitWrite1]

if (RFID_control & 0x0008) goto waitWrite1;

if RFID_error != 0 goto processWriteErr;

// ***** READ TAG ******

// Read data back now

[readTag]

RFID_address = 0; // Address is auto-incremented so reset to 0

// Read same tag data back so must disable net Tag flags.

RFID_control = (RFID_control & ~(0x8000 | 0x4000 | 0x1000)) | 0x0010;

// Wait for read flag to turn off, meaning reading complete, then check for error.

[waitRead1]

if (RFID_control & 0x0010) goto waitRead1; // Wait for command to be accepted.

if RFID_error != 0 goto processReadErr;

// Save the read data away for diagnostic use.

Read_data_low = RFID_data_readl;

Read_data_high = RFID_data_readh;

// Go wait for the next tag

goto writeTag;

[processReadErr]
// Issue reset and save error off
readError = readError + 1; // Bump number of times read error occured.
goto waitErr; // GO issue reset and wait for error to clear.

[processWriteErr]

writeError = writeError + 1; // Bump number of times write error occured.

lastError = RFID_error; // Save error code off.
[waitErr]
RFID_control = 0x0001; // Transceiver on and reset bit set
[waitClr]
delay 10 ms;
if (RFID_error != 0) goto waitClr;
delay 10 ms; // Allow to probagate over the network.
RFID_control = 0x0080; // Transceiver on and reset bit clear
delay 10 ms; // Allow to probagate over the network.
// Wait for error to clear

[waitErr1]
if (RFID_status & 0x0020) goto waitErr; // Wait for error to go away
if (RFID_status & 0x0040) goto waitErr1; // Wait for busy to go away
if ((RFID_status & 0x0080) == 0) goto waitErr1; // Wait for command to be accepted
delay 10 ms;
RFID_state = 1; // Enable read/write cycles since when error occurs state
 // machine will hang at RFID_ERROR state for processing.
delay 10 ms;
goto writeTag; // Go wait for next tag and begin writing again.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 255
Document 951-534101-038

// Enter here if have error during Transceiver Info read

[processTransError]

lastError = RFID_error;

[stall]

goto stall;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 256
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 257
Document 951-534101-038

[O] Yaskawa

Yaskawa manufactures a number of drives. That currently supported is the single axis
Sigma 5 rotary and linear drive. This section provides information that may be specific
to this manufacturer.

eCAT_driveType – 3

Station Alias

In an EtherCAT network, slaves are automatically assigned addresses based on their position in the bus.
When a device, such as a drive, must have a fixed assigned identification that is independent of cabling, a
Station Alias is needed. Yaskawa provides two 16-position rotary switches with hexadecimal encoding for
this purpose. This allows for a setting of 0 to 255 (FFh), where 0 defaults to the automatic address
assignment. As an example, if S11 is set to a 1 and S12 to an A this would be 1Ah or 1 X 16 + 10 = 26. Since
the M3-41 only supports up to 16 drives S11 would always be set to 0 and only S12 used.

Yaskawa Position Lag & perr

By default Yaskawa uses what it terms ‘Model Following Control’ in both CSP and interpolated moves. This
causes the actual position of the drive to lag from the desired target more than expected (typically 10X that
of other drives). This actually provides for a smoother move. Yaskawa delays the move on purpose to
better figure out the profile the Master wants to execute and then provides smoothing. When not gearing

Appendix

O

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 258
Document 951-534101-038

to dissimilar drives this is a good thing, since at the end of the move you will always be at the correct
position, although it takes a bit longer and ‘perr’ will build up.

In some applications, it is desirable to reduce the lag between the commanded position and the actual
position reported back by the drive. Do this by disabling ‘Model Following Control’ using SigmaWin. This is
parameter Pn140.0 as shown below.

Note that Pn141, Model Following Gain may also need additional adjustment from its default value.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 259
Document 951-534101-038

Drive IO Connector Mapping

The Yaskawa Sigma 5 drive has a number of inputs and outputs available for MSB control on the drive. The
following table defines their connector mapping to MSB drive input/outputs.

Name
Yaskawa

Pin MSB Assignment

General Purpose Input SI0 Din1 (inputs[1])

Forward Run Prohibit Input SI1 Din2

Reverse Run Prohibit Input SI2 Din3

General Purpose Input SI3 Din4

Probe 1 Latch Signal Input SI4 Din5

Probe 2 Latch Signal Input SI5 Din6

Home Switch Input SI6 Din7

Brake Output (option) SO1 Out1 (outputs[1])

General Purpose Output SO2 Out2

General Purpose Output SO3 Out3

MSB ‘errorRegister’ Variable Value Definitions

Reference the specific drive Manufacture for object 0x1001 definitions. For Yaskawa the definitions are as
follows:

Bit 0 – Generic Error, 0: No error, 1: Error
Bit 1 to 7 – Reserved – 0: Always.

MSB ‘errorCode’ Variable Value Definitions

Reference the specific drive Manufacture for specific errorCode definitions. For Yaskawa object 0x603f is
referenced with values given in hexidecimal:

errorCode Description

0x0A10 The Sync0 event and the SERVOPACK cannot be
synchronized.

0x0A11 The EtherCAT AL state became not
'Operational' while the DS402 drive state
is in 'Operation enabled.

0x0A12 The events, receive process data and sync0,
do not synchronize. (Failed to receive the
process data.)

0x0A20 The parameter setting is out of range.

0x0A40 The initialization at power on sequence was

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 260
Document 951-534101-038

errorCode Description

failed.

0x0EA2 The data exchange between the EtherCAT
(CoE) Network Module and the SERVOPACK was
not synchronized.

0x0510 The servomotor speed is excessively high.

0x0511 The motor speed upper limit of the set
encoder output pulse (pulse unit) (Pn212)
is exceeded.

0x910 The motor was operating continuously under
a torque largely exceeding ratings.

0x0720 The motor was operating continuously under
a torque largely exceeding ratings.

0x710 The motor was operating for several seconds
to several tens of seconds under a torque
largely exceeding ratings.

0x911 Vibration at the motor speed was detected.

0x520 Vibration at the motor speed was detected.

0x0d00 Position error pulses exceeded parameter
(Pn520).

0x0d01 Position error pulses accumulated too much.

0x0d30 Position data exceeded +/- 1879048192.

0x0cc0 Different multi-turn limits have been set
in the encoder and the SERVOPACK.

0x0f10 With the main power supply ON, voltage was
low for more than 1 second in phase-R, -S
or -T.

0x???? Undefined, see manual.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 261
Document 951-534101-038

EtherCAT Explorer View

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 262
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 263
Document 951-534101-038

[P] General Anomalies and Tips

This section is meant to discuss information generic to EtherCAT and aid in the
installation.

Network Switches

Network Switches – Network switches should not be used with EtherCAT. Network switches may cause

single packet losses. If a switch is required, make sure it is specifically recommended for EtherCAT

operation, such as the Omron EtherCAT Junction Slave. Loss of even a single packet may cause a drive

error in some drives. This has been noted especially with Kollmorgen devices.

MSBs

MSBs – Do not use foreground MSBs. They typically are not needed and will slow down the control loop.

Background MSBs operate outside the control loop and are more efficient. They are supported for legacy

M3-40 applications but are not needed with the M3-41 unless limited to a very small MSB.

ppr/mppr

‘ppr/mppr’ (pulses/rev, and master pulses/rev) must be set properly for the type of encoder used, or

improper motion will occur. Set these parameters using QuickBuilder and the properties section of the

drive.

Appendix

P

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 264
Document 951-534101-038

Blank

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 265
Document 951-534101-038

[Q] Test Suite

When CTC updates the M3-41 firmware, several tests are used to verify functionality.
One such test suite MSB is included below to help users programming the M3-41
module. This test does a quick check of Cyclic Sync Position (Interpolated on some
drives), Profile Position, Profile Velocity, and Homing modes. It also does a short
segmented and camming table test.

MSB Test Module

// This is a background MSB. Make sure inposw is set for the drive, typically

// .001 for 1048576 ppr. Also set the ppr and mppr. This program will set

// the ppr and mppr to a value commonly used, it may have to be changed based

// on the user setup.

// Enable the drive, turning power on to the amplifier. The current position

// will be constantly updated so the drive does not move.

testCycleCount = 0;

inposw = .001; // 'in position' window at .001 revolutions.

if eCAT_driveType == $DRIVE_EMERSON goto runDCSYNC;

goto Drive_Enable;

[runDCSYNC]

// This is only needed for Emerson/Control Techniques

delay 2000 ms; // needed in case restart so syncs when cycle DC Sync on/off.

// Cycle time is 1 ms, start it 100 ms in the future.

// Note that we need to make sure that the first slave device in the EtherCAT

// Network supports 32/64-bit distributed clocks for this to work properly.

// Thus far that is Beckhoff, Wago, and Sanyo Denki.

dcsync -1, 1000000, 0, 0, 100000000;

delay 200 ms; // starts 100 milliseconds into the future

/**************** ENABLE DRIVE *******************/

[Drive_Enable]

drive enable;

zero feedback position;

// Adjust the ppr and mppr based on the drive/encoder we have installed.

// This overrides that of the property sheet.

Appendix

Q

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 266
Document 951-534101-038

if eCAT_driveType == $DRIVE_COPLEY goto Copley;

if eCAT_driveType == $DRIVE_ELMO goto Elmo;

if eCAT_driveType == $DRIVE_YASKAWA goto Yaskawa;

if eCAT_driveType == $DRIVE_KOLLMORGEN goto Kollmorgen;

if eCAT_driveType == $DRIVE_SANYO_DENKI goto Sanyo_Denki;

if eCAT_driveType == $DRIVE_EMERSON goto Emerson;

if eCAT_driveType == $DRIVE_AMC goto AMC;

if eCAT_driveType == $DRIVE_ABB_MICROFLEX goto ABB;

// by default assume 1048576

[Yaskawa]

[Kollmorgen]

mppr = 1048576;

ppr = 1048576;

goto beginTest;

[ABB]

mppr = 524288;

ppr = 524288;

goto beginTest;

[Copley]

[Elmo]

mppr = 8000;

ppr = 8000;

goto beginTest;

[Sanyo_Denki]

mppr = 131072;

ppr = 131072;

goto beginTest;

[Emerson]

mppr = 65536;

ppr = 65536;

goto beginTest;

[AMC]

mppr = 12000;

ppr = 12000;

goto beginTest;

/**************** BEGIN THE TEST CYCLE *******************/

[beginTest]

state = 0;

host write state,20; // Set register for CTCMON to monitor

 // so can visually see where test at

cmode = $CYCLIC_SYNC_POSITION_MODE; // Ensure in CSP mode

move at 30 to 0 using 50,50; // If just starting should be at 0,

 // if redoing program just dropped out of velocity

 // mode and let's go back to 0.

wait for in position; // Wait until back at 0.

//delay 3000 ms; // Delay so can visually check for any position error

/**************** HOMING MODE TEST *******************/

[homing_Mode]

state = 1;

host write state,20; // Set register for CTCMON to monitor

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 267
Document 951-534101-038

 // so can visually see where test at

inpos_t = 250; // 250 millisecond settling (can make it anything want

 // but this is the time the drive will wait at position before

 // notifying QuickBuilder MSB that it is home.

homing_method = 34; // Mode setting for home to index pulse

homing_speed1 = 1; // homing_speed1 is not use but set for default anyways

homing_speed2 = 1; // in mode 34 only the homing_speed2 is used

cmode = $HOMING_MODE; // Request Homing mode

move to 0 using 10000,10000; // Tell the drive to initiate the move with accel

 // of 10000 rev/sec^2. That way stop quick.

wait for in position; // The drive will stop once it see's the index pulse

 // and tpos = fpos at that position therefore we will have

 // an offset past home in tpos/fpos, not really absolute 0.

// Using CSP mode we can move back to absolute home position or

// 'zero feedback' to 0 out tpos/fpos. This is needed on some drives.

// Some homing modes 33/34 place you at 0 others just set fpos (feedback

// position) to present offset from it.

cmode = $CYCLIC_SYNC_POSITION_MODE; // Drop back to CSP mode so have control

if tpos <= 1 goto goHome;

// Get in the area first, for most drives offset is small (not Emerson)

move at 10 to .5 using 10,10;

wait for in position; // Wait until move is complete and we are at .5

[goHome]

move at .1 to 0 using 10000,10000; // Do any kind of absolute move back to 0 to

 // remove possible offset.

wait for in position; // Wait until move is complete and we are at 0 which

 // is the index pulse.

/**************** CSP Mode TEST ******************/

[CSP_Mode]

state = 2;

host write state,20; // Set register for CTCMON to monitor

 // so can visually see where test at

cmode = $CYCLIC_SYNC_POSITION_MODE; // Request CSP mode

move at 20 for 200 using 10,10; // 20 rev/s for 200 revolutions with accel at

 // 10 rev/s^2 and decel at 10 rev/s^.

wait for in position;

// Do a relative move back

move at 20 for -200 using 10,10; // 20 rev/s for -200 revolutions with accel at

 // 10 rev/s^2 and decel at 10 rev/s^.

wait for in position;

//delay 1000 ms; // Make sure totally stopped before change modes.

 // especially if Sanyo Denki since have to disable servo.

/***************** PROFILE MODE TEST ******************/

[profilePositionMode]

state = 3;

host write state,20; // Set register for CTCMON to monitor

 // so can visually see where test at

// Place the drive in Profile Position mode (Note Profile Position is not

// supported by Kollmorgen and it will use Interpolated automatically).

cmode = $PROFILE_POSITION_MODE; // Request Profile Position mode

move at 10 for 50; // Move at 10 revs/sec for 50 revolutions

// Wait until drive says we are in position

//delay 2 ms;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 268
Document 951-534101-038

wait for in position;

move at 10 for -50; // Move back again at 10 revs/sec for 50 revolutions

// Wait until drive says we are in position

wait for in position;

/**************** PROFILE VELOCITY MODE *************/

[velocityMode]

state = 4;

host write state,20; // Set register for CTCMON to monitor

 // so can visually see where test at

// Emerson does not support Velocity mode

if (eCAT_driveType == $DRIVE_EMERSON) goto segmentedMode;

invel_t = 1; // Time required, in milliseconds to be at target velocity

 // before considered AT TARGET

invel_w = .01; // Must be at target velocity +/- (.01 X target velocity) with

 // drive AT TARGET set to satisfy move. If target is 0, then

 // becomes +/- this value for velocity.

cmode = $PROFILE_VELOCITY_MODE; // Request Profile Velocity mode

move at 2 for 1; // When in velocity mode distance is just sign of direction,

 // 2 revs/s in positive direction

wait for in position; // This is when attain requested velocity

delay 10000 ms; // Run 2 rev/s for 10 seconds

move at 20 for 1; // Now speed up to 20 rev/sec in the same positive direction

wait for in position;

delay 10000 ms; // Run 20 rev/s for 10 seconds

move at 0 for 1; // If the motor is not tuned may never get to here but

wait for in position; // This is the proper way to stop in vel mode before

 // moving to another mode.

// The 'in position' is just AT Velocity so now lets switch back to CSP mode

// Slightly different procedure since we are in velocity mode, must

// move to present position but force a switch to CSP mode so don't loose

// position information

cmode = $CYCLIC_SYNC_POSITION_MODE; // Request CSP mode

delay 5 ms; // Delay is needed for the EtherCAT scanner to see that we want

 // to drop out of velocity mode. EtherCAT scanner will do a

 // triangular move to present position. If at velocity of 0

 // no move actually takes place just a switch in the drive mode.

wait for in position; // Wait for move to finish, we should be at 0 velocity,

 // if not set acc/dec/vmax, triangular move done

/**************** SEGMENTED MOVE TEST *************/

[segmentedMode]

state = 5;

host write state,20; // Set register for CTCMON to monitor

 // so can visually see where test at

// Initialize the move variables, could also be constants

vel1=5;

vel2=11;

rate1=50;

rate2=5;

dist1=10;

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 269
Document 951-534101-038

dist2=60;

stop_dist=1; // 1 revolution

cmode = $CYCLIC_SYNC_POSITION_MODE; // Request CSP mode

segmove 1 clear; // Clear any prior segments stored

// Add each of the desired segments for the move desired

segmove 1 accdec to vel1 using rate1;

segmove 1 slew until dist1;

segmove 1 accdec to vel2 using rate2;

segmove 1 slew until dist2;

segmove 1 accdec to 0 for stop_dist;

// Start the move now

segmove 1 start relative;

// Wait for it to run the segments

wait for in position;

/**************** CAMMING TABLE TEST *************/

[cammingMode]

state = 6;

host write state,20; // Set register for CTCMON to monitor

 // so can visually see where test at

// This MSB effectively sets up a 1:1 gear ratio with the Master

// The first item in the table is master revolutions/second.

// The second entry is that of the slave, this MSB.

table 1 clear; // Clear out the old data from table 1

table 1 addseries // Load new data to table 1, could be from a file

 // but this is a test.

0.000 , 0.0000 : //set up a 1:1 ratio

1.000 , 1.0000 :

2.000 , 3.000 :

3.000 , 5.0000 :

5.000 , 0.0000 ; //CAMS should wrap back to zero, like a mechanical cam

table 1 precompute; // Compute the cam...

// The master can reference another drive with the 'set master feedback1'

// command and setting the master_feedback variable to the drive desired.

// It can also reference its own created master, as shown below.

// This master is virtual and will increment by 1000 counts every

// Control Loop tick (1 ms). This way only one drive is needed for

// testing camming.

set master virtual; // We will use our own virtual master

// Set up the number of counts to increment per control loop

// for our virtual master. This value will be divided by the slave

// ppr for actual master revs.

move master at (40 * ppr/131072) forever;

// Start running the cam table with master and slave scale of 1, do 2 passes.

table 1 start linear cam 1.0, 1.0, 2;

wait for in position; // Wait for CAM table to be done

activeCAM_row = 0; // This contains where the table left off when it

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 270
Document 951-534101-038

 // exited and must be zero'd as it is where it will

 // start next time through. This allows us to

 // start at any position in the cam table if nonzero.

/*********** END TEST, REPEAT ***************/

state = 7; // Done

host write state,20; // Set register for CTCMON to monitor

testCycleCount = testCycleCount + 1;

delay 1000 ms; // Start test again in 1 second

goto beginTest; // repeat the test...

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 271
Document 951-534101-038

[R] Incentive EtherCAT Master &

M3-41A Firmware Revisions

V1.72 (Incentive Only

1. Active Online/Offline – Added API interface to allow slave devices to be placed offline,

then powered off and replaced, while other parts of the network are fully functional. Once

done the slave can then be placed back online without restarting the network.

2. Incentive Start/Stop – Added the ability to start and stop the Incentive real-time

environment from within the API as well as detecting the state of operation.

V1.71

3. Code Sync – Merge of all embedded 5300 source code with embedded PC source code.

4. Remote Access – Support for Incentive API remote access via the network.

V1.70

5. Demo Mode – Added 3 hour demo mode to EtherCAT Master (PC version only).

6. Licensing – Improved licensing scheme to allow for multiple EtherCAT networks, basing

the configuration file names on the MAC Address of the EtherCAT network adapter.

7. Constraint checking – Improved trajectory calculations with regards to constraining

calculations and having trapezoidal reference vmax. Previously only Profile type

EtherCAT moves referenced it.

8. File log – IO Console (PC version only) is also written to a _log_[MAC Address].txt file

by the EtherCAT Master.

9. Common Var/Bit – Fixed problem where common bits and vars were not set properly.

V1.67

1. API Updates – Added sdo read and write command as well as get_drive_information

block property read.

2. New Position Valid States – Updated move commands that allow new commanded

position during motion (trapezoidal move) to allow more states when valid. There were a

Appendix

R

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 272
Document 951-534101-038

couple of states that only lasted 1 ms that were valid and would cause the command

request to be ignored and/or fault.

3. Mitsubishi Error Reporting – Attempt now to clear messages from Mitsubishi drive and

log alarm states at time of fault.

4. SDO access – Added mutex to sdo commands since can only have one active at a time on

a drive. Problem occurs at the beginning of a move command and CSP mode is sent to the

drive at the same time an application issues an sdo read or write.

5. Mitsubishi Absolute mode – Automatically detect Mitsubishi encoder mode and set

encoder_mode flag accordingly.

V1.66

1. Mitsubishi Homing – Added change to allow warning flag during homing. Occurs in

absolute encoder mode.

2. Mitsubishi – Fixed problem where input mapping size was wrong.

V1.65

1. New position – Enhanced new position command to all change of direction and fully

incorporate trapezoidal moves. New variable called ‘settling’ added which allows the

change in direction to be delayed in # of milliseconds.

2. Mitsubishi Homing – Updated homing mode for Mitsubishi to work. Tested with

homing for index position. Mitsubishi had problem when set homing active it said

immediately drive was homed when in fact it was not.

3. Move to at/for – Modified trapezoidal move to automatically become a ‘new endposition’

command when executed while the drive is moving. Also allows the control of both

acceleration and deceleration whereas ‘new endposition’ only specified a rate.

V1.64

1. set master common – Corrected problem where having a slave axis track a master axis in

camming did not work for mposc. Tracking fposc and tposc did work. Old M3-40A got

this information on the backplane between boards. On the PC it is available locally so

added functionality to EtherCAT.

V1.63

1. axisptr/axisnum – Corrected problem when accessing another drives properties from an

MSB ‘axisptr’ and ‘axisnum’ also pointed to the other drive. They are not supposed to be

mapped. Example in this manual now works properly.

V1.62

1. Omron – Added support for Omron NX network IO devices, digital only, analog to

follow.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 273
Document 951-534101-038

2. .Net API – Added full .Net API interface to QuickBuilder MSB language and access to

both active program symbols as well as all registers. PC Runtime only.

V1.61

1. Mitsubishi – Changed default DC Sync to have 250uS Sync0 shift to accommodate for their

possible clock jitter when used as a reference clock. Newer Mitsubishi firmware may

resolve the problem in the J4 drive.

2. New End Position – Corrected problem with ‘newvel’ variable that when set less than

current velocity the drive would fault. Now the drive changes speed to the ‘newvel’

regardless of whether it is faster or slower than the current velocity.

V1.60

1. Sanyo Denki – Corrected an initialization problem where the drive could generate and

output configuration error. Now initialize similar to Mitsubishi and make sure DC Sync is

enabled prior to going to the Operational state.

2. Code Sync – Synchronized code with Windows® PC Run-time.

V1.59

1. Drive enable – Modified ‘drive enable’ command to now track position when disabled and

not restore absolute position when re-enabled. Allows for the drive to be disabled and then

moved, for example sliding a table, then re-enabled again while maintaining position.

2. Yaskawa Power Up – Resolved a problem that if the drive is in an ‘internal limit’ state we

now wait for it to be removed before attempting to fully enable it and make a move. If

‘internal limit’ is active the drive will not move and previously the logic would wait forever

for the ‘inpos’ flag. This is typically due to a miss-wired drive or control logic disabled.

V1.58

1. All IO – Corrected problem where some configurations of unaligned outputs (non-8 bit

boundaries) could cause some outputs to be skipped.

V1.57

1. Mitsubishi – Added support for Mitsubishi J4 Drive in CSP mode only. MR-J4-20TM-

ECT.

2. Sanyo Denki – Corrected problem with tmax not limiting torque.

3. LinMot – Corrected issue where downloading a new program caused a short term vibration

as the drive held position.

V1.56

1. LinMot – Added support for LinMot 1250/1450 linear drives.
2. PC RunTime - First source code sync with PC RunTime version of EtherCAT Master.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 274
Document 951-534101-038

V1.55

1. Multiple M3-41A’s – Added support for multiple M3-41A’s in a 5300 rack. Problem was

found where earlier revisions would operate from boot but would not reset the network

properly when a new QuickBuilder program was downloaded.

V1.54

1. Numatics – Added support for Numatics IO and valve controller.

EtherCAT Applications Guide

 Copyright © 2016-2017 Control Technology Corporation 275
Document 951-534101-038

[S] Incentive PCLogic Process

R70.01

1. Integer non-volatiles – Corrected problem where integer nonvolatile registers were not

being saved properly to disk so that they could be restored after a reboot.

R69.99

1. Non-Volatile Variants – Corrected problem within Incentive that the non-volatile variant

tables were not saved to disk properly for restore after a reboot.

2. Non-Volatile Variants – File format of Incentive was not the same as the 5300 due to the

fact that PC’s store doubles opposite of the ARM processor. Problem corrected. 5300

_nvar files can be copied to Incentive but Incentive cannot be copied back.

Appendix

S

