
Copyright 2008 - 2011 © Control Technology Corporation

All Rights Reserved.

M3-61A

DeviceNet™

Master Module

Blank

 WARNING: Use of CTC Controllers and software is to be done only by

experienced and qualified personnel who are responsible for the application and use

of control equipment like the CTC controllers. These individuals must satisfy

themselves that all necessary steps have been taken to assure that each application

and use meets all performance and safety requirements, including any applicable

laws, regulations, codes and/or standards. The information in this document is given

as a general guide and all examples are for illustrative purposes only and are not

intended for use in the actual application of CTC product. CTC products are not

designed, sold, or marketed for use in any particular application or installation; this

responsibility resides solely with the user. CTC does not assume any responsibility or

liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software

described in this document is provided under license agreement and may be used and

copied only in accordance with the terms of the license agreement. The information,

drawings, and illustrations contained herein are the property of Control Technology

Corporation. No part of this manual may be reproduced or distributed by any means,

electronic or mechanical, for any purpose other than the purchaser’s personal use, without

the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware

revision levels. Some features may not be supported in earlier revisions. See www.ctc-

control.com for the availability of firmware updates or contact CTC Technical Support.

DeviceNet™ is a trademark of Open DeviceNet Vendor Association, Inc. (ODVA)

Model Number Hardware Revision Firmware Revision

M3-61A All Revisions >= M361AV0106

>= BF5300V059069R30

http://www.ctc-control.com/
http://www.ctc-control.com/

TABLE OF CONTENTS

[1] OVERVIEW .. 7

MODEL 5300 FIELDBUS MODULE ARCHITECTURE ... 7
M3-61A DEVICENET MASTER ... 7
FRONT PANEL ... 8

[2] DEVICENET ... 9

NETWORK OVERVIEW .. 9
TECHNICAL FEATURES OF DEVICENET ..10
HMS ANYBUS-M ..11
DEVICENET FEATURES ..11

[3] INTERFACE BASICS ...13

BASIC ARCHITECTURE ...13

[4] DEVICENET NETWORK SETUP OVERVIEW ..15

INSTALLATION ...15
DEVICENET NETWORK CONFIGURATION ..16
CONFIGURATION OF M3-61A WITHIN THE 5300 CONTROLLER ...18

[5] NETTOOLS INSTALLATION ..19

INSTALLATION ...19
ONLINE CONFIGURATION & EDS FILE IMPORTING ...30

[6] NETTOOLS EXAMPLE ...38

INITIAL DEVICE DISCOVERY ..38
NETWORK CONFIGURATION ..41
ADMINISTRATIVE SCREEN DEVICENET WINDOW ..53

[7] XML CONFIGURATION FILE & I/O DECLARATIONS ..58

CONFIGURATION FILE ...58
CONFIGURATION SECTIONS ...59
DIGITAL INPUT DEFINITIONS ...61
DIGITAL OUTPUT DEFINITIONS ..61
ANALOG INPUT DEFINITIONS...62
ANALOG OUTPUT DEFINITIONS ...63
EXCLUDE INPUT DEFINITIONS ...64
EXCLUDE OUTPUT DEFINITIONS ..64
SIMPLE DIGITAL I/O EXAMPLE ..65
SIMPLE ANALOG I/O EXAMPLE ...65
XML CONFIGURATION FILE STORAGE ..66

[8] EXPLICIT MESSAGING & TAGS ...67

REGISTER SUMMARY ...67
TAGS ...68
EXPLICIT MESSAGE HEARTBEAT ...71
ANALOG EXPLICIT MESSAGE TAG EXAMPLE ..72

[9] SPECIAL REGISTER FEATURES ..76

TAG EXECUTION REGISTERS ...76
HIGH SPEED DUALPORT REGISTERS ..77

STATUS REGISTERS ...82

[A] ADDITIONAL NETTOOLS EXAMPLES ...85

CONTROL TECHNOLOGY CORPORATION MODEL 5300 DEVICENET SLAVE ...85
Example of a CTC Model 5300 Slave Configuration ...86

TURCK FDN20 ..91
BROOKS DEVICENET MFCS ..95

[B] BACKWARD COMPATIBILITY ..102

NETTOOLS OUTPUT OFFSET ..102
XML CONFIGURATION FILE ..103

Break

The 5300 series programmable automation controllers can be

simultaneously connected to one or more fieldbus networks. Modbus

master and slave communications are built into the CPU module.

Modbus master and slave communications are supported on both the

serial COM ports as well as the Ethernet ports. Additional fieldbus

networks are supported via Model 5300 Fieldbus Modules that plug into

the 5300 backplane. CTC currently offers Model 5300 modules for the following

fieldbus networks:

DeviceNet Master M3-61A

DeviceNet Slave M3-61B

EtherNet/IP Master M3-61C

EtherNet/IP Slave M3-61D

Additional fieldbus modules are under development for popular fieldbus networks such

as Profibus, CANOpen and others. To check on the release status of modules other than

those listed above, contact CTC sales.

Model 5300 Fieldbus Module Architecture

The CTC fieldbus modules contain two circuit cards. The first card is the universal

fieldbus adapter, which handles all interfacing tasks between the Model 5300 controller

and the second card, which is called the fieldbus interface adapter. The fieldbus interface

adapter is developed by HMS. In adopting this architecture CTC teamed up with HMS

(http://www.hms.se/) who is the industry leader in industrial networking cards. This

allows CTC to provide a wide range of network interfaces. Additionally CTC benefits

from HMS’s large engineering staff which is focused on updating the fieldbus interfaces

and making sure they are in compliance with the applicable ratings agencies.

M3-61A DeviceNet Master

The M3-61A module provides DeviceNet Master support for the 5300 series controller.

This includes bit oriented I/O and explicit messaging with support for mapping data such

http://www.hms.se/

as analog and explicit messages to/from the Model 5300 registers, as well as multiple

modules/networks.

Front Panel

LED – NS, Network Status, flashing red indicates bad config.

LED – MS, Module Status

LED – RS, Run Status, not used but set to green.

LED LED Status Description
Module status Off No power or not

initialized

 Green Module status is OK

 Flashing red Minor fault

 Red Major fault

Switch – 1, 2 baud rate (on

= 1)

Switch – 3 to 8 MACID, 0

to 63 binary with switch 8

low bit.

Baudrate (kBit/sec) DIP 1-2
125 0 0

250 0 1

500 1 0

Reserved 1 1

USB & COM are used for re-flash of firmware and future optional RS232 serial port.

LED 1-4 are reserved for future use.

CH – CAN High (terminating 120 ohm resistors required)

SD – Shield/Drain

CL – CAN Low

DeviceNet is a fieldbus system used for industrial automation, normally

for the control of valves, sensors and I/O units and other automation

equipment. The DeviceNet communication link is based on a broadcast

oriented, communications protocol, the Controller Area Network

(CAN). This protocol has I/O response and high reliability even for

demanding applications.

DeviceNet has a user organization, the Open DeviceNet Vendor Association (ODVA),

which assists members on matters concerning DeviceNet. HMS is a member of ODVA

and also represented as a member of the DeviceNet Conformance SIG.

Network Overview

The physical media for the fieldbus is a shielded copper cable composed of one twisted

pair and two cables for the external power supply. The baud rate can be changed between

125k, 250k and 500k bit/sec. Each node in the network is given a MAC ID, which is a

number between 0 and 63 and is used to address the node.

Technical Features of DeviceNet

The maximum length of cable is dependent on the baud rate and DeviceNet cable that are

used. Below is a diagram that shows the maximum allowed cable length in the network.

 DeviceNet specific cable (twisted pair)

 Access to intelligence present in low-level

devices

 Master/Slave and Peer-to-Peer capabilities

 Trunkline-dropline configuration

 Support for up to 64 nodes

 Node removal without severing the network

 Simultaneous support for both network

powered (sensors) and self powered (actuators)

devices

 Use of sealed or open style connectors

 Protection from wiring errors

 Selectable data rates of 125k baud, 250k Baud,

and 500k baud max. Trunk distance 500

meters and drop length 156 meters at 125k

baud.

 Adjustable power configuration to meet

individual application needs

 High current capability (up to 16 amps per

supply)

 Operation with off-the-shelf power supplies

 Power taps that allow the connection of several

power supplies from multiple vendors that

comply with DeviceNet standards

 Built-in overload protection

 Power available along the bus; both signal and

power lines contained in the trunkline

 Provisions for the typical request/response

oriented network communications

 Provisions for the efficient movement of I/O

data

 Fragmentation for moving larger bodies of

information

 Duplicate MAC ID detection

HMS AnyBus-M

The M3-61A uses the HMS AnyBus-M DeviceNet interface module to ensure full

compliance. As such, the module will appear on the network with the following

parameters:

Description Text string Dec Hex

Vendor ID HMS Fieldbus

Systems AB

90 0x5A

Product type Communications

adapter

12 0x0C

Product code - 14 0x0E

Product name AnyBus-M

DeviceNet

- -

The ANYBUS® M DeviceNet follows the DeviceNet standard that has been developed

by ODVA. It is fully compatible with the DeviceNet specification rev. 2.0 Vol I and Vol

II. The module operates according to the communication adapter profile (product type 12,

see DeviceNet specification for more information). The module supports the I/O

connections Bit strobe, Polled I/O, Change of state and Cyclic I/O data.

DeviceNet Features

Device Type: Communication

adapter

Master/Scanner: Yes

Explicit peer-to-peer

messaging:

Yes I/O slave

messaging:

Bit strobe

Polling

Cyclic

Change of state

(COS)

Yes

Yes

Yes

Yes

I/O peer-to-peer

messaging:

No

Configuration

consistency value

Yes

Faulted node

recovery:

No

Baud rates: 125K, 250K, 500K

Blank

The M3-61A must be configured prior to operation. This consists of

setting the network speed and Master MACID via dip switches as well

as setting up the proper network configuration using a PC and device

specific EDS (Electronic Data Sheet) files. The PC is then attached to

the network and communicates with the M3-61A over CAN, setting up

the proper scan list of devices. A configurator is used to define how the

data received from the remote device is transferred to the M3-61A and how it is mapped

into memory, and hence assigned as I/O registers. In this chapter we will review the

basic architecture of the M3-61A as it operates within the Model 5300 system. Then in

Chapter 6 we will cover an actual example.

Basic Architecture

The M3-61A DeviceNet Master operates asynchronously to the main Model 5300

controller, constantly scanning and updating information as needed. In addition to its

HMS AnyBus-M module there is a 60 MHZ ARM7 processor operating as an interface

and high level controller. This processor handles the interface and mapping between the

AnyBus-M DeviceNet data and that observed by the controller, as well as all the explicit

message queuing, responses, error retries, and what to do with bit oriented data as it is

received. Some examples are analog read/writes, mapping explicit message data contents

and responses, etc. For now we will discuss the simplified I/O scanned data mapping.

There is a dual port memory device that exists between the Anybus-M and the ARM7

processor. Where data is mapped from a DeviceNet Slave determines its I/O reference

from a Model 5300 application program perspective. A Model 5300 controller can

access a total of 1024 inputs and 1024 outputs overall in a system. Convert that to bytes

and you have 128 bytes of input information and 128 bytes of output information that you

can scan with a Master controller. Any local Model 5300 I/O also counts towards this

maximum.

If you reference a DeviceNet Slave device you will note that it can produce a certain

number of bytes and consume a certain number (defined in its EDS file). To keep things

simple, each byte produced will add 8 inputs to the Model 5300 and each byte consumed

will add 8 outputs. This directly maps to the input/output registers in the QuickStep

Register Guide:

The Force registers are available but have not been tested in the current firmware

revision.

Thus let’s reference a simple device such as the Automation Direct DL105. This device

has 10 bits of produced data and 8 bits of consumed, simply 10 inputs and 8 outputs.

http://www.facts-eng.com/manuals/f1dvnetm.pdf

Upon referencing their provided EDS file it would be observed that the RX bytes on a

poll are 2 (16 bits read but only the first 10 really produced data) and the TX bytes are 1

(8 bits consumed). From a Model 5300 perspective if no local digital input or output

modules were installed then register 1001 would be the first output and 2001 the first

input on the DL105. If Model 5300 I/O modules are installed then the DeviceNet I/O

adds on after the last local I/O. For example a single M3-10 type module has 16 in, 16

out, causing first DL105 output to now be register 1017. As other modules are added

note that the 2 bytes received for input data still occupy 16 bits even though 10 bits is all

that is usable, the other 6 bits will be a constant 0. Same for unused outputs, should a

device not have an evenly divisible number of outputs then you will still consume the

output space on the Model 5300, and those bits will not operate (example: device

provides 5 outputs and 1 byte consumed, hence outputs 6, 7, and 8 are do nothing

outputs, next DeviceNet Slave outputs would begin after the last output, 8). Reference

the next section for actual mapping examples.

http://www.facts-eng.com/manuals/f1dvnetm.pdf

This chapter provides a high level overview of the steps necessary to set

up a DeviceNet network to properly communicate with the Model 5300

automation controller. The following chapters will cover these steps in

detail.

Installation

Hardware Installation:

1. M3-61A: Set the baud rate to match the network and set a unique MAC ID.

Install the module into the Model 5300 rack. It must be installed in a slot after

any M3-40 series modules, thus keep M3-40 modules to the left of the M3-61A

module.

2. DeviceNet Devices: Set the baud rate to match the network and set a unique ID.

3. Network cabling: Connect up to 63 devices to the M3-61A following proper

DeviceNet network wiring standards. Note that there is no internal network

terminator on the M3-61A module, so proper network termination is required.

After powering up the Model 5300 controller you may access the remote administrative

screens via telnet and verify module installation. Below shows two M3-61A modules

installed in slots 4 and 6:

A configuration file must be loaded for proper operation, reference Chapter 7:

XML Configuration File & I/O Declarations.

DeviceNet Network Configuration

Before device information can be accessed, each node must be properly mapped to the

M3-61A DeviceNet master module.

There are currently two ways to configure the M3-61A, both using independent PC based

applications. A third method, integrated within Quickbuilder, will be available at a later

date. The first way to configure the M3-61A module is to use Rockwell’s RSNetWorx

for DeviceNet. This program is run on a PC in the Windows environment. The program

needs a physical link to the DeviceNet network where the M3-61A module is connected

and also the DeviceNet Slaves that the module will communicate with are connected.

This physical link can be a serial adapter (for example 1770-KFD), a PCI or ISA card

(for example 1784 scanner), or a PCMCIA interface. Reference the web link below for

their documentation:

http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/dnet-gr001_-

en-e.pdf

The preferred method of configuration, and the one currently used by CTC, is provided

by HMS. This configurator is known as NetTools (NetTool-DN-D, CTC Part#067-

018020) and comes with a serial to DeviceNet network converter.

http://www.anybus.com/products/products.asp?PID=98&ProductType=Anybus%20NetT

ool

http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/dnet-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/dnet-gr001_-en-e.pdf
http://www.anybus.com/products/products.asp?PID=98&ProductType=Anybus%20NetTool
http://www.anybus.com/products/products.asp?PID=98&ProductType=Anybus%20NetTool

This manual assumes you know how to use this tool. Some examples are provided but it

is important to first reference the documentation available for this software product prior

to attempting configuration:

http://www.anybus.com/upload/98-7256-

NetTool%20DN%20User%20Manual%201_0.pdf

A good application example is also provided:

http://www.anybus.com/upload/98-0005-

How%20to%20configure%20DeviceNet%20with%20NetTool%20for%20DeviceNet_1.1

0.pdf

The NetTool Configurator consists of a DeviceNet network adapter and a PC software

application. This adapter makes it possible to connect a serial port from a PC to the

DeviceNet network and configure and monitor DeviceNet nodes remote from any point

on the DeviceNet network. Using this tool, the following steps are taken to configure a

device:

1. Identify a network and the attached devices

2. Configure the I/O data from each device

3. Map the I/O data to the M3-61A

4. Configure the M3-61A master module

An example showing how two devices are configured on the network is given in Chapter

6: NetTools Example. Installation instructions, over and above that provided by HMS,

are provided in Chapter 5: NetTools Installation.

http://www.anybus.com/upload/98-7256-NetTool%20DN%20User%20Manual%201_0.pdf
http://www.anybus.com/upload/98-7256-NetTool%20DN%20User%20Manual%201_0.pdf
http://www.anybus.com/upload/98-0005-How%20to%20configure%20DeviceNet%20with%20NetTool%20for%20DeviceNet_1.10.pdf
http://www.anybus.com/upload/98-0005-How%20to%20configure%20DeviceNet%20with%20NetTool%20for%20DeviceNet_1.10.pdf
http://www.anybus.com/upload/98-0005-How%20to%20configure%20DeviceNet%20with%20NetTool%20for%20DeviceNet_1.10.pdf

When using the serial to NetTools DeviceNet converter it has been observed that

after a power cycle or initial boot you must attempt to connect to the converter a few

times if using a USB to serial converter cable. It will show a timeout error on the first

couple of attempts.

When downloading a scan list to the M3-61A, make sure you first place it in idle

mode, then do the scan list download, return to either set mode to run and/or cycle

power. It has been observed that some DeviceNet Clients need power cycling of either

the master and/or slave after configuration changes.

Configuration of M3-61A Within the 5300 Controller

After all of the network device characteristics have been set up on the M3-61A, the

Model 5300 must be made aware of these devices and how it should map/interface with

the device. This is done via a special ASCII configuration file called the XML

Configuration File. Each M3-61A in the Model 5300 rack requires its own file. Creation

of this file is covered in a later chapter, but the steps involved are outlined below:

1. Using a text editor or XML editor, load a blank template provided by CTC

2. Edit the Digital and Analog I/O definitions. This maps the DeviceNet I/O into the

Model 5300 controller. Note that DeviceNet I/O numbering must start after the

local I/O.

3. Optionally: Edit Explicit Message definitions.

4. Optionally: Set up high speed dual port registers – provides very high speed

access to I/O or parameters mapped to these registers between the Model 5300

CPU and the M3-61A. There are 256 of these registers per M3-61A.

5. Download XML Configuration File to the M3-61A (as explained in the XML

Configuration File Storage section found at the end of Chapter 7: XML

Configuration File & I/O Declarations).

This section includes installation instructions for the HMS Anybus-

NetTool-DN-D toolset. It should be used in addition to the instructions

provided by HMS and/or as a reference should questions arise. Screen

captures of each installation step are provided to simplify the process.

Additionally the importing of an EDS file is covered as well as initially

going online to a DeviceNet network.

The Anybus-NetTool-DN-D is designed for use with Anybus-M Embedded cards or

Anybus X-gateways with DeviceNet Scanner. Functions include full scanner and adapter

configuration, on/off line configuration, online diagnostics, auto EDS file generator and

online parameter editor. Anybus-NetTool-DN-D includes an RS232<->DeviceNet

adapter. This adapter makes it possible to connect a serial port from a PC to the

DeviceNet network and configure and monitor DeviceNet nodes remote from any point

on the DeviceNet network.

Installation

Insert the CD into the PC drive. Explore the files on the drive and double click the

Anybus NetTools Setup Icon:

The package will begin to prepare for installation:

Click Next on the Welcome screen, accept the license and click Next once again:

Click Next on the Complete installation:

Click Next on Ready to Install the Program:

The program will begin installing:

Click OK to begin installing the Anybus Transport drivers:

Click Next on the Transport Provider Welcome screen:

Click Next with Complete selected and Install on the Ready to Install the Program

screen:

Click Yes for EtherNet Transport even though not using, followed by Next on the

Welcome screen:

Select the folder for installation and who will use this on your computer, followed by

Next, confirm installation:

Once installation is complete, click Close followed by the Finish dialog for each

transport:

Reboot your PC prior to proceeding. Once rebooted install any USB to Serial Converters

that are needed. Attach the NetTools serial cable and module with power, and then

proceed to invoke the tool:

Online Configuration & EDS File Importing

Right click the network screen to the right of the device hardware list. The Tools menu

can also be used but for some reason upon first installation it is grayed out and the right

clicking on the network screen is needed. Select Go Online.

Highlight the RS232 driver and click OK:

Select the proper serial port and MACID used. The MAC ID is for the PC, so make sure

it is not used on the network:

Once Go Online is selected the below box should appear which verifies the serial port

connection to the Anybus Serial/CAN converter module and that at least one node can be

found:

The network is scanned for additional devices:

Network Online status means at least one device is present and the network icon should

appear, in this case a DeviceNet Master at address 1:

As a test 2 Wago controllers are plugged in and the NetTool adapter is requested to

update the network configuration::

The devices are shown with a ‘?’, meaning theEDS file has not been installed but the

devices are communicating:

The EDS file can be installed by accessing the Tools menu and selecting Install EDS-
file:

Click Next to install an existing EDS file, locate it in the file browser window and click

Open:

If the EDS file installs successfully the following will appear; a poorly formatted file will

give errors:

With the EDS file now loaded the ‘?’ goes away and the controllers are identified:

Blank

Copyright 2008 - 2011 © Control Technology Corporation

All Rights Reserved.

This section assumes an understanding of NetTools as well as how to

install the needed EDS files. It is assumed that you have referenced the

NetTools documentation for installation and initial setup. The setup and

configuration of a Denso Robot and SMC valve module is demonstrated

in this chapter as well as how that I/O would map into the Model 5300

register set.

Initial Device Discovery

Begin by invoking your NetTool software and preparing a new network configuration.

Typically a configuration will be done online which would begin by dragging and

dropping the HMS NetTool Configuration Adapter onto a new project. If configuring

offline proceed to the next section, Network Configuration.

Suggest a MACID of 63, but any unused ID can be used.

With the Configuration Adapter appearing you may now attempt to go online and check

what devices are available for configuration. Right click the NetTool Configuration
Adapter, clicking Go Online. Once online go back and click Update and all identified

DeviceNet nodes (Slave and Master) will automatically appear similar to the screens

which will be shown in this section. You may also configure offline and save the

configuration to a file but it is best to ensure initial connectivity and EDS file matching.

Select the serial port that the RS232/DeviceNet converter is connected to as well as the

DeviceNet Baud Rate to use and MACID of the converter (must be an unused MACID).

All nodes should automatically appear in the network window, ready for configuration

after the Update menu item is selected.

Network Configuration

This configuration is being done offline but assuming you are connected to the real

network it should appear the same, except the NetTool Configuration Adapter is used

to insert the devices using the Update menu selection. Thus only if offline do you need

to drag and drop the device from the available hardware menu to the network box on the

right being configured. If using online configuration the resulting screens appearing

below will at a minimum portray what should have appeared during the Update.

Begin by dragging the M3-61A Anybus-M DeviceNet module to the right side window:

Next drag the SMC Corporation Valve Manifold to the right window. The next

sequential MACID is being used as the default (1), but you may set as needed:

Next drag the Denso PCI Master Slave Device to the network window. The next

sequential MACID is being used as the default (2), but you may set as needed:

Double click the Anybus-M DeviceNet node in order to get into the scan list

configuration screens. If not in Idle mode, use the pull down box, setting it to Idle and

then click the Download box, which sets programming mode (only if online):

We will now begin to configure the individual DeviceNet slave nodes. Select the

Scanner tab to view those available. Beginning with the SMC Valve module, highlight

it and click the arrow to move it to the right hand Added side.

Upon adding, the dialog below will appear requesting the scan information to be entered.

All three types are supported by the Master and each block of data returned will be

mapped as unique I/O. For the purpose of this example we are assuming Polled only.

The dialog below shows that the SMC device returns 6 bytes (48 bits of produced input

data) and accepts 4 bytes (32 bits of consumed output data):

We will now begin to map the I/O of the SMC device. Highlight the device and select

the Input tab.

Note that we map all produced (input) data starting with a word offset of 0 and building

up to 256 words (512 bytes). A maximum of 1024 inputs can be supported requiring

only 128 bytes; the remaining area is available for scanning analog or other storage

parameters available on the particular device you are interfacing to. Outputs are treated

the same way. Highlight the Valve Manifold SIU and click Automap. 6 bytes of data

will be mapped into memory representing added Model 5300 inputs 1 to 48, first bit

being 1. If we had an odd number of bytes, say 5, you could click the Options button

and map the data on a byte boundary to compress it.

Next we’ll configure the consumed (output) data. The valve has 4 bytes or 32 bits of

discrete outputs. Mapping is similar to the input data except you select the Output tab.

Both input and output maps reside in different memory partitions.

Once the SMC Valve is configured it is time for the Denso PCI Card. As with the SMC

valve, highlight it and place it in the Added column:

Prior to being added the proposed access methods, bytes received (input) and transmitted

(output) are defined. The EDS file defines this as 32 bytes for each or 256 bits of data.

In reality you must reference the configuration of the Denso to determine the proper

setting or errors will occur. The popup screen below is from page 51 of the Denso Robot

with RC7M Controller **-G Series Options Manual, Step 6:

Highlight the PCI Master Slave entry in the Added column and select the Input tab.

As before highlight the PCI entry and click Automap. The input bits will appear after

the SMC Valve entry:

Do the same now for the output tab:

Input/Output data is now fully mapped. From a Model 5300 perspective the DeviceNet

input data is treated as normal digital inputs beginning after all existing cards. If no other

cards with inputs/outputs then:

SMC Valve = Inputs 1 to 48, Outputs 1 to 32

Denso Robot = Inputs 49 to 112, Outputs 33 to 88 (note that Input 49/Output 33 is

first on the robot).

Once you have confirmed your entries the M3-61A must be loaded with the scan list

information. From the Scanner tab, if you are online, the Download button will be

highlighted. Click it and you will see the information downloaded to the M3-61A and

stored in its internal memory. Note that you must be in idle mode as set at the beginning

of this configuration process (Parameter tab). Once downloaded you should set the

Parameter tab to Run, followed by Download.

After full configuration it is necessary to cycle power on the Model 5300 controller to

ensure that the DeviceNet I/O and local I/O install correctly. The Model 5300 will not

operate until all scanned devices that were defined are properly seen as online, as it is

assumed that their appearance is required for proper application program execution. You

will know things are running properly when all 3 LED’s are green and none are red. A

flashing red indicator means there is a network setup error.

Administrative Screen DeviceNet Window

The Model 5300 can be accessed via telnet or a serial port in order to access the standard

Remote Administrative screen. From this screen general node status and version

information can be obtained. The command to retrieve this information is get anybus

info. Upon execution something similar to below will appear for each module

installed:

The first two items on the screen are from a configuration file that is discussed in more

detail later in this manual.

XML Config Ver – This is the XML module configuration file version that is currently

installed. The shown version is 2.01 and was defined by the user using the XML element

<VERSION>0201</VERSION>. Chapter 7: XML Configuration File & I/O

Declarations provides additional information.

Avail Heap Mem – This is the amount of memory available for DeviceNet operation. It

is referenced for diagnostic purposes to ensure explicit messages are returning memory to

the system properly.

Number Tags – The number of tags defined in the XML configuration file. Reference

Chapter 7: XML Configuration File & I/O Declarations for additional information.

Active Exp Msgs – This is the number of explicit messages that have been queued on the

Anybus module and are awaiting a response. It must remain below 64 and at 40 all

scanning will stop to throttle traffic. It is a good indication of how heavily loaded the

module is.

Other information on the screen directly references the status information defined in the

Control and Fieldbus areas of the HMI Anybus-M card. Reference their manual:

http://www.anybus.com/upload/86-2545-ABM-DEV-1.02.pdf

Summary of useful information, which appears in this manual, is provided below:

Control LED [] - Byte array of the 4 large LEDs on the front panel. The important ones

are the last 3; the first one is not used. In order to operate the last 3 must be 1’s (on).

The second LED will be a 2 if the configuration is in error.

Name States

MS (Module status) Off No power or not initialized

Green Module status is OK.

Flashing red Minor fault

Red Major fault

Fieldbus Module Status –

 Byte 0, 1 – (0x0004), Active Connections, master counts as one as well.

 Byte 2 – (0x04), Reserved

 Byte 3 – (0x00), Reserved

 Byte 4, 5 (0x004b), Expected packet rate in mS.

 Byte 6 – (0x01), Dip switch settings

MAC ID settings

Address DIP 3 – 8

0 000000

1 000001

2 000010

3 000011

…

62 111110

http://www.anybus.com/upload/86-2545-ABM-DEV-1.02.pdf

Off = 0 (left)
On = 1 (right)

63 111111

Baud rate settings

Baud rate
(kBit/sec) DIP 1 - 2

125 0 0

250 0 1

500 1 0

Reserved 1 1

 Byte 7 – (0x0C), Scan flags.

The parameter called Scan flags contains information about the operation mode of

the scanner. The major purpose of this parameter is to display the idle or run

mode of the module. See table below for information about the meaning of the

bits in the register. The module uses the reserved bits internally, but they do not

give the user any useful information.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Reserved Strobe

active

Reserved Idle

mode

Reserved ISD

active

Poll Reserved

The bit "Poll" is set when the ISD timer has expired and the master shall produce

data on established poll connections.

The bit "ISD active" (Inter Scan Delay) is set while the master is waiting for the

Inter Scan Delay timer to expire. When the timer has expired, the master

produces and sends data on all I/O connections that are using the ISD timer.

The "Idle mode" bit is set when the master is in idle mode.

The "Strobe active" bit is set when the master has any active bit-strobe

connections.

Fieldbus Node Active – Stored high byte to low byte, thus 648h is the 8
th

 byte, 64Fh is

the 16
th

 byte. In the example, nodes 3 and 10 are actively configured in the scan list.

The Node Active Area is an 8-byte-long bit-array, which contains information about

which nodes are configured in the master. If the bit is set (=1), the node is configured in

the scanlist, and the master will try to establish connections to the node. If the bit is

cleared (=0), the node is not configured, and the master will not communicate with the

node.

Note: Node means a module in the network corresponding to a certain MAC ID or

Node ID.

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

648h Node 7 Node 6 Node 5 Node 4 Node 3 Node 2 Node 1 Node 0

649h Node 15 Node 14 Node 13 Node 12 Node 11 Node 10 Node 9 Node 8

… … … … … … … …

64Fh Node 63 Node 62 Node 61 Node 60 Node 59 Node 58 Node 57 Node 56

Fieldbus Node Faulted – Stored high byte to low byte, thus 658h is the 8
th

 byte, 65Fh is

the 16
th

 byte. In the example node no nodes are faulted since all are 0x00.

The Node Faulted Area is an 8 byte long bit-array, which tells which nodes in the

network are not running correctly. If the bit is set (=1), the corresponding node is faulted.

If the bit is cleared (=0), the node is operating correctly. For more information about the

fault of the node, see the corresponding information in the Node Status Area.

Note: Node means a module in the network corresponding to a certain MAC ID or

Node ID.

 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

658h Node 7 Node 6 Node 5 Node 4 Node 3 Node 2 Node 1 Node 0

659h Node 15 Node 14 Node 13 Node 12 Node 11 Node 10 Node 9 Node 8

… … … … … … … …

65Fh Node 63 Node 62 Node 61 Node 60 Node 59 Node 58 Node 57 Node 56

Fieldbus Node Status – First byte is MACID 0x00, next is 0x01, etc.

The node status field is a 64-byte long array, which tells the status of the nodes in the

network. If any node is faulted, an error code will be presented here that describes the

fault (if possible). The Status of the ANYBUS M module is also presented here, in the

byte that corresponds to the MAC ID of the module.

Note: Node means a module in the network corresponding to a certain MAC ID or

Node ID.

Address Corresponding Node

660h Status for Node 0

661h Status for Node 1

662h Status for Node 2

…

69Fh Status for Node 63

Should errors develop, specifically defined codes are as follows:

The following table describes the meaning of the values that can appear in the Node

status area. Some of these parameters may only appear in the Node Status byte that

corresponds to the masters MAC ID.

Value
Dec

Value
Hex

Meaning Value
Dec

Value
Hex

Meaning

00 0x00 OK or Not in scan list 84 0x54 Node not yet initialized

70 0x46 Duplicate MAC ID failure 85 0x55 Receive buffer overflow

71 0x47 Scanner configuration error 86 0x56 Node changed to IDLE mode

72 0x48 Device communication error 87 0x57 Shared master error (not used)

73 0x49 Wrong device type 88 0x58 Shared choice error (not used)

74 0x4A Port over-run error 89 0x59 Keeper object failure (not used)

75 0x4B Network failure 90 0x5A CAN port disabled (not used)

76 0x4C No CAN messages detected 91 0x5B Bus off

77 0x4D Wrong data size 92 0x5C No bus power detected

78 0x4E No such device found 95 0x5F Updating flash (not used)

79 0x4F Transmit failure 96 0x60 In test mode (not used)

80 0x50 Node in IDLE mode 97 0x61 Halted by user cmd. (not used)

81 0x51 Node in fault mode 98 0x62 Firmware failure (not used)

82 0x52 Fragmentation error 99 0x63 System failure

83 0x53 Unable to initialize node

The M3-61A can be used for simple I/O scanning or it can be enhanced

to support complex explicit messaging. Configuration of how the

module should operate is done by setting up a special ASCII

configuration file. This chapter discusses that file and how it is used for

simple digital input and analog scanning. Explicit messaging will be

handled in the next chapter.

Configuration File

XML is a standard industry format used for exchanging information. The Model 5300

uses this file format as a means to initialize the M3-61A for operation. When using

NetTools, digital and analog data is mapped from the DeviceNet network to the Anybus

dualport memory. The configuration file then takes this data and maps it so it is available

to the Model 5300, thus becoming useful for your application programs to access.

Creation of the XML file can be done in a standard text editor, such as Notepad, and a

template is available in the download area of our web site. A better tool to use is

available free of charge from Microsoft, called XML Notepad 2007. It will do syntax

checking for you as well as provide tree views, greatly simplifying data entry:

http://www.microsoft.com/downloads/details.aspx?familyid=72d6aa49-787d-4118-ba5f-

4f30fe913628&displaylang=en

Use of this tool is beyond the scope of this document. A fairly complicated configuration

file can be greatly simplified. Reference Example 3 in Chapter 9: Special Register

Features. There are multiple pages of XML code for this example, but in the

presentation view of the same file in XML Notepad 2007 it is much simpler, especially if

starting with a template file:

http://www.microsoft.com/downloads/details.aspx?familyid=72d6aa49-787d-4118-ba5f-4f30fe913628&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=72d6aa49-787d-4118-ba5f-4f30fe913628&displaylang=en

The XML file is a standard ASCII file with each line terminated by a CR LF

combination.

Configuration Sections

The XML starts with a couple of unique elements:

1. <?xml version="1.0" encoding="utf-8" ?> - XML declaration header, first

line of the file.

2. <DEVICENET_DEF> - Start of DeviceNet definition parameters, ended by

</DEVICENET_DEF>. All digital IO, analog, and tags are enclosed by these

root elements.

3. <VERSION> - Defines the file version information. This is useful to ensure

running the correct xml file. Use get devicenet info command to retrieve

that set in this field. It is ended by </VERSION>. Child element to
<DEVICENET_DEF>.

The configuration file is composed of a number of sections and must follow the format

and sequence defined below:

Digital Inputs – Up to 1024 digital inputs are available on a Model 5300. All may reside

on a DeviceNet network or be mixed with local cards. These are scanned IO.

Digital Outputs – Up to 1024 digital outputs are available on a Model 5300. All may

reside on a DeviceNet network or be mixed with local cards. These are scanned IO.

Analog Inputs – Up to 256 analog inputs are available on a Model 5300. All may reside

on a DeviceNet network or be mixed with local cards. These may be scanned IO, or

mixed with explicit messages, depending on the device type communicating with.

Analog input data that is on a DeviceNet network is loaded into high speed dual port

RAM for the Model 5300 to access, after each scan.

Analog Outputs – Up to 256 analog outputs are available on a Model 5300. All may

reside on a DeviceNet network or be mixed with local cards. These may be scanned IO

or mixed with explicit messages, depending on the device type communicating with.

Analog outputs are stored in registers local to the M3-61A after each write, generating

either an automatic explicit message or an update on the next scan cycle if IO mapped.

Tags – Tags define explicit messages. Their discussion is limited to the next chapter.

Digital Input Definitions

The total number of digital inputs that were mapped with NetTools needs to be declared

so the PLC knows what to expect and how many inputs to add to the standard I/O in the

system. This allows multiple master cards to exist in a single PLC. There can only be

1024 total inputs for both local and networked I/O.

<QTY> item lists the number of inputs that will be made available by the DeviceNet

interface. There may only be one DIN_DEF per file and it should be prior to any analog

or tag declarations. Any I/O included in the later defined EXCLUDE_DIN should be

removed from this total.

Example:
<DIN_DEF>

<QTY>12</QTY>

</DIN_DEF>

Digital Output Definitions

The total number of digital outputs that were mapped with NetTools needs to be declared

so the PLC knows what to expect and how many outputs to add to the standard I/O in the

system. This allows multiple master cards to exist in a single PLC. There can only be

1024 total outputs for both local and networked I/O.

<QTY> item lists the number of outputs that will be made available by the DeviceNet

interface. There may only be one DOUT_DEF per file and it should be prior to any

analog or tag declarations. Any I/O included in the later defined EXCLUDE_DOUT

should be removed from this total.

Example:
<DOUT_DEF>

<QTY>12</QTY>

</DOUT_DEF>

Analog Input Definitions

Analog input definitions are required if you have mapped any analog inputs to the I/O

area using NetTools. Some devices present analog information as bit sequences that can

be scanned as part of the input data, others require direct explicit messages. Only include

analogs that are scanned as I/O, not explicit messages in the total count. Explicit

messages will be added separately, as defined later. An entry is required for each of the

mappings done using NetTools. Additionally this section must precede any explicit

message or tag definitions. Note that there are up to 512 bytes of input area available for

mapping data, with both input and output areas being separate. Element definitions are as

follows:

<AIN_DEF> - Header element to notify an analog input definition is to follow.

<ANY_OFFSET> - Number of bytes offset to the start of analog input data as

defined in the NetTools mapping of dual port memory, starting at 0.

<QTY> - Number of consecutive analog inputs defined in NetTools for this

device.

<WIDTH> - Width in bytes of each analog value being scanned from the remote

device’s perspective. Either 2 or 4.

<CONTROLLER_A_START> - Analog input start offset for the M3-61A card, with

0 being the first analog input, as referenced by the controller. Each input is added

to the end of the total local input module. Module placement in rack does not

matter.

<CONTROLLER_A_QTY> - Number of Analog inputs to be defined for controller

access by this definition. Must be <= <QTY>. Typically it is the same as <QTY>

but in some cases you may not want to reference all the analog inputs.

<BIG_ENDIAN> - Defines type of data that is being scanned from the remote

DeviceNet device, 0 for little endian (default), 1 for big endian (not currently

supported).

</AIN_DEF> - Header element to notify an analog input definition is complete.

Example (Two analog inputs which are of type short (2 bytes each) begin at a byte offset

of 2 within the Anybus dualport memory as mapped by NetTools and are mapped as the

first 2 analog inputs on the M3-61A card):

<AIN_DEF>

<ANY_OFFSET>2</ANY_OFFSET>

<QTY>2</QTY>

<WIDTH>2</WIDTH>

<CONTROLLER_A_START>0</CONTROLLER_A_START>

<CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>

<BIG_ENDIAN>0</BIG_ENDIAN>

</AIN_DEF>

Analog Output Definitions

Analog output definitions are required if you have mapped any analog outputs to the I/O

area using NetTools. Some devices present analog information as bit sequences that can

be scanned, others require direct explicit messages. Only include analogs that are

scanned as I/O, not explicit messages in the total count. An entry is required for each

mapping done using NetTools. Additionally this section must precede any explicit

message tag definitions. Note that there are up to 512 bytes of output area available for

mapping data, with both input and output areas being separate. Element definitions are as

follows:

<AOUT_DEF> - Header element to notify an analog output definition is to follow.

<ANY_OFFSET> - Number of bytes offset to the start of analog output data as

defined in the NetTools mapping of dual port memory, starting at 0.

<QTY> - Number of analog outputs defined in NetTools for this device.

<WIDTH> - Width in bytes of each analog value being written, from the remote

device’s perspective. Either 2 or 4.

<CONTROLLER_A_START> - Analog output start offset for M3-61A card, with 0

being the first analog output, as referenced by the controller. Each output is

added to the end of the total local output modules. Module placement in rack

does not matter.

<CONTROLLER_A_QTY> - Number of Analog outputs to be defined for

controller access by this definition. Must be <= <QTY>. Typically it is the same

as <QTY> but in some cases you may not want to reference all the analog outputs.

<BIG_ENDIAN> - Defines type of data that is being scanned from the remote

DeviceNet device, 0 for little endian (default), 1 for big endian (not currently

supported).

</AOUT_DEF> - Header element to notify an analog output definition is complete.

Example (Two analog outputs which are of type short (2 bytes each) begin at a byte

offset of 1 within the Anybus dualport output memory as mapped by NetTools and are

mapped as the first 2 analog outputs on the M3-61A card):

<AOUT_DEF>

<ANY_OFFSET>1</ANY_OFFSET>

<QTY>2</QTY>

<WIDTH>2</WIDTH>

<CONTROLLER_A_START>0</CONTROLLER_A_START>

<CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>

<BIG_ENDIAN>0</BIG_ENDIAN>

</AOUT_DEF>

Outputs start at offset 0 when using NetTools. 1 means the first byte is 8 bits of

output data prior to the analog output definition.

Exclude Input Definitions

Many devices provide additional information over and above the standard inputs, such as

status information. Typically this information is mapped as part of the digital inputs. In

many cases it may be beneficial to exclude this information from the general input map,

thus reducing the number of inputs appearing on DeviceNet as well as simplifying the

interface. This is done using the <EXCLUDE_DIN> element, which should be the last

section defined in the configuration file, after tags and I/O declaration. This allows you

to offset into the buffer mapped by NetTools and mark bytes to be ignored.

<EXCLUDE_DIN> - Header element to notify an exclude input definition is to follow.

<ANY_OFFSET> - Number of bytes offset, as defined in the NetTools mapping of

dual port memory, to the start of input data to be excluded.

<QTY> - Number of bytes to exclude from the input list.

</EXCLUDE_DIN> - Header element to notify an exclude input definition is complete.

Example: Wago controllers with 2 analog inputs and an 8 input digital card returns 6

bytes, with the first 4 being analog data, 5
th

 byte digital input and the 6
th

 status

information. To avoid having the status information as part of the digital inputs, the

following would be used, assuming first module defined with NetTools:

<EXCLUDE_DIN>

<ANY_OFFSET>5</ANY_OFFSET >

<QTY>1</QTY>

</EXCLUDE_DIN>

Exclude Output Definitions

Many devices provide additional outputs over and above those that may want to be used

and mapped into the general IO space. As with the digital inputs, there is a way to

exclude this byte area from definitions. This is done using the <EXCLUDE_DOUT>

element, which should be the last section defined in the configuration file, after tags and

I/O declaration. This allows you to offset into the buffer mapped by NetTools and mark

bytes to be ignored.

<EXCLUDE_DOUT> - Header element to notify an exclude output definition is to follow.

<ANY_OFFSET> - Number of bytes offset, as defined in the NetTools mapping of

dual port memory, to the start of output data to be excluded.

<QTY> - Number of bytes to exclude from the output list.

</EXCLUDE_DOUT> - Header element to notify an exclude output definition is

complete.

Example: A device has output data defined for the first 6 bytes, thus causing 48 outputs

to be mapped to the Model 5300 controller. The last 8 outputs are not used. Below

removes them from the mapping resulting in only 40 outputs.

<EXCLUDE_DOUT>

<ANY_OFFSET>5</ANY_OFFSET >

<QTY>1</QTY>

</EXCLUDE_DOUT>

Simple Digital I/O Example

Assuming the scanned devices only consist of digital inputs and outputs, a very simple

XML file can be loaded. If there is only a single DeviceNet Master card you may create

a universal file that basically says map all remaining digital I/O in the system to

DeviceNet:

<?xml version="1.0" encoding="utf-8" ?>
<DEVICENET_DEF>
 <VERSION>0102</VERSION>
 <DIN_DEF>
 <QTY>1024</QTY>
 </DIN_DEF>
 <DOUT_DEF>
 <QTY>1024</QTY>
 </DOUT_DEF>
</DEVICENET_DEF>

If you wish to use more than one card simply set the QTY elements to their actual values.

This will allow each of the cards to know what I/O they are responsible for. It is

generally good practice to set the I/O to the actual total so the controller will fault if I/O

that does not exist is written to.

Simple Analog I/O Example

Some devices have the ability to provide both digital and analog information in the

scanned data. One such controller is the Wago 750-306 DeviceNet Slave. When

configuring this device a simple example is:

<?xml version="1.0" encoding="utf-8"?>
<DEVICENET_DEF>
 <VERSION>0203</VERSION>
 <DIN_DEF>

 <QTY>2</QTY>
 </DIN_DEF>
 <DOUT_DEF>
 <QTY>4</QTY>
 </DOUT_DEF>
 <!-- Analog Inputs defined, AIN1 and AIN2 -->
 <AIN_DEF>
 <ANY_OFFSET>0</ANY_OFFSET>
 <QTY>2</QTY>
 <WIDTH>2</WIDTH>
 <CONTROLLER_A_START>0</CONTROLLER_A_START>
 <CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>
 <BIG_ENDIAN>0</BIG_ENDIAN>
 </AIN_DEF>
 <!-- Analog Outputs defined, AOUT1 and AOUT2 -->
 <AOUT_DEF>
 <ANY_OFFSET>0</ANY_OFFSET>
 <QTY>2</QTY>
 <WIDTH>2</WIDTH>
 <CONTROLLER_A_START>0</CONTROLLER_A_START>
 <CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>
 <BIG_ENDIAN>0</BIG_ENDIAN>
 </AOUT_DEF>
</DEVICENET_DEF>

The above example is for 2 digital inputs, 4 digital outputs, 2 analog inputs and 2 analog

outputs. All these I/O would appear as though they were local to the Model 5300

application program and the normal digital input/output and analog input/output register

access would apply.

XML Configuration File Storage

The configuration file is stored in resident serial flash memory. There are approximately

8Mbytes available for storage thus little chance of running out of space. The file is

loaded into memory during Model 5300 initialization, reporting back to the main

controller the I/O configuration for each module. The serial flash is loaded similar to re-

flashing modules, using the telnet remote administrative screens. Assuming slot 4 for the

module and an xml file called M361ASDTV0102.xml, the following is a command line

example:

fupdate slot 4 M361ASDTV0102.xml

It may take up to a couple of minutes for the command to complete execution and no

display feedback is given until the re-flash is completed. The file must reside in the

/_system/Firmware sub-directory prior to command execution. The controller must also

be reset after the file is transferred to the M3-61A for the new version to become active.

Assuming the <VERSION> element was set in the XML file, you may then use the get

anybus info command to verify proper loading.

The M3-61A has extensive support for explicit messaging. Messages

may be set up to read and write on a one-shot or polled basis. Model

5300 registers may act as either a source or destination of explicit

message data depending upon the type of message being implemented,

thus providing extensive data mapping. The configuration of explicit

messages is done using a special XML file format to define ‘tags’.

Multiple ‘tags’ may exist, each supplying the parameters needed to create an explicit

message.

When defining XML parameters, each XML element begins with < > and ends

with </ >. Also, all data must be on the same line for each parameter.

Register Summary

Explicit messages can be sent and received by the M3-61A. In doing so information read

from a remote device (get attribute) must be placed somewhere for program access, as

well as when a write (set attribute) is done data must be sourced. There are a number of

locations for data that may be mapped to/from messages. Chapter 9: Special Register

Features details some of these to a greater degree but in summary:

5300 Controller Register – All registers local to the Model 5300, including Variants,

may be accessed to source or store information from an explicit message by the use of

data mapping.

High Speed Dualport Registers – 256 general dual port registers are shared by the

controller and the M3-61A card. These are accessed directly by the M3-61A via data

mapping and by the use of variant 36825 in a Model 5300 application program.

Global Common Bits – The Model 5300 CPU and all 40 series motion cards support

global bits that may be set or cleared. These may be accessed directly by explicit

messages and used as flags for executing Motion Sequence Blocks (MSBs) resident on

other modules or monitored by Quickbuilder programs.

Global Common Vars – The Model 5300 CPU and all 40 series motion cards support

256 common bytes that may be written to or read. . These may be accessed directly by

explicit messages and used as flags for executing MSBs resident on other modules or

monitored by Quickbuilder programs

Tags

An explicit message ‘tag’ defines all the parameters of a specific message. It is stored in

an XML format and may be created in a simple text editor for download to the M3-61A

card. Each ‘tag’ has an assigned text string name and may be invoked from Quickbuilder

applications by that name (TBD) or run from special 5300 registers by referencing its

index in the file (Chapter 9: Special Register Features). An index is simply which tag

comes first, with the first defined being 0. The parameters of a tag, in XML format, are

as follows:

<TAG> - Start of new Tag definition is to follow
.

<NAME> - ASCII string for high level name of Tag. Up to 32 characters and

should be unique, case sensitive. For future Quickbuilder use.

<DEST_MACID> - DeviceNet MACID that explicit message is to be directed

towards.

<SCANTIME> - How often, in milliseconds, that this Tag should run. Zero (0)

means invoked on demand only, not polled. [Optional, defaulting to 0.]

<AUTOSTART> - By default a Tag is not run at power up or reset, it must be

started by an external source such as a command over a communications channel

(register write to 3032, Chapter 9: Special Register Features) or an external

Quickstep or Quickbuilder program. To automatically start a Tag and run it based

upon its SCANTIME, set this parameter to a 1. [Optional, defaulting to 0.]

<OPTIONFLAGS> - This parameter defines which explicit message items (Class

ID, Instance ID and Attribute) are to be included in the message, consisting of a

bit OR of Class ID (Bit 0, 0x0001), Instance ID (Bit 1, 0x0002), and Attribute

(Bit 2, 0x0004). [Typically this parameter is set to decimal 7, all required.]

<SERVICECODE> - The type of explicit message to be performed such as a GET

ATTRIBUTE (14, 0x0E) or a SET ATTRIBUTE (16, 0x10).

<CLASSID> - The Class ID required for the explicit message being defined.

[Required if specified by OPTIONFLAGS.]

<INSTANCEID> - The Instance ID required for the explicit message being

defined. [Required if specified by OPTIONFLAGS.]

<ATTRIBUTE> - The Attribute required for the explicit message being defined.

[Required if specified by OPTIONFLAGS.]

<WRITE_PROCESSBLK> - The WRITE PROCESS BLOCK lists where to get each

item which is to be written by an explicit message. Since a message may contain

multiple parameters, each individual entry is listed as multiple <WRITE_ENTRY>

items. Each item maps the written data to some optional source, like a data

register or analog output. [Only one per tag.]

<MSGBLOCK> - The MSGBLOCK is only required with a WRITE_PROCESSBLK

and only one is defined. It consists of two characters, which represent a hex

value, thus 00 is really 0x00 and 0102 is 0x01 and 0x02. It is used to both define

the length of data to be written during an explicit message and to pre-fill the

message buffer with any desired character. It may then be overlaid, as desired

with data sourced from other locations, such as a register. In some cases it may

simply remain static to write a constant. In most cases it will simple be filled with

00’s as a space filler. Reference the Analog Explicit Message Tag Example

section.

<READ_PROCESSBLK> - The Read Process Block lists where to store each item

which is to be read by an explicit message. Since a message may contain multiple

parameters each individual entry is listed as multiple <READ_ENTRY> items.

Each item maps the read data to some optional source, like a data register or

analog input. [Only one per tag.]

<WRITE_ENTRY> - Multiple WRITE ENTRY items define the mapping of

message items, one for one. Write entries define where to get data that is

to be written by an explicit message.

<READ_ENTRY> - Multiple READ ENTRY items define the mapping of

message items, one for one. Read entries define where to put data after it

is read by an explicit message.

<OFFSET> - Byte offset into explicit message data.

<LENGTH> - Length of data desired at OFFSET into message.

<FLAGS> - Data type in explicit message. 0 for little endian (intel

format) or 1 for big endian. [Default is 0 for little endian, big

endian is not currently supported.]

<LOCATION> - On READ ENTRY, where to store data once read.

On WRITE ENTRY, where to obtain data prior to write. Defined as

follows:

 0 – NOOP: Do nothing, no operation on read. On

WRITE_ENTRY the MSGBLOCK will be treated as constant

data and written as it exists. Can be used to initialize one-

time data setups with static information.

 32768 – Register Access: read/write any Model 5300

register, including Variants. REGNUM defines the register

to access. INDEXROW is a variant row, INDEXCOL is a

variant column. TYPE defines the data type:

VARIANT_INTEGER BIT0 (1, 0x0001)

VARIANT_STRING BIT2 (4, 0x0004)

VARIANT_FLOAT BIT3 (16, 0x0008)

VARIANT_DOUBLE BIT4 (32, 0x0010)

VARIANT_LLONGINTEGER (256, 0x0100)

 65536 – Global Common Bits: Get/set bit in REGNUM

based upon INDEXROW mask. On a write operation the

global common bit is read and if true the byte referenced by

OFFSET into message is OR’ed with INDEXROW, else bits

in INDEXROW are cleared. On a read operation the read

data is masked with INDEXROW and the global common bit

referenced by REGNUM is either set or cleared depending

upon mask result. True sets bit. LENGTH may be 1 or 2.

 131072 – Global Comman Vars: Get/set byte in REGNUM.

On a write operation the global common variable byte is

read and inserted into the explicit message at OFFSET into

the message. On a read operation the global common

variable is written with that read by the explicit message

using data at OFFSET into the message.

 524288 – Dualport Register: Read/write local dualport

register. Each card has 128 local registers which can store

integers and floats. They are referenced via Variant

register 36825 where the row is the M3-61A card (0 for

first) and column is the desired register, 0 to n. REGNUM

references the register of interest, 1 being the first.

OFFSET, offsets into the explicit message block. LENGTH

defines number of bytes to move from message on read or

to it on write. TYPE defines the data type:

VARIANT_INTEGER BIT0 (1, 0x0001)

VARIANT_FLOAT BIT3 (16, 0x0008)

 1048578 – Analog Input where REGNUM is the local analog

input, first being 0. LENGTH is number of bytes to move in

or out of explicit message buffer. INDEXROW is number of

consecutive analog inputs. INDEXCOL is width of analog

data, 2 or 4 bytes, in explicit message. OFFSET is number

of bytes to start in explicit message, incremented by

INDEXCOL for each analog input. This reference adds an

analog input to those available and reported by the card.

 2097152 – Analog Output where REGNUM is the local

analog output, first being 0. LENGTH is number of bytes to

move in or out of explicit message buffer. INDEXROW is

number of consecutive analog outpus. INDEXCOL is width

of analog data, 2 or 4 bytes, in explicit message. OFFSET is

number of bytes to start in explicit message, incremented

by INDEXCOL for each analog output. This reference adds

an analog outputs to those available and reported by the

card.

<TYPE> - Data Type referencing:

VARIANT_INTEGER BIT0 (1, 0x0001)

VARIANT_STRING BIT2 (4, 0x0004)

VARIANT_FLOAT BIT3 (16, 0x0008)

VARIANT_DOUBLE BIT4 (32, 0x0010)

VARIANT_LLONGINTEGER (256, 0x0100)

<REGNUM> - Item referencing, refer to <LOCATION> parameter

for specifics.

<INDEXROW> - Index based upon <LOCATION> selection.

<INDEXCOL> - Index based upon <LOCATION> selection.

</TAG> - Tag terminator, definition complete.

No more than 64 explicit messages may be outstanding (awaiting response) on the

network at one time. To help prevent this, a request for a scanned message when > 40

messages are currently outstanding will be delayed.

Explicit Message Heartbeat

When the first explicit message is initiated to a remote node, it can take up to 2 seconds

for the connection to take place. This is due to the fact that when the master tries to send

the explicit message, it first needs to allocate some kind of connection for this, so it first

tries with UCMM (Unconnected Message Manager) and not all devices support this. If

UCMM fails it falls back to using the commands associated with 'group 2' devices (Wago

750-306 is such a device). The sequence is something like:

 Receive the command from the application.

 Make one attempt with UCMM.

 1s timeout since this will not work with a 'group 2' device.

 Make a second attempt with UCMM.

 1s timeout again since this will not work with a 'group 2' device.

 Fall back to using the command set for a 'group 2' device which now will reply

quickly.

 Relay the answer to the application.

Once the connection is obtained it will be maintained for approximately 10 seconds.

During this period additional messages will occur very fast, typically less than 20

milliseconds depending on the response of the remote node. For explicit messages that

occur randomly, directed towards devices that do not support UCMM, you must ensure

that they repeat in less than 10 seconds, or a message delay of 2 seconds could possibly

occur. If this cannot be tolerated a simple solution is to create a heart beat tag. This is

simply an explicit message that is sent periodically and reads the device product code

(Get Attribute), doing nothing with the data. An example of a heartbeat tag would be:

 <TAG>
 <NAME>heartbeatMACID3</NAME>
 <DEST_MACID>3</DEST_MACID>
 <!—Run tag every 8 seconds, timeout is around 10 on connection -->
 <SCANTIME>8000</SCANTIME>
 <!—Automatically start at boot -->
 <AUTOSTART>1</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <!-- Explicit message for keeping connection open -->
 <SERVICECODE>14</SERVICECODE>
 <CLASSID>1</CLASSID>
 <INSTANCEID>1</INSTANCEID>
 <ATTRIBUTE>3</ATTRIBUTE>
 <READ_PROCESSBLK>
 <!—Data mapping for keeping connection open, ignore data -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, returned by remote device in data block -->
 <LENGTH>1</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case none -->
 <LOCATION>0</LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Desired register to write to, none in this case -->
 <REGNUM>0</REGNUM>
 <!-- Variant row -->
 <INDEXROW>0</INDEXROW>
 <!-- Variant column -->
 <INDEXCOL>0</INDEXCOL>
 </READ_ENTRY>
 </READ_PROCESSBLK>
 </TAG>

Analog Explicit Message Tag Example

Some remote devices, such as Wago, allow analog inputs and outputs to be defined as

scanned I/O as well as using explicit messages. The example below first defines the

analog inputs of a Wago 750-467 card as the first two scanned but then also defines the

same analog inputs as explicit messages. Thus when referenced from a Quickstep

program the analogs would appear as follows:

First Controller Analog input – First Wago Analog Input via scanned I/O.

Second Control Analog input – Second Wago Analog Input via scanned I/O.

Third Controller Analog input – First Wago Analog Input via explicit msg.

Fourth Controller Analog input – Second Wago Analog Input via explicit msg.

The controller would also report 4 analog inputs are handled by the DeviceNet Master

module. The explicit message data returned on the network would appear as follows:

A class 4 (assembly), instance 9, attribute 3, Get Attribute explicit message is used:

The tag definitions are as follows:

 <!-- Define the analog inputs available via scanned IO and make them the first 2 available to the controller -->
 <AIN_DEF>
 <ANY_OFFSET>0</ANY_OFFSET>
 <QTY>2</QTY>
 <WIDTH>2</WIDTH>
 <CONTROLLER_A_START>0</CONTROLLER_A_START>
 <CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>
 <BIG_ENDIAN>0</BIG_ENDIAN>
 </AIN_DEF>
 <TAG>
 <!-- Define the first analog input as an explicit message and scan it every 100 milliseconds -->
 <NAME>analogInput3_4</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>100</SCANTIME>
 <AUTOSTART>1</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>14</SERVICECODE>
 <CLASSID>4</CLASSID>
 <INSTANCEID>9</INSTANCEID>
 <ATTRIBUTE>3</ATTRIBUTE>
 <READ_PROCESSBLK>
 <!—Data mapping for Analog inputs, AIN1 -->

 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, not used for analog -->
 <LENGTH>2</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case Analog -->
 <LOCATION>1048576</LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Local analog start offset, 0 is first -->
 <REGNUM>0</REGNUM>
 <!-- Number of consecutive Analogs -->
 <INDEXROW>1</INDEXROW>
 <!-- Data width in returned packet, 2 or 4 -->
 <INDEXCOL>2</INDEXCOL>
 </READ_ENTRY>
 <!—Data mapping for Analog inputs, AIN2 -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>2</OFFSET>
 <!-- Length of data interested in, not used for analog -->
 <LENGTH>2</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case Analog -->
 <LOCATION>1048576</LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Local analog start offset, 0 is first -->
 <REGNUM>1</REGNUM>
 <!-- Number of consecutive Analogs -->
 <INDEXROW>1</INDEXROW>
 <!-- Data width in returned packet, 2 or 4 -->
 <INDEXCOL>2</INDEXCOL>
 </READ_ENTRY>
 </READ_PROCESSBLK>
 </TAG>

An alternative to the above example would be to eliminate the second

READ_ENTRY and simply increase the INDEX_ROW of the first one to 2. This only

applies when items are sequential.

The above is an example of a Get Attribute and its mapping. Below is an example of

defining an analog output and a Set Attribute command. In this case the Wago has a 2

channel output module and the explicit message requires that when a write occurs both

analog outputs be written in the same message.

A class 4 (assembly), instance 3, attribute 3, explicit message is used:

This tag maps data from the first two analog output registers to the explicit message sent

to the Wago and executes whenever the Model 5300 controller Analog Output 1 or 2 are

written to (assuming no local analog output modules):

 <TAG>
 <NAME>analogOutput1_2</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>0</SCANTIME>
 <AUTOSTART>0</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>16</SERVICECODE>
 <CLASSID>4</CLASSID>
 <INSTANCEID>3</INSTANCEID>
 <ATTRIBUTE>3</ATTRIBUTE>
 <WRITE_PROCESSBLK>
 <!-- Explicit message data filler required for Analog output, AOUT1/2, nulls, overlaid by actual -->
 <MSGBLOCK>00000000</MSGBLOCK>
 <WRITE_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, not used for analog, but set to size of integer for consistency -->
 <LENGTH>4</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to get the data for the write, in this case local Analog -->
 <LOCATION>2097152</LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Local analog start offset, 0 is first -->
 <REGNUM>0</REGNUM>
 <!-- Number of consecutive Analogs -->
 <INDEXROW>2</INDEXROW>
 <!-- Data width required by explicit message for each analog output -->
 <INDEXCOL>2</INDEXCOL>
 </WRITE_ENTRY>
 </WRITE_PROCESSBLK>
 </TAG>

A number of special registers are available to support the M3-61A.

These consist of tag execution control as well as general storage for

shared DeviceNet remote mapped data.

Tag Execution Registers

Explicit message tags may be run automatically from the configuration file in a scanned

mode but at times there is a need to run a message on demand. There may also be the

need to begin a scan and to stop it. Thus the following registers are made available:

3031 – Anybus Module Selection Register, with the first module being 0, default.

3032 – Tag Execution Register, writing a tag index value to this register will cause its

defined explicit message to be queued for transmission. The first tag in the configuration

file is considered index 0. Upon writing a tag index the result register, 3033, will display

a –1, followed by either a 0 for success or an error code as defined below:

 0 – Message successfully queued for transmission.

 66 – Tag does not exist.

 45 – Out of memory.

The above allows only access to the queue results of a message being sent. For

diagnostic purposes it may be desirable to access the results returned by the DeviceNet

network for the last explicit message sent by a tag. This may be obtained for any tag by

setting bit 31 (0x80000000) of the tag desired. Thus to inspect the status of the tag at

index 1 you would write a 0x80000001 (2147483649) to register 3032.

The status that will appear in register 3033 will be 0 if the tag is not executing or is

successful. Alternatively the ODVA result code returned by the network will appear. It

is represented by 2 bytes and referenced in Appendix B, Status Codes of The CIP

Networks Library, Volume 1, Common Industrial Protocol (CIP). A few of the most

common codes are listed below:

(First byte is general status, second byte is extended status and always 0xff, thus

appearing as 0xff?? in the register.)

0x01 – Connection failure.

0x02 – Resource unavailable.

0x03 – Invalid parameter value, also 0x20.

0x07 – Connection lost.

0x08 – Service not supported.

0x09 – Invalid attribute value.

0x0a – Attribute list error.

0x0e – Attribute not settable.

0x10 – Device state conflict.

0x11 – Reply data too large.

0x13 – Not enough data.

0x14 – Attribute not supported

0x15 – Too much data.

0x1f – Vendor specific error, the high order byte, 0xff will reflect the error.

0x20 – Invalid parameter.

3033 – Explicit Message Result Register. This register is used by registers 3032 and

3034 for command results display.

3034 – Tag Stop Execution Register. To stop a tag from executing that is currently in

scan mode write the index number of that tag to this register. The results will appear in

register 3033.

 0 – Message successfully queued for transmission.

 66 – Tag does not exist.

High Speed Dualport Registers

In addition to the main Model 5300 registers, special high speed registers that are

accessible to both the main Model 5300 CPU and the DeviceNet card are available to

map explicit message data being read or written. Mapping to a controller register

involves RPC (remote procedure calls). In other words, the DeviceNet program

interrupts the main Model 5300 processor and makes a call to software on the main CPU,

passing data packets across the backplane. For large amounts of data flow or high update

rates this can slow the system down. A better method is to use the 256 shared register

area, Variant array 36825. This is a two dimensional array with the row reflecting the

module number (0 = first), and the column being the register number (0 = first). Thus

36825[0][0] would be the first special register on the first DeviceNet module,

36825[0][1] would be the second, etc.

The declared data type used in the configuration file, VARIANT_INTEGER or

VARIANT_FLOAT must match any declaration in Quickbuilder. Quickstep is limited to

VARIANT_INTEGER. In most DeviceNet applications only integer will be used.

Example 1: Example of an xml tag definition to read the first analog input from a Wago

controller (750-306) and place it in local register 6. This uses a class 4, instance 9, and

attribute 3, get attribute explicit message:

 <TAG>
 <NAME>registerLocal6</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>0</SCANTIME>
 <AUTOSTART>0</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>14</SERVICECODE>
 <CLASSID>4</CLASSID>
 <INSTANCEID>9</INSTANCEID>
 <ATTRIBUTE>3</ATTRIBUTE>
 <READ_PROCESSBLK>
 <!—Data mapping for collecting data for local dualport register 6, where 0 is the first -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, returned by remote device in data block -->
 <LENGTH>2</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case Dualport local register -->
 <LOCATION>524288 </LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Desired register to write to -->
 <REGNUM>6</REGNUM>
 <!-- Variant row, not used -->
 <INDEXROW>0</INDEXROW>
 <!-- Variant column, not used -->
 <INDEXCOL>0</INDEXCOL>
 </READ_ENTRY>
 </READ_PROCESSBLK>
 </TAG>

Example 2: Example of an xml tag definition to read the first and second analog input

from a Wago controller (750-306) and place it in local register 6 and 7. The Wago

returns an array of all analogs in the single explicit message, in this case a 2 channel 750-

467 analog input card is installed, register 6 will receive analog input 1, register 7 analog

input 2, after successful execution:

 <TAG>
 <NAME>registerLocal6_7</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>0</SCANTIME>
 <AUTOSTART>0</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>14</SERVICECODE>
 <CLASSID>4</CLASSID>
 <INSTANCEID>9</INSTANCEID>
 <ATTRIBUTE>3</ATTRIBUTE>
 <READ_PROCESSBLK>
 <!—Data mapping for collecting data for local dualport register 6, where 0 is the first -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, returned by remote device in data block -->
 <LENGTH>2</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case Dualport local register -->
 <LOCATION>524288 </LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Desired register to write to -->
 <REGNUM>6</REGNUM>
 <!-- Variant row, not used -->
 <INDEXROW>0</INDEXROW>
 <!-- Variant column, not used -->
 <INDEXCOL>0</INDEXCOL>
 </READ_ENTRY>
 <!—Data mapping for collecting data for local dualport register 7, where 0 is the first -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>2</OFFSET>
 <!-- Length of data interested in, returned by remote device in data block -->
 <LENGTH>2</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case Dualport local register -->
 <LOCATION>524288 </LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Desired register to write to -->
 <REGNUM>7</REGNUM>
 <!-- Variant row, not used -->
 <INDEXROW>0</INDEXROW>
 <!-- Variant column, not used -->
 <INDEXCOL>0</INDEXCOL>
 </READ_ENTRY>
 </READ_PROCESSBLK>
 </TAG>

Example 3: Example of an xml tag definition to read Model 5300 register 125 and write

it to a storage location in the Wago controller (750-306), tag 1. Additionally tag 2 will

read that same location and place it in the Model 5300 register 126, for verification. Each

is invoked by writing the tag number to register 3032. This uses a class 100, instance 1,

and attribute 2, get attribute explicit message. Below is the full file listing, which

assumes the Wago was defined with NetTools with 2 digital inputs, 4 digital outputs, 2

analog inputs, and 2 analog outputs, all treated as scanned I/O.

<?xml version="1.0" encoding="utf-8"?>
<DEVICENET_DEF>
 <VERSION>0202</VERSION>
 <DIN_DEF>
 <QTY>2</QTY>
 </DIN_DEF>
 <DOUT_DEF>
 <QTY>4</QTY>
 </DOUT_DEF>
 <!-- Analog Inputs defined, AIN1 and AIN2 -->
 <AIN_DEF>
 <ANY_OFFSET>0</ANY_OFFSET>
 <QTY>2</QTY>
 <WIDTH>2</WIDTH>
 <CONTROLLER_A_START>0</CONTROLLER_A_START>
 <CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>
 <BIG_ENDIAN>0</BIG_ENDIAN>
 </AIN_DEF>
 <!-- Analog Outputs defined, AOUT1 and AOUT2 -->
 <AOUT_DEF>
 <ANY_OFFSET>0</ANY_OFFSET>
 <QTY>2</QTY>
 <WIDTH>2</WIDTH>
 <CONTROLLER_A_START>0</CONTROLLER_A_START>
 <CONTROLLER_A_QTY>2</CONTROLLER_A_QTY>
 <BIG_ENDIAN>0</BIG_ENDIAN>
 </AOUT_DEF>
 <TAG>
 <!-- Tag Index 0 -->
 <NAME>heartbeatMACID3</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>8000</SCANTIME>
 <AUTOSTART>1</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part

 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>14</SERVICECODE>
 <CLASSID>1</CLASSID>
 <INSTANCEID>1</INSTANCEID>
 <ATTRIBUTE>3</ATTRIBUTE>
 <READ_PROCESSBLK>
 <!-- Explicit message for keeping connection open -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, returned by remote device in data block -->
 <LENGTH>1</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case none -->
 <LOCATION>0</LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>0</TYPE>
 <!-- Desired register to write to -->
 <REGNUM>0</REGNUM>
 <!-- Variant row -->
 <INDEXROW>0</INDEXROW>
 <!-- Variant column -->
 <INDEXCOL>0</INDEXCOL>
 </READ_ENTRY>
 </READ_PROCESSBLK>
 </TAG>
 <TAG>
 <!-- Tag Index 1 -->
 <NAME>Table_Num_to_registerRemote126</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>0</SCANTIME>
 <AUTOSTART>0</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>14</SERVICECODE>
 <CLASSID>100</CLASSID>
 <INSTANCEID>1</INSTANCEID>
 <ATTRIBUTE>2</ATTRIBUTE>
 <READ_PROCESSBLK>
 <!-- Read Coupler Configuration Object Table Num from Wago and storing it to PLC Register 126 -->
 <READ_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data interested in, returned by remote device in data block -->
 <LENGTH>1</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to store the data once read, in this case register -->
 <LOCATION>32768</LOCATION>
 <!-- VARIANT_INTEGER, not used but is type -->
 <TYPE>1</TYPE>
 <!-- Desired register to write to -->
 <REGNUM>126</REGNUM>
 <!-- Variant row -->
 <INDEXROW>0</INDEXROW>

 <!-- Variant column -->
 <INDEXCOL>0</INDEXCOL>
 </READ_ENTRY>
 </READ_PROCESSBLK>
 </TAG>
 <TAG>
 <!-- Tag Index 2 -->
 <NAME>registerRemote125_to_Table_Num</NAME>
 <DEST_MACID>3</DEST_MACID>
 <SCANTIME>0</SCANTIME>
 <AUTOSTART>0</AUTOSTART>
 <!-- OPTIONFLAGS enable inclusion of ClassID, InstanceID and Attribute as part
 of the MSGBLOCK. They will precede the block.
 #define EXPLICIT_CLASSID 0x0001
 #define EXPLICIT_INSTANCEID 0x0002
 #define EXPLICIT_ATTRIBUTE 0x0004
 -->
 <OPTIONFLAGS>7</OPTIONFLAGS>
 <SERVICECODE>16</SERVICECODE>
 <CLASSID>100</CLASSID>
 <INSTANCEID>1</INSTANCEID>
 <ATTRIBUTE>2</ATTRIBUTE>
 <WRITE_PROCESSBLK>
 <MSGBLOCK>00</MSGBLOCK>
 <!-- Writing 5300 register 125 to Wago Table Number of Coupler Configuration Object -->
 <WRITE_ENTRY>
 <!-- Byte offset into message -->
 <OFFSET>0</OFFSET>
 <!-- Length of data to move into the message from register 125 -->
 <LENGTH>1</LENGTH>
 <!-- Little Endian format returned from device -->
 <FLAGS>0</FLAGS>
 <!-- Define where to get the data from to fill in message, in this case 5300 register, 125 -->
 <LOCATION>32768 </LOCATION>
 <!-- VARIANT_INTEGER -->
 <TYPE>1</TYPE>
 <!-- Desired register to source data from -->
 <REGNUM>125</REGNUM>
 <!-- Variant row, not used since not a variant register -->
 <INDEXROW>0</INDEXROW>
 <!-- Variant column, not used since not a variant register -->
 <INDEXCOL>0</INDEXCOL>
 </WRITE_ENTRY>
 </WRITE_PROCESSBLK>
 </TAG>
</DEVICENET_DEF>

Status Registers

Status and fault registers are available for quick program reference.

12333 – Network Module Selection Register (read/write) – 0 if no DeviceNet or

Ethercat/IP Master cards available, 1 (default) to select first card’s node status to appear

in 13400 – 13463 registers. Will accept entries up to the maximum number of Anybus

Master cards installed. Note that Ethernet/IP Master will also count as a card if

intermixed with DeviceNet Master cards.

13464 – Online Status Register (read only) – 0 if offline or faulted, 1 if online and

scanning configured nodes. Register 12333 selects which Master card to monitor. Valid

for Ethernet/IP and DeviceNet Modules.

13400 – 13463 – Node Status Registers (read only) – Represents status of MAC ID 0 to

63. 0 if offline, 1 if online and operations, else fault definition as below. Register 12333

selects which Master card to monitor. Only valid for DeviceNet Master Modules.

Value
Dec

Value
Hex

Meaning Value
Dec

Value
Hex

Meaning

00 0x00 Offline 84 0x54 Node not yet initialized

70 0x46 Duplicate MAC ID failure 85 0x55 Receive buffer overflow

71 0x47 Scanner configuration error 86 0x56 Node changed to IDLE mode

72 0x48 Device communication error 87 0x57 Shared master error (not used)

73 0x49 Wrong device type 88 0x58 Shared choice error (not used)

74 0x4A Port over-run error 89 0x59 Keeper object failure (not used)

75 0x4B Network failure 90 0x5A CAN port disabled (not used)

76 0x4C No CAN messages detected 91 0x5B Bus off

77 0x4D Wrong data size 92 0x5C No bus power detected

78 0x4E No such device found 95 0x5F Updating flash (not used)

79 0x4F Transmit failure 96 0x60 In test mode (not used)

80 0x50 Node in IDLE mode 97 0x61 Halted by user cmd. (not used)

81 0x51 Node in fault mode 98 0x62 Firmware failure (not used)

82 0x52 Fragmentation error 99 0x63 System failure

83 0x53 Unable to initialize node 01 0x01 Online and operational

Blank

This section contains a few configuration examples of different devices

that may be connected to the M3-61A, in addition to the examples in

Chapter 6.

Control Technology Corporation Model 5300 DeviceNet Slave

The CTC Model 5300 can be a Master and/or a Slave. In a Slave configuration all local

digital and analog IO are available to the DeviceNet network. The example to follow

consists of the following configuration:

M3-20A – Slot 1, 16 input, 16 output digital IO module. 2 bytes produced, 2 bytes

consumed.

M3-20A – Slot 2, 16 input, 16 output digital IO module. 2 bytes produced, 2 bytes

consumed.

M3-31A – Slot 3, 16 input, +/-10V analog input module. 64 bytes produced.

M3-32B – Slot 4, 16 output, +/-10V analog output module. 64 bytes consumed.

M3-61B – Slot 5/6, DeviceNet Slave module.

The produced/consumed data presented to NetTools consists of digital first, followed by

analog data:

RX bytes, produced:

struct

{

 unsigned char digitalIn[Number of digital inputs / 8];

 int analogIn[Number of analog inputs];

} IOInputs;

TX bytes, consumed:

struct

{

 unsigned char digitalOut[Number of digital outputs / 8];

 int analogOut[Number of analog outputs];

} IOOutputs;

In summary the proper RX/TX polled bytes can be derived adding the bytes available for

each module and/or confirmed using NetTools and referencing the Model 5300 controller

Anybus-S parameter area, as shown in the example.

The standard Anybus-S DeviceNet Slave EDS file (72-7255-EDS files.zip,

EDS_ABS_DEV_V_2_3.eds) is used for configuration and is available for download at

both the CTC and anybus websites:

http://www.anybus.com/support/support.asp?PID=72&ProductType=Anybus-S

Example of a CTC Model 5300 Slave Configuration

With the EDS file installed either go online and scan the network or add the AnyBus-S

DeviceNet module manually by dragging and dropping the selection and setting the

MACID desired:

Double clicking from within NetTools the AnyBus-S DeviceNet Icon will allow you to

verify the proper produced and consumed byte count (assuming online):

http://www.anybus.com/support/support.asp?PID=72&ProductType=Anybus-S

Synchronize with the device:

Reference 1 (polled production) and 2 (polled consumption). Note that #7 input 1 length

is 68 bytes, this is RX or produced data:

Note that #19 output length is 68 bytes, this is TX or consumed data:

Close the Slave dialog box and double click the Anybus-M icon to begin configuration,

selecting the ‘Scanlist’ tab and then move the Anybus-S to the active scan list (Added

column):

Configure the polling as desired, entering 68 as the RX/TX produced/consumed bytes.

Note the 68 was from the Anybus-S parameters or that calculated based on installed

modules.

Click OK after any changes and the scan list will appear as below, select the Input tab to

begin mapping the produced data (received):

As in Chapter 6: NetTools Example, select the item to be mapped followed by Automap:

Do the same for the output data:

Turck FDN20

The Turck FDN20 is a digital input/output slave node available in a number of different

configurations. The example here discusses the 16 in, 16 out unit. The EDS file FDN20-

16XSG_R4 was installed into NetTools. As before, drag and drop it into the network

area, setting its MACID as desired:

Double click the Anybus-M icon to begin configuration, selecting the ‘Scanlist’ tab and

then move the FDN20 to the active scan list (Added column):

Configure the polling as desired, note that the EDS file states that there will be 3 received

bytes and 2 transmitted bytes:

Click OK after any changes and the scan list will appear as below; select the Input tab to

begin mapping the produced data (received):

As in Chapter 6: NetTools Example, select the item to be mapped followed by Automap:

Do the same for the output data:

Brooks DeviceNet MFCs

The Brooks Mass Flow Controller has a number of different models. This example

should be fairly generic as the EDS file addresses the SLA 58xx/68xx/69xx. The EDS

file Delta_MFC-Rel2.1 must be installed into NetTools. Due to a problem in NetTools

you must set your computer’s Region to that of Sweden prior to EDS installation, and

restore it to English/US afterwards. This is caused by a differing way in presenting

floating point information using commas instead of periods. This problem will be fixed

in a later release of NetTools but has been observed in V3.1.1.1.

Invoke NetTools as you normally would and just prior to importing the Brooks EDS file

do the following:

1. Set the Region to Sweden, you will need local administrator rights. Select Control

Panel->Regional and Language Options. The following will appear for English:

Change it to Swedish and select Apply:

2. In NetTools import the Brooks EDS file.

3. Set the region back to English, exit NetTools and re-load, proceed normally:

With the EDS file installed you may now proceed to map in the Brooks MFC. As before

drag and drop it into the network area setting its MACID as desired:

Double click the Anybus-M icon to begin configuration, selecting the ‘Scanlist’ tab and

then move Brooks to the active scan list (Added column):

Configure the polling as desired, note that the EDS file states that there will be 3 received

bytes and 2 transmitted bytes:

Click OK after any changes and the scan list will appear as below, select the Input tab to

begin mapping the produced data (received):

As in Chapter 6: NetTools Example select the item to be mapped followed by Automap:

Do the same for the output data:

Blank

The prior M3-61A release, firmware M361AV0101 is not compatible

with the new functionality and requires a couple of minor changes prior

to upgrade.

NetTools Output Offset

The prior revision required an offset of 128 words in the output section of the dual port

configuration screen. This is now a 0 offset. All network devices must have this

configuration changed and the master reloaded. Previous example:

XML Configuration File

The previous release required no configuration file and mapped all remaining I/O to the

DeviceNet network, supporting only one Master per Model 5300. Also, only Digital I/O

was supported and not analog or explicit messaging. To be backward compatible with

this configuration, a simple XML file can be loaded using the telnet fupdate command.

Assuming slot 4 for the module and an xml file called M361ASDTV0102.xml:

fupdate slot 4 M361ASDTV0102.xml

The XML contents would be as follows:

<?xml version="1.0" encoding="utf-8" ?>

<DEVICENET_DEF>

<VERSION>0102</VERSION>

<DIN_DEF>

<QTY>1024</QTY>

</DIN_DEF>

<DOUT_DEF>

<QTY>1024</QTY>

</DOUT_DEF>

</DEVICENET_DEF>

	[1] Overview
	Model 5300 Fieldbus Module Architecture
	M3-61A DeviceNet Master
	Front Panel

	[2] DeviceNet
	Network Overview
	Technical Features of DeviceNet
	HMS AnyBus-M
	DeviceNet Features

	[3] Interface Basics
	Basic Architecture

	[4] DeviceNet Network Setup Overview
	Installation
	DeviceNet Network Configuration
	Configuration of M3-61A Within the 5300 Controller

	[5] NetTools Installation
	Installation
	Online Configuration & EDS File Importing

	[6] NetTools Example
	Initial Device Discovery
	Network Configuration
	Administrative Screen DeviceNet Window

	[7] XML Configuration File & I/O Declarations
	Configuration File
	Configuration Sections
	Digital Input Definitions
	Digital Output Definitions
	Analog Input Definitions
	Analog Output Definitions
	Exclude Input Definitions
	Exclude Output Definitions
	Simple Digital I/O Example
	Simple Analog I/O Example
	XML Configuration File Storage

	[8] Explicit Messaging & Tags
	Register Summary
	Tags
	Explicit Message Heartbeat
	Analog Explicit Message Tag Example

	[9] Special Register Features
	Tag Execution Registers
	High Speed Dualport Registers
	Status Registers

	[A] Additional NetTools Examples
	Control Technology Corporation Model 5300 DeviceNet Slave
	Example of a CTC Model 5300 Slave Configuration

	Turck FDN20
	Brooks DeviceNet MFCs

	[B] Backward Compatibility
	NetTools Output Offset
	XML Configuration File

