
© 2007 - 2018 Control Technology Corp.

QuickMotion Reference Guide

25 South Street
Hopkinton, MA 01748

Phone: 508.435.9595
Fax: 508.435.2373

Monday, March 5, 2018

Doc. No. 951-530017-019

3Contents

3

© 2007 - 2018 Control Technology Corp.

Table of Contents

... 71 Chapter 1: Introduction and Overview
.. 7Guide to Symbols
.. 8Brief Overview of Motion Control
... 8Servo Motor Applications
... 9Stepper Motor Applications

.. 10Brief Overview of M3-40/41 Motion Module Features
... 12M3-40 & M3-41/IncentiveECAT Motion Module Features
... 13Special M3-40 I/O Functions
... 13Drives & M3-41 IO
... 14QuickBuilder Motion Control Features
... 15IO Assignments

... 15IO Assignments - M3-40A

... 16IO Assignments - M3-40B

... 17IO Assignments - M3-40C

... 18IO Assignments - M3-41A

... 192 Chapter 2: Motion Architecture
.. 20QuickBuilder
.. 21QuickStep
.. 22QuickMotion
... 23Adding Motion to the 5300/Incentive Application

... 24The Axis Module

... 25The Axis Object

... 26The Motion Sequence Block

.. 27Controlling Motion from QuickStep
... 27QS4 start Statement
... 27QS4 stop Statement
... 28Motion Architecture Summary Diagram

... 313 Chapter 3: QuickMotion Axis Setup
.. 32Axis Properties
... 33Basic Tuning
... 34Fine Tuning
.. 35Tuning an axis (5300 M3-40 Only)

... 374 Chapter 4: QuickMotion Programming
.. 37Operating Modes
.. 38Expressions
.. 39Utility Statements
.. 44Program Flow Statements
.. 48Set Statements
.. 51Common bits and variables
.. 54I/O Statements
.. 62Simple Motion
.. 72Gearing
.. 76Position Capture & Registration
.. 78S-Curve
.. 80Linear and Circular Interpolation (Vectors)

QuickMotion Reference Guide4

© 2007 - 2018 Control Technology Corp.

... 815 Chapter 5: Camming and Data Tables
.. 84Loading Tables
.. 88Using Tables for Spline/CAM
.. 92Accessing Table Data
... 93Diagnosing Table Issues
.. 94Microsoft Excel as Table Data
.. 95Virtual Master
... 96Broadcasting (M3-40 only)
.. 97Segmented Moves and Examples
... 97Concept
... 98Commands

... 100Examples
... 1056 Chapter 6: Motion Variables

.. 105QuickMotion User-defined Variables

.. 107QuickMotion Pre-defined Variables

.. 137Host Register Access
... 1397 Chapter 7: Quickstep Support

.. 140Registers

.. 145Quickstep Variables

.. 148Input Mapping (M3-40 Only)
... 1498 Chapter 8: Fault Codes & MSB Debugging

.. 150Fault Codes

.. 154MSB Status/Control Monitor Fault Processing

.. 156MSB Monitor
... 1599 Appendix: Sample Code
... 16310 Appendix: Command Hyperlinks

Index 167

QuickMotion Reference Guide 5

Doc. No. 951-530017-019

QuickMotion Reference Guide

Copyright © 2007-2018 Control Technology Corp. All Rights Reserved.

Control Technology Corp.
25 South Street
Hopkinton, MA 01748
Phone: 508.435.9595 • Fax 508.435.2373

Document No. 951-530017-019

 WARNING: Use of CTC Controllers and software is to be done only by experienced and qualified
personnel who are responsible for the application and use of control equipment like the CTC controllers.
These individuals must satisfy themselves that all necessary steps have been taken to assure that each
application and use meets all performance and safety requirements, including any applicable laws, regulations,
codes and/or standards. The information in this document is given as a general guide and all examples are for
illustrative purposes only and are not intended for use in the actual application of CTC product. CTC
products are not designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or liability, intellectual or
otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software described in this document is
provided under license agreement and may be used and copied only in accordance with the terms of the license
agreement. The information, drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for
any purpose other than the purchaser’s personal use, without the express written consent of Control Technology
Corporation. Products that are referred to in this document may be either trademarks and/or registered trademarks
of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume
no responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher
and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been
caused directly or indirectly by this document.

The information in this document is current as of the following Hardware and Firmware revision
levels. Some features may not be supported in earlier revisions. See www.ctc-control.com for the
availability of firmware updates or contact CTC Technical Support.

Model Number QuickBuilder
Revision

Controller
Firmware
Revision

M3-40
Firmware
Revision

M3-41
Firmware
Revision

IncentiveECAT
Embedded PC

5300 >=1.2.6620
02/15/2018

 >=
5.00.90R70.11

>= 1.45 >= 1.84 >=1.84

http://www.ctc-control.com

6

QuickMotion Reference Guide

Control Technology Corp.

QuickMotion Reference Guide 7

Doc. No. 951-530017-019

1 Chapter 1: Introduction and Overview

This document provides details about adding motion control to a QuickBuilder project. QuickBuilder is CTC’s
integrated desktop development environment for the 5300 and Incentive PC series automation controllers. The
primary programming language used in QuickBuilder is QuickStep4 (QS4). The QuickStep multi-tasking state
language was invented by CTC in the 1980s to simplify the process of programming high performance machine
control applications. Over the years QuickStep has been continually refined, and now it has been extended with
the addition of QuickMotion to be able to easily handle even the most demanding motion control applications in a
very intuitive manner.

The focus of this document is the QuickMotion extension to QuickBuilder. It is assumed that the reader is
already familiar with the QuickBuilder environment and programming language. This document should be used in
conjunction with the QuickBuilder Reference Guide.

This document is valid for use with the following motion modules:

· M3-40A: 2 Axis Servo Module

· M3-40B: 3 axis Stepper/High-speed Counter Module (24V)

· M3-40C: 3 axis Stepper/High-speed Counter Module (5V)

· M3-41A: 5300 Hardware Module for EtherCAT (reference this guide and EtherCAT Application Guide
for added features)

· IncentiveECAT: Embedded PC Real-time Software for EtherCAT (reference this guide and EtherCAT
Application Guide for added features)

Detailed data sheets for these motion modules may be found on CTC’s website, www.ctc-control.com.

 Note: The M3-41A is available both as hardware, for the 5300 PLC, and as a software component as part of a
PC based EtherCAT master, IncentiveECAT. IncentiveECAT executes the exact same M3-40 motion control code
except with enhancements for a virtual hardware environment. IncentivePLC runs on the PC as well, running the
same QuickBuilder software, hence full compatibility with their hardware (5300 PLC) counterpart. From a software
perspective almost all of the commands used on the M3-40 module apply directly to the M3-41A and
IncentiveECAT. References to software features and language instructions that follow for the M3-40 can be
assumed to apply to the M3-41A/IncentiveECAT except as noted.

1.1 Guide to Symbols

Features that warrant caution or special consideration are denoted by a .

A command or statement that is supported by a given mode or block is denoted by a checked box .

Unsupported commands and statements are denoted by an empty checkbox .

http://www.ctc-control.com

8

QuickMotion Reference Guide

Control Technology Corp.

1.2 Brief Overview of Motion Control

1.2.1 Servo Motor Applications

Background

A servo motor is used in a closed loop control system, where the controller has information about both the actual
position and velocity of the motor as well as the desired position (or velocity). The controller then adjusts the
motor's output to remove the difference between the actual and desired values. Because this system has
information about the error, and the output (which is usually proportional to the motor power) increases as the
error increases, it can require very little power when the error is small.

This means that the average power needed for a high performance application may be considerably less than the
peak power, so smaller motors and drives may be used.

There is usually a Servo Drive module between the motion controller and the motor that accepts the control signal
(torque or velocity command) from the motion controller (a low current signal in the range -10 Volts to +10 Volts)
and converts it into the high power (depending on the motor, several amps of current at 24V to 200+V) signals
required by the motor. The Servo Drive must usually be configured to match the Motor (or is designed
specifically for the motor). The drive and the motor are often, but not necessarily, made by the same
manufacturer. The motor may be a simple brush type DC motor (which is low cost but requires periodic
replacement of brushes) or a Brushless DC or AC motor, which requires additional circuitry in the Servo Drive to
handle electronic commutation and will generally require additional sensors and signals from the motor to the
driver.

Controlling the Servo Motor

The Model 5300 automation controller can be used to control up to 64 axes of servo motors. To control motion,
an M3-40A motion module is added to the system. The M3-40A module is a dual axis servo controller that can
control 1 or 2 servo motor systems with Analog Torque or Velocity command and Quadrature encoder feedback.
Additionally M3-41 EtherCAT modules can be add network based drives and IO.

Servo Command Output

The output of the Servo Controller is an Analog signal that can vary from -10V to 10V with 16 bit resolution. The
analog output is used, via a servo amplifier, to control the current in a DC motor generating torque at the shaft.
The amplifier may also handle other functions such as commutation for a brushless motor or it may use the analog
input to control the velocity. Care must be taken in the wiring to minimize the possibility of errors being
introduced into the signal by noise induced from any high power switching circuitry near to the system, since this
will directly affect the quality of the control.

 Shielded cabling must be used between the Servo Controller and the Servo Drive and the distance between
them should be minimized.

Encoder Feedback

An encoder mounted to the motor generates two pulse signals (A, B) that are used by the M3-40A module to
track the motor position. The M3-40A module can also accept a third encoder channel (the Z axis or Index) that
can be used to identify a specific point in the motor rotation. This Z pulse is typically used for accurate homing
of the motor.

The M3-40A encoder inputs accept a quadrature differential signal for the A and B encoder channels. The index
pulse, or Z channel, is also accepted as a differential signal. The direction is counted positive, or clockwise (CW)

QuickMotion Reference Guide 9

Doc. No. 951-530017-019

when the A encoder phase leads the B encoder phase. Indicator LEDs for each servo axis on the module indicate
the states of the A and B channels.

For some Brushless Servo systems, the Servo Drive also uses an encoder for information about the position and
will provide a set of suitable encoder outputs for connection to the Servo Controller. In this case the power for
the encoder is usually provided by the Servo Drive and it is not necessary to connect power for the encoder, but
it is recommended that the controller’s 5V return be connected to the common or return for the servo drive’s
encoder outputs. This limits the common mode voltage between the drive and controller and helps protect the
encoder input circuits from damage caused by over voltage.

 5 VDC power is available from a dedicated 5V connector on the Model 5300 power supply modules. This
connector also has a 5V return that is common to the controller’s 24V return.

 Shielded cabling should be used for the encoder wiring between the Servo Controller and the Servo Drive and
the distance between them should be minimized.

 When the encoder output is provided by the Servo Drive, care must be taken that the signals are actually
encoder signals and are not a simulated encoder generated by the Servo Drive from other signals. When the
outputs are simulated encoder signals, there is generally a delay between the movement of the motor and
the encoder signal generation. When this delay is small this is not a concern, but since the M3-40A updates
the servo command at a rate of over 1250Hz, delays as small as 200µs can be significant.

 Reference the EtherCAT Application Guide for details on the M3-41 and IncentiveECAT modules.

The M3-40A module also has five high speed inputs and five high speed outputs that can be configured for a
wide variety of functions via software. See IO Assignments later in this chapter and the Model 5300 module data
sheets at http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp for more details.

1.2.2 Stepper Motor Applications

Background

Stepper motors are typically used in open loop applications. A stepper motor has a fixed number of magnetic
poles that determine how many steps the motor will move through during one revolution. Most stepping motors
have 200 full steps that can be subdivided into smaller increments via microstepping technology built into the
stepper drive. Microstepping drives can boost the number of steps per revolution to 50,000 or more providing
smoother motion and more precise positioning.

Controlling the Stepper Motor

The Model 5300 automation controller can be used to control up to 64 axes of stepper motors. The motors are
connected to a matched stepper drive, and then the stepper drive is commanded by the Model 5300 motion
module. To control motion, an M3-40B or M3-40C stepper motion control module is added to the system. These
modules are configured in QuickBuilder to match the steps per revolution of the stepper drive so that
programming can be done in user units. The M3-40B/C module is a dual axis stepper controller that can control
up to three stepper axes by putting out a step and direction command to the drive.

http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp

10

QuickMotion Reference Guide

Control Technology Corp.

Encoder Feedback (optional)

Normally, stepper motor applications are designed to operate in an open-loop mode where there is no encoder
feedback. However the M3-40B/C modules have one encoder input for each primary axis and they can be
configured to monitor position via the encoder as a check on the commanded position. The encoder inputs
accept a quadrature differential signal for the A and B encoder channels. The index pulse, or Z channel, is also
accepted as a differential signal. The direction is counted positive, or clockwise (CW) when the A encoder phase
leads the B encoder phase. Indicator LEDs for each servo axis on the module indicate the states of the A and B
channels.

 5 VDC power for encoders is available from a dedicated 5V connector on the Model 5300 power supply
modules. This connector also has a 5V return that is common to the controller’s 24V return.

 Shielded cabling should be used for the encoder wiring and the distance should be minimized.

 When the encoder output is provided by the Stepper Drive, care must be taken that the signals are actually
encoder signals and are not a simulated encoder generated by the Stepper Drive from other signals. When
the outputs are simulated encoder signals, there is generally a delay between the movement of the motor and
the encoder signal generation. When this delay is small this is not a concern, but since the M3-40B/C
updates the stepper command at a rate of over 1250Hz, delays as small as 200µs can be significant.

The M3-40B/C modules also have five high speed inputs and five high speed outputs that can be configured for a
wide variety of functions via software. See IO Assignments later in this chapter and the Model 5300 module data
sheets at http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp for more details.

1.3 Brief Overview of M3-40/41 Motion Module Features

High performance motion control can be easily achieved with Blue Fusion Model 5300 automation controllers by
adding one or more M3-40 motion modules. The M3-40 series modules are two axis motion control modules
specifically designed for the Blue Fusion Model 5300 controller. They can be used to command motion on both
servo and stepper motor drive systems. The M3-40 uses space saving design features that enable it to fit into a
single rack slot in the Model 5300 controller. Up to 32 of the M3-40 modules can be installed into a single Model
5300 system, allowing for up to 64 axes of motion control.

Motion performance is maintained even as axes are added because each M3-40 has its own on-board processors
that handle all motion related processing for two axes. CTC has fitted each dual axis module with a powerful
RISC processor as well as CTC’s new Motion Accelerator Chip (MAC). This gives the M3-40 modules the ability
to run CTC’s latest 64-bit floating point motion loops and handle local high-speed I/O events.

There are currently three M3-40 modules that can be used in the Model 5300 automation controller and one M3-
41:

· M3-40A: 2 Axis Servo Module

· M3-40B: 3 Axis Stepper / High Speed Counter Module, 24V command

· M3-40C: 3 Axis Stepper / High Speed Counter Module, 5V command

· M3-41A: EtherCAT Master for both motion and IO automation control

http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp
http://www.ctc-control.com/customer/techinfo/idxdocs5300.asp

QuickMotion Reference Guide 11

Doc. No. 951-530017-019

Hardware Features

Each module is capable of controlling two axes of closed loop motion. The M3-40A can be connected to either
stepper or servo drives. Each M3-40A axis has a precision 16-bit analog command signal that can command both
torque and velocity mode drives, giving the designer great flexibility in motor and drive selection. Alternatively,
each axis can also be set up to output step and direction signals to interface to stepper drives or intelligent servo
indexers. The M3-40B and M3-40C do not have analog command capability and therefore are best suited for
stepper applications.

All modules have two primary axes of control and most hardware and software functionality is divided
accordingly. Each primary axis has encoder feedback inputs that operate at rates up to 17.5 MHz, accommodating
even the fastest linear motors. Each primary axis has five fast user assignable inputs and five fast user assignable
outputs. In addition, it is possible to configure two of the outputs on the M3-40 module (40A/B/C) to command a
third open loop stepper. See the Alternative Stepper Output statement in the I/O Statements section of Chapter 4
for more on this topic.

Software Features

While the M3-40’s hardware is impressive, its software capabilities are what really set it apart from the
competition. The software has been designed to simplify and speed every step of the machine development
process. To set up a motion axis, simply “drop” an axis object into the QuickBuilder Resource Manager. Then it
can be easily configured using convenient user-units and other fill-in-the-blank properties. Dialog boxes and
tuning wizards de-mystify the whole servo setup and tuning process.

CTC has taken a very modular approach to QuickBuilder’s motion control capabilities. To create motion on an
axis, one or more motion commands are placed in an object called a Motion Sequence Block (MSB). After
creation, that MSB can be used by any of the axes at any time. A simple example would be a homing MSB – write
it once, and then use it on as many axes as desired.

To further simplify the motion programming process, CTC has created an extension to the QuickStep language
within QuickBuilder called QuickMotion, which has more than 50 new commands and more than 100 specialized
motion variables. QuickMotion makes programming motion applications very intuitive. For example, if one
wanted to move an actuator 3.76 inches in 1.25 seconds the command would be:

Move to 3.76 in 1.25

Of course, 3.76 could just as easily be a variable or an expression that is calculated on the fly.

M3-40 and M3-41 Module Data sheets

Refer to Document No. 950-534001: Model M3-40A data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534001.pdf for more detailed information on the M3-40A
module.

Refer to Document No. 950-534002: Model M3-40B data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534002.pdf for more detailed information on the M3-40B
module.

http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534001.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534002.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534002.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534002.pdf

12

QuickMotion Reference Guide

Control Technology Corp.

Refer to Document No. 950-534003: Model M3-40C data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534003.pdf for more detailed information on the M3-40C
module.

Refer to Document No. 950-534101: Model M3-41 data sheet at http://www.ctc-
control.com/customer/techinfo/docs/5300_950/950-534101.pdf for more detailed information on the M3-41 module.

1.3.1 M3-40 & M3-41/IncentiveECAT Motion Module Features

M3-40

· Two axes of servo or stepper control per module
· Up to 64 axes per Model 5300 system
· Position loop update times of 800µs / 2 axes (as fast as 500µs under software selection)
· Encoder feedback up to 17.5 MHz
· 64-bit floating point loop control
· 16-bit analog command (M3-40A only)
· 5 user assignable inputs / axis
· 5 user assignable outputs / axis
· High speed registration capture
· High speed PLS outputs
· 48 user variables per axis

M3-41/IncentiveECAT

· 64-bit floating point loop control
· Up to 16 axes per network. 64 axis with IncentiveECAT. Multiple networks supported as well

as redundant master (PC only) and secondary master
· Virtual axis/master support
· Up to 2000 I/O points using remote I/O
· 500uS, 1 mS, 2 mS, or 4 mS updates on all axes
· Any axis can track/gear/cam off any other
· Registration Capability
· Commands: linear, S-curve, Cam, Spline, Gear, Move on a gear, Segmented moves
· Syncs master to slaves - provides simultaneous motions
· EtherCAT motion modes:
o Cyclic Sync Position

o Interpolated Position

o Profile Position

o Profile Velocity

· Network auto configuration
· Support for absolute encoding
· Link software counters to any input
· Link PWM outputs to any output
· 48 user variables per axis
· M3-41 has 3 encoder inputs which can also be used as a master encoder for EtherCAT axis
· Segmented EtherCAT packets for large networks

http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534003.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534003.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534003.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534101.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534101.pdf
http://www.ctc-control.com/customer/techinfo/docs/5300_950/950-534101.pdf

QuickMotion Reference Guide 13

Doc. No. 951-530017-019

1.3.2 Special M3-40 I/O Functions

· 16 HS Counters (10 MHz): All five inputs as well as the A, B, and Z signal pins on each axis connector
can be configured as high-speed counters.

· Period Measurement (0.1 µsec accuracy): Two pairs of inputs on each axis can be set up to measure
the time between activation of the first and second input in the pair. Ideal for high-speed measurement
and frequency measurement.

· Frequency Outputs: Three outputs on each axis can generate a programmable frequency up to 500 KHz.

· Pulse Outputs: All ten outputs can be pulsed for a programmable time value with an accuracy of 0.5
msec.

· Programmable Limit Switch Outputs: Three outputs on each axis can be configured to automatically
turn on and off as a function of the encoder position. Up to sixteen on/off positions can be configured
per axis. The on/off positions can be changed programmatically on-the-fly. This is especially useful to
compensate for lead or lag time based on operating speed.

1.3.3 Drives & M3-41 IO

Some drives support inputs and outputs at the remote drive level. The MSB property ‘dins’
represents the raw inputs provided by the drive, up to 32 inputs (EtherCAT object 0x60FD.0). The
first 10 inputs may be accessed using ‘din1’ to ‘din10’ bit properties; as with the M3-40 modules.

Outputs operate as they do on the M3-40 module, limited to 8 outputs at the remote drive level
(object 0x60FE.1). Use the ‘setout’ and ‘clrout’ MSB instructions for access, where the first output
is 1.

Local I/O is also present on the 5300 M3-41 EtherCAT module. This module has 6 inputs and 2
outputs which are global to all MSBs. The outputs are referenced as 9 and 10 when using the
‘setout’/’clrout’ instructions. The MSB property ‘global_inputs’ is used to read the 6 inputs, with
the first bit being the first input. The MSB property ‘global_outputs’ can be used in addition to
‘setout’/’clrout’ for read/write operations of the local outputs.

Local global Inputs, P1 connector pins:

P1 -11 DIN1
P1-13 DIN2
P1-15 DIN3
P1 -12 DIN4
P1-14 DIN5
P1-16 DIN6

Local global Outputs, P1 connector pins:

P1 -9 DOUT1
P1-10 DOUT2

14

QuickMotion Reference Guide

Control Technology Corp.

4 1. ‘global_inputs’ and ‘global_outputs’ axis properties may be accessed by QuickBuilder

using the Axis name/property method: axisname.property. These two properties will contain the
same value on all EtherCAT axes.

2. Chapter 6 discusses additional IO capabilities available from the MSB language using
various IO arrays. These arrays give access not only to drive and module based IO but remote
EtherCAT IO blocks such as those from Wago, Turck and Beckhoff. Some of the features include
PLS, PWM, pulse, and atomic multi-bit access of 32 drive inputs/outputs, local and remote IO.

3. IncentiveECAT Version only supports drive I/O.

1.3.4 QuickBuilder Motion Control Features

• Axis objects configured in the Resource Manager

• New tuning wizard simplifies tuning

• Monitor motion parameters in multiple watch windows

• Use QuickScope to chart motion and I/O timing

• Simple English commands

• Over 100 new motion variables

• Full user-unit support

• Soft limits and hard limits

• Asynchronous event handlers

QuickMotion Reference Guide 15

Doc. No. 951-530017-019

1.3.5 IO Assignments

1.3.5.1 IO Assignments - M3-40A

 Any two digital inputs can be configured in QuickBuilder to function as registration inputs 1 and 2. These
digital inputs still function as general purpose inputs even when configured as registration inputs.

16

QuickMotion Reference Guide

Control Technology Corp.

1.3.5.2 IO Assignments - M3-40B

QuickMotion Reference Guide 17

Doc. No. 951-530017-019

1.3.5.3 IO Assignments - M3-40C

18

QuickMotion Reference Guide

Control Technology Corp.

1.3.5.4 IO Assignments - M3-41A

QuickMotion Reference Guide 19

Doc. No. 951-530017-019

2 Chapter 2: Motion Architecture

The Model 5300 PLC uses a powerful distributed architecture approach to solving machine control applications.
The overall machine control program – called a QuickBuilder project – runs on the main CPU of the Model 5300
Automation Controller. It provides the primary guidance for the application and is in charge of communications
with the outside world and the local Model 5300 I/O, motion, and specialty modules. The distributed nature of the
Model 5300 design allows portions of the project to be passed to intelligent Model 5300 modules for local
processing. This distribution of processing tasks and the overall coordination between modules and the main
CPU is taken care of automatically by QuickBuilder.

The result is a significant improvement in machine performance by off loading demanding processor-intensive
functions like motion control tasks to specialized motion control processors on the Model 5300 Motion Modules.
 Even though this process takes place automatically, it’s important for the automation engineer to have a basic
understanding of the architecture of the Model 5300 controller and how it interacts with the QuickBuilder
project.

The 5300 backplane can accommodate multiple modules of the following type:

· M3-40A: 2 Axis Servo Module

· M3-40B: 3 axis Stepper/High-speed Counter Module (24V)

· M3-40C: 3 axis Stepper/High-speed Counter Module (5V)

· M3-41A: 5300 Hardware Module for EtherCAT (reference this guide and EtherCAT Application Guide
for added features)

With the release of EtherCAT motion support for the 5300 a new architecture was introduced, that of virtual
network based devices. Once perfected it became apparent that there was a strong industry need to move the
PLC and motion architecture to an embedded PC platform where a seamless interface could be provided to .Net
programmers. This is known as the IncentivePLC and IncentiveECAT PC based software modules. These
modules run the exact same environment as the 5300 PLC, in real-time, using dedicated cores of the PC. Both a
real-time operating system and Windows run in parallel, communicating through shared memory. IncentiveAPI is
provided to provide a seamless interface to the real-time world from programming languages such as C#, VB.NET,
and C++.

20

QuickMotion Reference Guide

Control Technology Corp.

The structure of the virtual PLC environment looks something like the following:

Both the 5300 PLC and Incentive products are programmed using the exact same tools. Before we get into the
details of how to add motion to a QuickBuilder project, we’ll first review the major elements of the software
architecture:

· QuickBuilder, the software application used to program Model 5300 controllers

· QuickStep, the programming language used in QuickBuilder

· QuickMotion, an extension to the QuickBuilder application that is tailored to handling motion control.

2.1 QuickBuilder

QuickBuilder is CTC’s innovative graphical development environment built using the latest .NET technology,
making it very intuitive to use. It combines all the aspects of an automation project into one easy to use desktop
application. This holistic approach to solving automation projects leads to quicker machine startups and simpler
understanding of even the most advanced automation tasks. The key to simplifying the automation process is to
break the overall process down into the operating states of each of its elements.

QuickMotion Reference Guide 21

Doc. No. 951-530017-019

QuickBuilder desktop showing three tasks. A single step is highlighted in red.

A QuickBuilder project is comprised of one or more tasks. Breaking the program into separate easily defined
tasks greatly simplifies the programming process. A task contains multiple steps – where the steps represent a
given operating state of the machine. Within the step are the actual instructions such as wait for input, turn on
output, move an actuator, etc. It is also here at the instruction level that motion is initiated.

2.2 QuickStep

QuickStep is CTC’s programming language used for the instructions within the steps. QuickStep was originally
invented by CTC in the 1980’s and has been proven in thousands of automation projects. Over the years CTC
has continually refined and upgraded the language. The current version of QuickStep is QuickStep4 (QS4). The
screen captures below show a highlighted step from the flow chart window that is automatically linked to the QS4
editor.

The use of QuickBuilder and QuickStep are covered in their respective manuals, and the user should be familiar
with their use prior to starting a motion application.

22

QuickMotion Reference Guide

Control Technology Corp.

2.3 QuickMotion

QuickMotion is a specialized extension of QuickBuilder that is designed for motion control applications. It has
been optimized to simplify the motion control process and to take advantage of the distributed architecture.
QuickMotion instructions are entered into specialized tasks called Motion Sequence Blocks (MSBs).

The MSBs are coded within the QuickBuilder environment in the same way as steps are coded in QuickStep:
Drag the MSB symbol onto the graphical desktop, give it a name, then use the editor to add the appropriate
instructions. But there are two big differences:

1. an MSB is both a step and a task

2. a single MSB may be used by any number of axes.

QuickMotion Reference Guide 23

Doc. No. 951-530017-019

By way of a practical example, think of the common motion control operation of homing an axis. In older control
schemes, designers were either forced to write this homing code over and over in the program or call some generic
homing routine hard coded by the motion control manufacturer. With QuickMotion, it is easy to create a
customized homing MSB once, give it a name, and then use a QuickStep statement to start that MSB on any axis
whenever an axis needs to be homed.

2.3.1 Adding Motion to the 5300/Incentive Application

The main components used in motion control are:

· The Axis Module: The physical motion module in the rack

· The Axis Object: The QuickBuilder Resource representing an axis on that physical module.

· The MSB: The Motion Sequence Block, which contains one or more motion statements that execute on
the Axis Module’s CPU under the supervision of QuickStep.

24

QuickMotion Reference Guide

Control Technology Corp.

2.3.1.1 The Axis Module

A Model 5300 axis module is inserted into the Model 5300 rack just like any other I/O module. CTC offers axis
modules that can control one or more motion axes. Each motion module contains its own CPU and Motion
Accelerator Chip (MAC), ensuring consistent high performance motion control regardless of the number of axes
to be controlled.

M3-40A: Example of a Model 5300 Axis Module

M3-41A: Example of a Model 5300 EtherCAT Module

QuickMotion Reference Guide 25

Doc. No. 951-530017-019

IncentiveECAT is a software module running on am embedded PC that is responsible for all the motion control.
IncentivePLC runs the main QuickBuilder logic application. Something called MSB's, or Motion Sequence Blocks
executes in real-time within the IncentiveECAT process, detailed later. A popular choice for an embedded PC
integrates the HMI with automation control as shown below:

2.3.1.2 The Axis Object

The Axis object represents a hardware-based or virtual axis associated with a servo or stepper drive. It is
automatically created when a motion module is added to a rack in the Resource Manager. It typically consists of a
controller module with various inputs and outputs that control the servo (or stepper) and usually feedback
signals that are used to monitor position. Each axis can be commanded to perform some sequence of motion
commands by the use of motion sequence blocks (MSBs). These MSBs appear in the QS4 program as stand-
alone graphical elements.

Axis objects have many specialized properties that can be configured using the Property Inspector. Most of
these properties can also be changed dynamically in the QuickBuilder project. Axis Objects have various inputs
and outputs that control the servo (or stepper) and usually feedback signals that are used to monitor position.

When an MSB is selected, the programmed motion command sequence appears in the text editor window – the
same window that is also used to edit QS4 code.

QuickStep4 can only start one motion sequence at a time for a given axis, but the active motion sequence can
start other motion sequences (with some exceptions) that can run in parallel.

An MSB is not associated with any particular axis, which allows the same sequence to be reused many times for
different axes.

26

QuickMotion Reference Guide

Control Technology Corp.

2.3.1.3 The Motion Sequence Block

The Motion Sequence Block (MSB) element holds QuickMotion statement sequences. MSBs appear in the
QuickBuilder project as stand-alone graphical elements. MSBs are not associated with any particular axis. This
allows the same sequence to be reused many times for different axes, much like how a function works. MSBs are
programmed using the QuickMotion language. An MSB may have only one QuickMotion statement, or it may
have hundreds of statements.

The MSB is started on a given axis from QuickStep by using the Start MSB statement.

Once started, an MSB can start another MSB on its own that can run in parallel on the same axis. An MSB
cannot start an MSB on another axis. This can only be done by QuickStep.

Up to 4 foreground MSBs can be running simultaneously. This limitation is imposed to guarantee high
performance deterministic execution. A foreground MSB executes each of its statements at the loop update time
of the Axis Module. This keeps them fast and in sync with the position loop.

In addition to the foreground MSBs, any number of background MSBs can be running simultaneously. The
number of background MSBs is limited only by available memory on the Axis Module.

QuickMotion Reference Guide 27

Doc. No. 951-530017-019

2.4 Controlling Motion from QuickStep

As mentioned earlier, QuickStep is in overall control of the project and as such, QuickStep has the ability to start
and stop MSBs. There are actually only two Quickstep instructions pertaining to motion: Start and Stop.

· Start: Begins execution of the named motion sequence block (MSB) on the specified axis as a
background MSB. This background MSB can then launch foreground MSBs on that axis. QuickStep
can also directly launch foreground MSBs by using the FG option (start <axis> <msb> {optional
FG/BG}, where FG is foreground and BG is background task.

· Stop: Stops execution of all foreground and background MSBs and thereby all motion.

In addition to these commands, QuickStep has extensive abilities to monitor and control MSBs on the axes while
they are running via pre-defined and user-defined variables.

2.4.1 QS4 start Statement

This statement begins execution of the named motion sequence block (MSB) on the specified axis.

It is not an error to start another MSB when there is one already running for a given axis – however, if the named
MSB is already running on a given axis, the start is effectively ignored.

start axis1 MSB1; // start MSB1 on the axis called 'axis1', as
a background thread.

start axis1 MSB1 BG; // start MSB1 on the axis called 'axis1', as

a background thread.

start axis1 MSB1 FG; // start MSB1 on the axis called 'axis1', as
a foreground thread (run on each loop ticks, limited to 4).

2.4.2 QS4 stop Statement

This statement stops execution of all MSBs on the named axis.

Example:

stop axis1; // stop execution of all MSBs on 'axis1', this
stops immediately

stop axis1 slewed using 100; // stop execution of all MSBs on
'axis1', slewed stop at 100 user-units/sec/sec.

28

QuickMotion Reference Guide

Control Technology Corp.

2.4.3 Motion Architecture Summary Diagram

5300 PLC (M3-40/41)

QuickMotion Reference Guide 29

Doc. No. 951-530017-019

IncentivePLC & IncentiveECAT Soft PC

30

QuickMotion Reference Guide

Control Technology Corp.

QuickMotion Reference Guide 31

Doc. No. 951-530017-019

3 Chapter 3: QuickMotion Axis Setup

Adding a motion axis to a QuickBuilder project is very similar to adding any other resource. The first thing that
needs to be done is to add the axis module to the appropriate rack in the controller. This is done by right clicking
the rack and selecting the appropriate module. For this discussion we will be adding a third M3-40A module to
our first 8-slot rack. As with other module types, axes are automatically numbered from left to right starting at the
CPU. So in this case the two axes on the third module are numbered 5 and 6.

The axes first appear with question marks in their names, which must each be edited to a unique name. It is an
error to have unnamed axes in a project. Right click and name the axis.

If the project changes, or the physical connection of the axes to the modules changes, axes can easily be
rearranged in the Resource Manager. A single axis may be moved in the tree or a whole module can be moved as
needed so that the named axes in the Resource Manager correspond to the actual wired axes.

After placing the Axis object in the proper place and naming it, the axis properties should be checked and updated
as necessary. This is done in the property inspector window.

32

QuickMotion Reference Guide

Control Technology Corp.

3.1 Axis Properties

When an Axis object is highlighted in QuickBuilder’s
Resource Manager, the following alphabetical property list
for the axis is displayed. Required and Recommended
properties to set up are reviewed below. Default values are
given in []. To learn more about these as well as the other
properties, see the Variables Chapter later in this guide.

Required — When setting up an axis, the following
properties must be set up in order for the Servo or Stepper
Control module to properly interface with the connected
motor and drive:

· cmode: Determines the command signal the
controller sends out. Set to [Torque], Velocity, or
Stepper.

· tmax / vmax: Depending on the drive type set, the
maximum torque or velocity that will be realized by a
10V command from the controller. [1Nm / 1000RPM]

· ppr: The number of feedback counts per revolution
[4000]

· sppr: When operating in stepper mode, this value
must be set to correspond to the steps/rev of the
controlled stepper drive.

Recommended — Once the required properties have been
entered, the axis can be tuned. However, it is recommended
that the following properties also be checked and adjusted
as necessary.

· acc / dec: Check that the acceleration / deceleration
rates are appropriate. [10000000/10000000]

· driveenable: Set this to the output number that will
be used to enable the servo drive. (Highly
recommended that this be used. Use positive input
number for true state=high; use negative number
for true state=low.) [0=not used]

QuickMotion Reference Guide 33

Doc. No. 951-530017-019

· inposw: The in-position window scaled in user units. This is used to determine when the drive has reached the
commanded position. Use positive input number for true state=high; use negative number for true state=low.
 [0.01]

· overnegin / overposin: (Hardware over-travel limits) Set these to the input number to be used to signal
positive and negative over-travel. Use positive input number for true state=high; use negative number for true
state=low. [0=not used]

· neglim / poslim: (Software over-travel limits) Set these to the input number to be used to signal positive and
negative overtravel. [-1E+50 / 1E+50]

· perrlimit: This is the maximum allowed following error in user units before a fault is generated. [0=disable
checking]

· uun/uud: User-units numerator and denominator. This fraction is used to convert revolutions to user units.
[1/1]

Other — Many of the other properties are either automatically adjusted by the tuning wizard or are used for more
specialized functions. Refer to Chapter 5: Variables for more details.

3.1.1 Basic Tuning

For basic tuning of an axis there is only one adjustment needed: adjust the Bandwidth slider until the desired
performance is reached. Moving the slider to the right increases the servo loop bandwidth and hence the move
performance. By checking the high box, the slider impact is doubled. If moved too far, the motor will become
unstable and begin to emit a buzzing sound and vibration even with the motor at rest. If this occurs, move the
slider back to the left until this condition is eliminated.

 Note: Tuning parameters adjusted using the wizard are updated in volatile memory. To save them to the non-
volatile memory of the controller it is necessary to download the project to the controller after tuning.

34

QuickMotion Reference Guide

Control Technology Corp.

3.1.2 Fine Tuning

While the Basic Tuning method just discussed works well for most general purpose applications, higher
performance applications or those with unusual loads or friction will typically require more adjustments. For best
results in fine tuning an axis, it is useful to observe the velocity profile of the axis and how it responds to various
adjustments to the tuning properties. This can be done by using QuickScope within QuickBuilder or by using an
external oscilloscope to monitor the velocity output signal of the drive. The other wizard adjustment items are
listed below:

PPG: This is the position loop proportional gain scaled in 1000/min units. This increases the response of the
position loop and stiffness.

Feed-forward: This increases the position loop velocity feed-forward gain.

Loop Type: Adjust the loop type from 100% PID to 100% PDF structure.

Damping: This has the effect similar to adding or removing friction from the system.

For advanced applications, all of these parameters with the exception of motor inertia can be changed
programmatically or interactively through a QuickBuilder Watch Window. There are also several other tuning
variables available for the experienced motion engineer. Refer to Chapter 5: Variables for details.

QuickMotion Reference Guide 35

Doc. No. 951-530017-019

3.2 Tuning an axis (5300 M3-40 Only)

QuickBuilder simplifies the tuning process by utilization of an innovative new tuning wizard for each axis. To
access the tuning wizard, simply right click on the axis and select Tune. Doing so will bring up a window like the
one shown below. Note that each axis has its own tuning wizard window. Multiple windows may be active and
displayed simultaneously.

To tune an axis with the wizard, the first step is to enter the motor inertia in the bottom box of the wizard. Once
this is entered, the wizard is set up to critically damp the motor. Since the wizard adjusts tuning parameters in real
time, the best way to use it is to set up a safe repeating move for the axis and then make adjustments in the wizard
to optimize the motion profile.

Once tuning has been configured it may be save to the axis non-volatile memory but clicking on the 'commit'
button. To remove tuning parameters from non-volatile motion board storage click the 'clear' button. By default
the tuning parameters are saved with the QuickBuilder program and re-written each time the project is loaded.
Committing the parameters to the motion board will override those in the program. This will set the nonvolatile
axis variable to 1 when active.

36

QuickMotion Reference Guide

Control Technology Corp.

QuickMotion Reference Guide 37

Doc. No. 951-530017-019

4 Chapter 4: QuickMotion Programming

This chapter covers the QuickMotion commands and their usage with MSBs.

 These statements cannot be used in a QuickStep step! The MSB statement set has been created to simplify
the motion programming process and make powerful motion control applications accessible to a wide range of
users. These statements are optimized for high performance execution on motion modules. In addition to the
motion statement set, CTC has provided over 100 pre-defined motion variables that greatly simplify development.
 The motion related variables are covered within their own chapter, later in this guide.

4.1 Operating Modes

POSITIONING
MODE

TRACKING
MODE

set mode tracking

set mode positioning

SLEWING
MODE

slew begin

slew end

Positioning

In this mode, the axis is able to perform absolute and incremental time-based motion, including SegmentedMoves
and time-based CAMs.

The axis must have completed any pending positioning operations before changing to a different operating mode.

Slewing

In this mode, the axis generates a series of interpolated positions based upon a constant (but alterable) velocity.

The axis must be stopped by using slew end in order to perform any positioning operations.

Tracking

The axis is able to perform position-tracking in this mode. This includes following, gearing and position-based
CAMs. The axis must complete all pending tracking operations before changing to a different operating mode.

38

QuickMotion Reference Guide

Control Technology Corp.

4.2 Expressions

In QuickMotion, expressions consist of variables, constants, and operators. Variables are listed in Chapter 6:
Variables.

The following operators, listed in order of grouped precedence, are available in QuickMotion:

() parenthesis

|| logical-or

&& logical-and

| bitwise-or

& bitwise-and

!= not-equal

== equal

<= less-than-or-equal

< less-than

> greater-than

>= greater-than-or-equal

+ add

- subtract

* multiply

/ divide

% modulo

! logical-not

~ bitwise-not

- negate

QuickMotion Reference Guide 39

Doc. No. 951-530017-019

4.3 Utility Statements

Summary:

stop { slewed using rate }

drive enable

drive disable

delay time ms

variable = expression

zero feedback position

zero target position

zero following error

reset

if condition then variable = expression

wait until condition

 Stop Positioning Slewing Tracking BG MSB

 FG MSB

syntax

stop { slewed using variable }

parameters

 variable optional rate at which to stop the axis in user unit

stop; // stop the axis
stop slewed using rate; // stop the axis by slewing to 0 at
specified rate

In positioning mode:

Non-slewed – This statement immediately aborts the present motion operation as well as halts the target
position generator from updating the target position (tpos), thereby (eventually) stopping motion. This
form of stop may not be desirable in all cases (such as when the axis has excessive following error), since
the target position may be greatly different than the feedback position and the feedback position will still
seek the target position.

Slewed – This statement first copies the current feedback position (fpos) into the target position (tpos)
and then generates a controlled deceleration by slewing to zero velocity using the rate specified.

If the axis is in slewing mode, a slew end is issued thereby placing the axis in positioning mode. The optional
stop mode slewed is ignored in this mode.

If the axis is in tracking mode, the numerator of the gear ratio is set to zero – but the axis remains in tracking
mode. The optional stop mode slewed is ignored in this mode.

40

QuickMotion Reference Guide

Control Technology Corp.

 Enable/Disable Drive Positioning Slewing Tracking BG MSB

 FG MSB

syntax

drive enable

drive disable

Enables or disables the drive associated with the axis, thereby allowing motion to occur. If the driveenable
variable has been set to an output number, that output is automatically turned on when the drive enable command
is encountered or turned off when the drive disable command is encountered. In some cases, the motor may
slowly decelerate to a zero velocity when disabling.

drive enable; // enable the drive for this axis
drive disable; // disable the drive for this axis

 Invoking the drive enable command sets the target position (tpos) to the feedback position (fpos).

 Time Delay Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

delay time ms

parameters

time an expression representing time in milliseconds

This statement delays execution of the active MSB for the specified number of milliseconds.

delay 2500 ms; // delay for 2.5 seconds

 Timeout Initialization Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set timeout ticks

parameters

ticks Number of ticks until a timeout occurs causing any active ‘on timeout’ event handlers
to take action.

This command initializes a private msb timer which is decremented on every tick if the ‘on timeout’ command is
active. To disable execute an ‘on timeout ignore’ command. The timeout value must be set after every timeout, it
acts as a down counter, invoking the event handler when 0 is reached. .

set timeout 100; // Set timeout to 100 ticks

QuickMotion Reference Guide 41

Doc. No. 951-530017-019

 Assignment Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

variable = expression

parameters

variable a variable to change the value of

expression an expression

The value of the specified expression is evaluated and stored to the named variable.

//calculate a new value for result
result = 34.857 * oldresult;

 Zero Feedback Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero feedback position

Zeros the target position, but maintains following error (fposc = fposc - (ppr * tpos) then tpos = 0). Operates the
same as zero target position.

//set the current position as zero
zero feedback position;

 Zero Target Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero target position

Zeros the target position, but maintains following error. Operates the same as zero feedback position, but is more
readable in stepper mode.

//set the current position as zero
zero target position;

 Zero Following Error Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero following error

42

QuickMotion Reference Guide

Control Technology Corp.

This statement zeros the feedback position (fpos/fposc) and target position (tpos), thereby removing any

following error.

// relax the system by zeroing the following error
zero following error;

 Unless you are current limiting and driving into a hard stop (or similar application), there is no
reason to use "zero following error" (and it's probably wrong in most applications to use it). Zero
position feedback is what should normally be used. Remember that following error is maintained
when zeroing the position

feedback and 99.99% of the time that is what is desired. Think of it like this:

tpos = 1.000

fpos = 0.999

After "zero feedback position":

tpos = 0.000

fpos = -0.001

You don't want to lose that 0.001 of error, but you still want to call wherever you are zero — that is
generally the case. Because tpos (the target to seek) runs the show, that is what you want to be
precisely zero. All motion is relative/absolute to the target position, NOT the feedback position, as
that wouldn't make sense.

Zero following error is used, for example, in nut-driving applications where one limits the torque,
drives to an unreachable position (because as the nut is torqued, the torque limit is hit), and then
watches for current limit and then zeroes the following error — thus, removing the torque, etc.

 Reset Faults Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

reset

Resets any fault (if possible to).

reset; // reset axis faults

 If/Assignment Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

QuickMotion Reference Guide 43

Doc. No. 951-530017-019

if condition then variable = expression

parameters

condition a Boolean test condition

variable a variable

expression an expression

This statement evaluates the specified condition. If true, the expression is evaluated and variable is set to the
resulting value. If false, MSB program flow continues at the next MSB statement.

// if the position error for the axis exceeds
// 0.25 set a variable ‘fault’ to 2
if perr > .25 then fault = 2;

 Wait Until Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait until condition

parameters

condition condition to test

This statement waits for until the specified condition is true.

// wait here until chamber temp exceeds min
wait until temp > 32.849;

44

QuickMotion Reference Guide

Control Technology Corp.

4.4 Program Flow Statements

Summary:

[label]

start MSB mode

end { and start MSB mode }

abort MSB

goto label

if condition goto label

on asynchevent asynchhandler

 Statement Label Positioning Slewing Tracking BG MSB

 FG MSB

syntax

[label]

A label within an MSB is used as a marker for the destination of a goto or similar statement.

It is often required to iterate or branch depending on the state of some external input/output or internal condition
– a label is used to mark the destination.

// this label is called Top
[Top]

 Start Positioning Slewing Tracking BG MSB

 FG MSB

syntax

start MSB mode

parameters

MSB the name of the MSB to start

mode FG start as a high-priority (tick) MSB
BG start as a low-priority (non-tick) MSB

This statement activates an MSB – if the MSB is already active, this statement is effectively ignored.

Up to 4 foreground (FG) MSBs may be running simultaneously.

There is no logical limit to the number of active background (BG) MSBs.

// start the MSB called PressCap and run as a foreground MSB
start PressCap FG;

QuickMotion Reference Guide 45

Doc. No. 951-530017-019

 End Positioning Slewing Tracking BG MSB

 FG MSB

syntax

end { and start MSB mode }

parameters

MSB the name of the MSB to start

mode FG start as a high-priority (tick) MSB
BG start as a low-priority (non-tick) MSB

This statement ends execution of this MSB. An optional MSB can be specified to start after this one completes.

An end or goto statement should be the last statement in any MSB.

// this is the end of the MSB
end;

// end the current MSB and then start the MSB called WeldCap
// as a foreground MSB
end and start WeldCap FG;

 Abort Positioning Slewing Tracking BG MSB

 FG MSB

syntax

abort MSB

parameters

MSB the name of the MSB to abort (stop) the execution of

This statement ends execution of another MSB. If the named MSB is not active, the statement is effectively
ignored.

// kill only the WeldCap MSB
abort WeldCap;

 Goto Positioning Slewing Tracking BG MSB

 FG MSB

syntax

goto label

parameters

label the name of the label to branch to

46

QuickMotion Reference Guide

Control Technology Corp.

This statement changes program flow to the specified label.

// jump to the MSB label called Top
goto Top;

 If/Goto Positioning Slewing Tracking BG MSB

 FG MSB

syntax

if condition goto label

parameters

condition a Boolean test condition

label the name of the label to branch to

This statement evaluates the specified condition. If true, MSB program flow continues at the specified label. If
false, MSB program flow continues at the next MSB statement.

// If the axis’s input1 is on goto the label MakeMove

if din1 goto MakeMove;

 Asynchronous Event Handling Positioning Slewing Tracking BG MSB

 FG MSB

syntax

on asynchevent asynchhandler

parameters

asynchevent One of the following:

riseof n Rise of specified general purpose

 input.

fallof n Fall of specified general purpose

 input.

hardfault When a non-recoverable fault occurs.

capture Capture of specified input trigger.

pls output PLS output 1 to 5 activated.

timeout 'timerticks' variable decrements to

 0 (use ‘set timeout' to initialize

 msb private value).

asynchhandler One of the following:

ignore Cancel asynchronous event

 monitoring.

start MSB {FG/BG}{arm} Starts the specified MSB in

 BG (background) mode unless FG is

QuickMotion Reference Guide 47

Doc. No. 951-530017-019

 specified, if capture then optional

 {arm} at end of statement.

goto label {arm} Branch on event, if capture

 then optional {arm} at end of

 statement.

This statement controls asynchronous event handling.

If asynchhandler is set to start…, then an MSB is started automatically when the specified event occurs. If the
MSB is already active when the event occurs, a second instance is not started. If not specified background mode
is used (BG).

If asynchhandler is set to goto…, then a branch to that label occurs upon the event, within the same MSB.

If asynchhandler is set to cancel, then no operation will occur upon event. Each event is unique to a specific
MSB although only one MSB may monitor a capture or specific pls output event.

If asynchevent is set to timeout then the ‘set timeout <ticks>’ command must be set for down counting to begin
(500uS/tick). Branching based upon a timeout will occur regardless of motor operations and it is up to the MSB to
properly recover and/or stop motors.

Example ‘on timeout’:

x = 0;
y = 0;
set timeout 5000 * 2; // 5 second timeout
on timeout goto timedout;
[top]
// x will increment for 5 seconds and then a branch to [timedout] will occur
x = x + 1;
delay 100 ms;
goto top;
[timedout]
// y will increment after 5 seconds and continue forever
y = y+1;
delay 100 ms;
goto timedout;

48

QuickMotion Reference Guide

Control Technology Corp.

4.5 Set Statements

Summary:

set common bit number state

set common var number value

set loopperiod value

set mode positioning

set mode tracking

set timeout ticks

set target position value

set feedback position value

set target position counts vcounts

set feedback position counts vcounts

set simulated feedback on/off

offset position value

offset position counts vcounts

set master mode { using global }

 Set Loop Period Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set loopperiod value

parameters

value The desired loop time in uS, default value is .0008 (800uS). The minimum is 500uS.

This statement sets motion interrupt loop period. The current loop period and rate are available via the axis
‘loopperiod’ and ‘looprate’ variables (looptime group). The period selected should be evenly divisible for
accuracy. Thus .0005 has a rate of 2000 ticks/second, .0008 is 1250 ticks/second (1/.008). Setting one axis sets the
other and it is recommended to only change the loop time at initialization, prior to the ‘drive enable’ command.

set loopperiod 800; // Set loopperiod to the default, 800 uS
 // (not needed since powerup default

 Set Positioning Mode Positioning Slewing Tracking BG MSB

 FG MSB

syntax

set mode positioning

Sets the operating mode of the axis to positioning.

set mode positioning; // switch to positioning mode

QuickMotion Reference Guide 49

Doc. No. 951-530017-019

 Set Tracking Mode Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set mode tracking

Sets the operating mode of the axis to tracking.

set mode tracking; // switch to tracking mode

 Set/Offset Target/Feedback Position(s) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set target position value

set feedback position value

set target position counts vcounts

set feedback position counts vcounts

offset position value

offset position counts vcounts

parameters

value new or offset for the named position (user-units)

vcounts new or offset for the named position (counts)

These statements modify the target and/or feedback positions. The new value (or offset) may be specified in
user-units, or in feedback counts (by use of the keyword counts). The first two forms set the target or feedback
position to a specific absolute value in user-units. The third and fourth forms set the target or feedback position
to a specific absolute value in counts. The last two forms modify the target and feedback positions
simultaneously by adding the specified offset to both.

 Following error is maintained when these statements are executed.

 The axis must not be active (i.e. actively generating a target position by use of a move statement) when any of
these statements are executed.

// set the feedback position (fpos) to 2.149
set feedback position 2.149;

// offset both the target and feedback positions by 1100 counts
offset position counts 1100;

 Set simulated feedback Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

50

QuickMotion Reference Guide

Control Technology Corp.

set simulated feedback on/off

parameters

on/off off - normal operation, feedback from encoder. on - feedback simulated and from tposc
on each servo loop.

Enables or disables simulated feedback, setting fposc to originate from the encoder (off) or tposc (on). 'tposc' is
the incremental amount to move on the next servo loop. Thus when simulated the desired increment will be
achieved on each loop. This command is useful for both test purposes and when using a virtual master. The
simulated axis can publish its master position across the controller backplane, based upon its moves. See the
'Virtual Master' section. This command is also useful during open loop stepper operation when using the pls
functionality.

set simulated feedback on; // this will cause fposc to = tposc after each loop period, drive must not be
enabled

 Set Master Encoder Source Positioning Slewing Tracking BG MSB

 FG MSB

syntax

set master mode { using global }

parameters

mode feedback1 master position sourced from axis 1 feedback

feedback2 master position sourced from axis 2 feedback

target1 master position sourced from axis 1 target

target2 master position sourced from axis 2 target

feedbackZ master position comes from axis 1&2 Z-inputs

virtual master position on this axis is to be calculated as a

 virtual source, reference ‘move master at’ for

 setup (master axis).

common master position from controller backplane as

 determined by variant register 36827 (slave axis)

global global (optional) This position information is made public to

 the controller backplane. Distributed to ‘common’

 nodes as determined by variant register 36827.

This statement sets the source of the axis master encoder. The default source for MSBs executing on the first axis
is feedback2. This means the first axis is using the second axis as the master. This command executes
independently on each access thus to change axis 1 to be the master a ‘set master feedback1’ must be executed
by MSB’s on both axis. The default for the second axis is feedback1.

The source feedbackZ is derived by using the first axis’ Z-channel input as the “A”-channel for the master
encoder and the second axis’ Z-channel input as the “B”-channel for the master encoder.

For an axis to make its master public the ‘using global’ option is used. This allows the axis to publish its position
information to other axis that executes the ‘set master common’ command.

QuickMotion Reference Guide 51

Doc. No. 951-530017-019

Variant register 36827 is used to define how global master information is distributed amongst slaves. The variant
is a 4 row, 3 column array with the first 4 rows defining possible global master sources to reference and the
columns referenced as follows:

[0] – enabled position information updates (every 4 mS to all slaves), set 1 to enable, 0 to disable.

[1] – master axis whose position information is to be distributed to slaves, 1 to N where N is all the axis in a
controller rack. Note that the master axis MSB must have executed the ‘set master global’ command.

[2] – 32 bit field with each bit representing a slave axis to whom the master axis information is to be
distributed. Bit 0 would be axis 1, Bit 31 is axis 32.

4.6 Common bits and variables

Summary:

set common bit number state

wait common bit number state

set common var number value

wait common var number range

Common bits and common vars are used to communicate state information:

a. between QuickMotion based modules

b. between QuickMotion and QuickStep 4

c. between axes on a single module such as an M3-40A

There are 256 common bits and 256 common vars. Common bits are Boolean, and common vars are bytes and
therefore have values from 0 through 255.

The common bits are globally shared between all QuickMotion modules as well as QuickStep 4. Any changes
made to common bits are “seen” by all QuickMotion modules and the main CPU running QuickStep 4.

The first 32 common vars are overlaid on top of the 256 common bits – changes made to a common var may alter
up to 8 common bits.

The remaining 244 common vars are module-local – changes are only seen local to the module. This is useful to
communicate state information between axes on a two-axis QuickMotion module such as an M3-40A.

A user may decide whether to use just common bits or just common vars or even a combination of the two
depending on the application.

From QS4, common bits are accessed via the $CBITS[] system variable and common variables are accessed via
the $CVARS[] system variable.

52

QuickMotion Reference Guide

Control Technology Corp.

There are several QuickMotion instructions that deal with common bits and vars:

· set common bit

· wait common bit

· set common var

· wait common var

Within QuickMotion, common bits and vars can be used in expressions through the notation:

cbit[n] where n is 0 through 255

cvar[n] where n is 0 through 255

For example:

[top]
if cbit[10] goto op10;
if cbit[11] goto op11;
if cbit[12] goto op12;
goto top;

[op10]
move to 1.0;
wait for in position;
goto top;

[op11]
move to 0.0;
wait for in position;
goto top;

[op12]
move to 2.25;
wait for in position;
goto top;

 Set Common Bit Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set common bit number state

parameters

number bit number (0-255)

state true or false

QuickMotion Reference Guide 53

Doc. No. 951-530017-019

This statement sets the specified “common bit” to the given state.

 Wait For Common Bit Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait common bit number state

parameters

number bit number (0-255)

state true or false

This statement waits until the specified “common bit” is at the desired state.

 Set Common Var Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set common var number value

parameters

number variable number (0-255)

value an integer value (0-255)

This statement sets the specified “common state variable” to the given value.

 Wait For Common Var Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait common var number range

parameters

number variable number (0-255)

range x a value of x

x-y a value of x through y inclusive

! x a value other than x

! x-y a value outside the range of x through y

This statement waits until the specified “common state variable” is within/outside the given range.

54

QuickMotion Reference Guide

Control Technology Corp.

4.7 I/O Statements

Summary:

setout outputlist

clrout outputlist

pulse output for n

pls output using reference definitions

pls output state

wait for[****]transition[****]of[****]input { or[****]condition }

generate output output rate freq

generate n steps on pair

variable = ctr[n]

ctr[n] = expression

ctr[n] = offset

generate alternate mode

 Set Output(s) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

setout outputlist

parameters

outputlist a comma delimited list of outputs to set

This statement sets one or more outputs to the on state.

The output number can be 1-5 (dual axis mode) or 1-10 (1½ axis mode).

setout 2; // turns on the second output on the module
setout 1, 3; // turns on the first and third outputs

 Clear Output(s) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

clrout outputlist

parameters

outputlist a comma delimited list of outputs to clear

This statement sets one or more outputs to the off state.

The output number can be 1-5 (dual axis mode) or 1-10 (1½ axis mode).

clrout 2; // turns off the second output on the module

QuickMotion Reference Guide 55

Doc. No. 951-530017-019

clrout 1, 3; // turns off the first and third outputs

 Pulse Output Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

pulse output for n

parameters

output the output to pulse

1-5 (dual axis mode)

1-10 (1½ axis mode)

n the time to pulse the output, an expression as milliseconds

This statement causes the specified output to pulse for the specified duration. If the output is already on when
this statement executes, the output state is unchanged – however it will be turned off after the specified time.

If another statement changes the state of the output to off before the allotted duration, the generation of the
pulse is aborted.

The generated pulse is accurate within ½ of a millisecond.

// turns on the 2nd output on the module for 500ms

pulse 2 for 500;

 PLS Define Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

pls output using reference definitions

parameters

output the output (1-5) to control via a PLS

reference the encoder count scaled reference variable to compare to:

fposc Feedback position of axis msb

mposc1 - mposc5 Master position counters #1

 through #5

mposc Master position counter

smodc Slave position (modulo)

smark Slave marked position

tmc1 tmc2 Temporary master counters #1 & #2

tsc1 tsc2 Temporary slave counters #1 & #2

sdc Slave decrement counter

fposc1 Feedback position of axis 1

 (fposcA)

56

QuickMotion Reference Guide

Control Technology Corp.

fposc2 Feedback position of axis 2

 (fposcB)

tmodc Temporary master counter mod mmc

sfposc Secondary feedback position of

 axis

definitions a comma-separated list of up to 16 PLS definitions:

on x to y Turn output on when the reference

 is within the bounds specified

 by x through y (may be

 expressions)

The first statement defines or redefines a PLS (software-based programmable limit switch) associated with a given
output. A definition over-writes the previous definition for an output (if one was defined already).

 When a PLS is defined/re-defined it will be disabled and will not compute the state for the output. To enable a
PLS after it is defined/re-defined, a pls on statement must be issued:

// define a PLS for output #1
// output will be on when fposc is within 10-200 or 400-430
pls 1 using fposc on 10 to 200, on 400 to 430;

// enable the PLS for output #1
pls 1 on;

 When using open loop stepper tposc is not available for PLS thus issue the command 'set simulated feedback
on' to have tposc copied to fposc, on each control loop, allowing the use of this command.

 PLS Enable/Disable Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

pls output state

parameters

output the output to control via a PLS

1-5 (dual axis mode)

1-10 (1½ axis mode)

state on or off

This statement enables (“on”) or disables (“off”) a PLS for an output.

On - Enables the pls functionality initialized for a particular output with the PLS Define statement.

Off – Disables the pls functionality initialized for a particular output with the PLS Define statement.

 If the output is on when a PLS is disabled, it will remain on – unless the user re-enables the PLS (to re-compute
the PLS output), or they clrout the output.

QuickMotion Reference Guide 57

Doc. No. 951-530017-019

 Wait For Input Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait for transition of input { or condition }

parameters

transition rise or fall

input the general purpose input to wait upon

1-5 (dual axis mode)

1-10 (1½ axis mode)

condition an optional exit condition

This statement waits for the specified transition of the specified general purpose input to occur.

The MSB will not continue execution until the transition occurs – unless there was a condition specified and the
condition evaluated to true.

// delay execution of MSB until input1 transitions from off to on
wait for rise of 1;

 When this statement is used with the optional exit condition and the statement is part of a BG MSB, it is
possible to miss transitions of the general purpose input. Therefore, the optional exit condition form should be
used with care in BG MSBs.

 Generate Pulses Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

generate output output rate freq

parameters

output 1-10

freq the frequency (in Hz) to generate pulses; rounded to an integer

This statement begins or ends generation of pulses using a specific output. If pulses are being generated on an
output, then setout, clrout and pulse output commands given to the same output have the following behavior:

setout no pulse generation occurs; the output will be active

clrout pulse generation occurs for non-zero freqs

pulse output no pulse generation occurs until the pulse output completes

58

QuickMotion Reference Guide

Control Technology Corp.

When a frequency of 0 is specified, no pulse generation occurs. This effectively turns the output back into a
general-purpose output.

The minimum frequency that can be generated is 1 Hz. The maximum frequency that can be generated is well
over 500 kHz.

The accuracy of the generated signal varies by frequency (lower frequencies are more accurate). The following
table summarizes the accuracy for several frequencies:

<100 Hz +/- 0.001 Hz

500 Hz +/- 0.005 Hz

1 kHz +/- 0.02 Hz

2 kHz +/- 0.1 Hz

5 kHz +/- 0.5 Hz

10 kHz +/- 2 Hz

20 kHz +/- 8 Hz

50 kHz +/- 50 Hz

100 kHz +/- 200 Hz

250 kHz +/- 1.5 kHz

500 kHz +/- 5 kHz

 Due to a hardware limitation, this statement is only usable with outputs 3, 4, 5 (Axis 1) and outputs 3, 4, 5 (Axis
2). The use of outputs other than those listed will be ignored.

 The number of generated pulses cannot be controlled – only the frequency of the generated pulses.

 Generate Steps Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

generate n steps on pair

parameters

n the number of steps to generate in 500 µsec

pair the step/direction pair to output steps on:

QuickMotion Reference Guide 59

Doc. No. 951-530017-019

1. axis 1 step/direction pair (M3-40A/B/C outputs 3&4)
2. axis 2 step/direction pair (M3-40A/B/C outputs 3&4)
3. alternate step/direction pair (outputs 5 on each axis)

This statement generates step and direction pulses on the specified step and direction pair.

If the expression n evaluates to a negative number, then the direction will be negative.

All of the pulses will be emitted in the next 500µs loop period.

 Any setout, pulse or generate output used in parallel with this command will cause erroneous step/dir pulses
to be emitted. One should not use these commands in conjunction with generate steps.

 This command when used with cmode set to stepper mode will command additional pulses out the step/dir

outputs.

 Counter read, write, offset Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

variable = ctr[n]

ctr[n] = expression

ctr[n] = offset

parameters

n the counter number (0 through 7)

variable the variable to store the current value of the counter to

expression a new value for the counter

offset an offset for the counter (subtracted from the current counter value)

These specialized forms of the assignment statement give read/write/offset access to the axis counters.

On the M3-40A, -40B, and -40C, there are 8 counters/axis that accumulate off-to-on transitions of the following:

ctr[0] digital input 1
ctr[1] digital input 2
ctr[2] digital input 3
ctr[3] digital input 4
ctr[4] digital input 5
ctr[5] 'A' channel input (non-quadrature)
ctr[6] 'B' channel input (non-quadrature)
ctr[7] 'Z' channel input (non-quadrature)

The first form of the statement stores the current counter value in a variable.

The second form of the statement changes the current counter value.

60

QuickMotion Reference Guide

Control Technology Corp.

The third form of the statement offsets the current counter value.

The first and third forms are often used together:

totalcounts = 0;
[top]
// wait until input #1 rises
wait for rise of 1;
// get the current counter value
x = ctr[7];
// accumulate
totalcounts = totalcounts + x;
// offset so no counts are missed
ctr[7] -= x;
goto top;

 Alternate Stepper Output Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

generate alternate mode

parameters

mode on generate stepper outputs on alternate pins

off generate stepper outputs on standard pins

On a M3-40A/B/C, (and when in stepper mode in the case of the M3-40A), the step and direction outputs are
normally output on axis (TBx) pin pairs (15, 16).

These cards also allow a third-axis to be controlled by temporarily outputting step and direction pulses on TB1
pin 22 (step) and TB2 pin 22 (direction).

To output on this alternate pair, the command generate alternate on should be issued. To output on the
standard pair, the command generate alternate off should be issued.

 One needs to be careful as only the destination of the step and direction signals change – the axis still
believes that motion is being commanded on the primary axis (and thus updates its idea of where the absolute
stepper position is). Therefore, it is good practice to zero the target position (zero target position) before
switching to or from this alternate mode:

// move my axis 30 revs
zero target position;
generate alternate off;
move at 5 for 30 using 10,10;
wait for in position;

// move axis #3 20 revs
zero target position;
generate alternate on;
move at 10 for 20 using 10,10;
wait for in position;

QuickMotion Reference Guide 61

Doc. No. 951-530017-019

// move me again 10 revs
zero target position;
generate alternate off;
move at 5 for 10 using 10,10;
wait for in position;

62

QuickMotion Reference Guide

Control Technology Corp.

4.8 Simple Motion

Summary:

move to position { using acc, dec }

move at maxvelocity to position { using acc, dec }

move trap to position using rate

move in time to position {mode n }

move for displacement { using acc, dec }

move at maxvelocity for displacement { using acc, dec }

move trap for displacement using rate

move in time for displacement {mode n }

wait for in position

new endposition position using rate

new endposition relative displacement using rate

slew begin

slew at velocity in time

slew for displacement

slew end

 Move Absolute, Triangular Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move to position { using acc, dec }

parameters

position absolute end position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

This statement generates a triangular move to the specified end position. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos using default acceleration and deceleration rates. */

move to drillpos;

QuickMotion Reference Guide 63

Doc. No. 951-530017-019

/* Move in the positive direction to the Z pulse using default
acceleration and deceleration rates. */

move to ZPULSE_POS;

 Move Absolute, Speed-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move at maxvelocity to position { using acc, dec }

parameters

maxvelocity unsigned maximum velocity, user-units/sec

position absolute end position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

This statement generates a trapezoidal move to the specified end position. If it is not possible to reach the
specified maximum velocity maxvelocity, then a triangular move is generated. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos using default acceleration and deceleration rates and
the rapidrate variable for a max velocity. */

move at rapidrate to drillpos;

 Move Absolute, Trapezoidal Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move trap to position using rate

parameters

position absolute end position, user-units

rate acceleration/deceleration rate, user-units/sec/sec

64

QuickMotion Reference Guide

Control Technology Corp.

This statement generates a 1/3-1/3-1/3 trapezoidal move (1/3 of the time accelerating, 1/3 constant velocity, 1/3
decelerating) to the specified end position. The acceleration and deceleration rate must be specified.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos using the variable rapidacc to set acceleration and
deceleration rates. The velocity used will be based on
the calculation to achieve a trap move. */

move trap to drillpos using rapidacc;

 Move Absolute, Time-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move in time to position {mode n }

parameters

time time, sec

position absolute end position, user-units

n acc / dec ramp multiplier

This statement generates a 1/3-1/3-1/3 trapezoidal move to the specified end position in the specified time. The
optional mode feature decreases the amount of time spent on acceleration and deceleration. The n
parameter must be a positive, non-zero integer. By increasing the value of n, the acceleration and
deceleration times are equally reduced, allowing more time at constant speed.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

Note: The specified position may also be specified as ZPULSE_POS or ZPULSE_NEG, meaning the next
encoder Z-pulse in the positive or negative directions, respectively.

 ZPULSE_POS or ZPULSE_NEG should only be used with absolute move commands.

/* Move to the absolute position specified by the variable
drillpos setting the calculated velocity, accel and decel rates
to make a trapezoidal move in the time specified by the variable
movetime. */

QuickMotion Reference Guide 65

Doc. No. 951-530017-019

move in movetime to drillpos;

 Move Incremental, Triangular Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move for displacement { using acc, dec }

parameters

displacement incremental position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

This statement generates a triangular move for a specified displacement. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move an incremental distance specified by the variable
spanmove using default acceleration and deceleration rates */

move for spanmove;

 Move Incremental, Speed-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move at maxvelocity for displacement { using acc, dec }

parameters

maxvelocity unsigned maximum velocity, user-units/sec

displacement incremental position, user-units

acc acceleration rate, user-units/sec/sec

dec deceleration rate, user-units/sec/sec

66

QuickMotion Reference Guide

Control Technology Corp.

This statement generates a trapezoidal move for a specified displacement. If it is not possible to reach the
specified maximum velocity maxvelocity, then a triangular move is generated. If the parameters acc and dec are
omitted, then the default rates are used.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move an incremental distance specified by the variable
spanmove using default acceleration and deceleration rates and
using the variable slowspeed as a max velocity. */

move at slowspeed for spanmove;

 Move Incremental, Trapezoidal Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move trap for displacement using rate

parameters

displacement incremental position, user-units

rate acceleration/deceleration rate, user-units/sec/sec

This statement generates a 1/3-1/3-1/3 trapezoidal move (1/3 of the time accelerating, 1/3 constant velocity, 1/3
decelerating) for a specified displacement. The acceleration and deceleration rate must be specified.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move the incremental distance specified by the variable offset
using the variable rapidacc to set acceleration and deceleration
rates. The velocity used will be based on the calculation to
achieve a trap move. */

move trap for offset using rapidacc;

 Move Incremental, Time-limited Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

move in time for displacement {mode n }

parameters

QuickMotion Reference Guide 67

Doc. No. 951-530017-019

time time, sec

displacement incremental position, user-units

n acc / dec ramp multiplier

This statement generates a 1/3-1/3-1/3 trapezoidal move for a specified displacement in the specified time. The
optional mode feature decreases the amount of time spent on acceleration and deceleration. The n
parameter must be a positive, non-zero integer. By increasing the value of n, the acceleration and
deceleration times are equally reduced, allowing more time at constant speed.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with incremental move commands.

/* Move the incremental distance specified by the variable offset
setting the calculated velocity, accel and decel rates to make a
trapezoidal move in the time specified by the variable
movetime. */

move in movetime for offset;

 Wait For In Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait for in position

This statement temporarily stops the execution of the active MSB until the target generator has reached its final
value and the position error, perr is within the programmed in-position window.

// Move speed-limited
move at slowspeed for spanmove;

// Wait till motor is within the programmed in-position window
wait for in position;

// Turn on output 1 for 1 second
pulse 1 for 1000 ms;

 Set New End Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

new endposition position using rate

new endposition relative displacement using rate

68

QuickMotion Reference Guide

Control Technology Corp.

This statement modifies the end position for the active move command. If there is no active move, then this
statement is effectively ignored. The first form of this statement changes the end position to a new absolute
position. The second form of this statement changes the end position relative to the current position. Using a
displacement of 0 effectively stops motion here without generating a fault (unlike the stop command). Both
statements require a rate to be specified. This rate is used as the acceleration/deceleration rate for the modified
profile.

The newvel variable may be set to a nonzero value in order to specify a velocity. A trapezoidal move will be done
whenever possible, if the end position does not allow for that then a triangular move will result. S-curve is not
supported when using newvel although you may start out with an S-curve move and it will change to a
trapezoidal or triangular with the new target and if newvel is nonzero, velocity.

 Linear acceleration and deceleration is used (as programmed in the axis acc and dec properties) unless the
property jerk_a_req/jerk_d_req is set to a non-zero value in which case an S-curve type profile is generated.

 ZPULSE_POS or ZPULSE_NEG should not be used with this motion command.

Example 1: After din1 is activated change the end position to -3 mm.

/* This example demonstrates how a move can be modified
on-the-fly by using the new endposition command */

[top]
zero feedback position;

// start moving to 25 mm
move at 5 to 25;

// if din1 is activated during the move, change the end
// position of the move to -3 mm
wait for rise of 1;
new endposition -3 using 10;

wait for in position;
delay 3000;
goto top;

Example 2: The move will be terminated 3mm after din1 is activated. Speed is only changed when it
is time to decel to the new end position.

/* This example demonstrates how a move can be modified
on-the-fly by using the new endposition command. */

[top]
zero feedback position;

move at 5 to 25;
wait for rise of 1;

new endposition relative 3 using 10;
wait for in position;

delay 3000;

QuickMotion Reference Guide 69

Doc. No. 951-530017-019

goto top;

Example 3: Change target from 30 to 35, acceleration from 3 to 10 and velocity from 5 to 10 during
the acceleration phase of the move.

 Slew (begin) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew begin

This statement changes the operating mode of the axis to slewing.

slew begin; // change from position mode to slew mode

 Slew At Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew at velocity in time

parameters

velocity new slew velocity, user-units/sec

time time, sec

This statement alters the current slew velocity. The velocity is changed smoothly over the specified time. For an
immediate speed change, specify 0.0 for time.

// change from position mode to slew mode
slew begin;

70

QuickMotion Reference Guide

Control Technology Corp.

// change from current speed to feedrate in 0.5 seconds
slew at feedrate in 0.5;

 Slew For Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew for displacement

parameters

displacement ending relative slew position, user-units

This statement alters the current slew velocity over time (to a slew velocity of 0.0) such that some displacement is
consumed. If the current slew velocity is 0.0, then this statement is ignored.

The displacement should be unsigned, as the sign of the current slew velocity is used to sign the displacement.

 // change from position mode to slew mode
slew begin;

// change from current speed to feedrate in 2 seconds
slew at feedrate in 2;

// delay execution of MSB until input3 transitions from off to on
wait for rise of 3;

// slew to a stop in the distance specified by the variable
// registrationoffset
slew for registrationoffset;

 Slew (end) Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

slew end

This statement changes the operating mode of the axis to positioning. A zero-speed slew (in 0.0 time) is first
generated if the axis is currently slewing at a non-zero velocity.

// change from position mode to slew mode
slew begin;

// change from current speed to slowjog in 0.5 seconds
slew at slowjog in 0.5;

// delay execution of MSB until input1 transitions from on to off
wait for fall of 1;

QuickMotion Reference Guide 71

Doc. No. 951-530017-019

// stop motion and return to position mode
slew end;

72

QuickMotion Reference Guide

Control Technology Corp.

4.9 Gearing

Summary:

gear at numerator : denominator

gear at numerator : denominator in counts

gear at numerator : denominator in counts after acounts

gear for slavecounts in mastercounts

gear for slavecounts in mastercounts after acounts

offset slave by slavecounts in time

wait master counts

wait slave counts

wait source within start , end

wait source outside start , end

zero masslv counters

 Gear At Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

gear at numerator : denominator

parameters

numerator new gear ratio numerator

denominator new gear ratio denominator

This statement instantaneously changes the gear ratio of the slaved axis to the specified values.

 Gear At In Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

gear at numerator : denominator in counts

gear at numerator : denominator in counts after acounts

parameters

numerator new gear ratio numerator

denominator new gear ratio denominator

counts counts of the master encoder

acounts counts of the master encoder to "wait for" before applying the gear/at...in...

This statement changes the gear ratio of the slaved axis to the specified values over some number of master
counts. An optional after condition can be applied to delay applciation of the gear/at/in.

QuickMotion Reference Guide 73

Doc. No. 951-530017-019

 Gear For In Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

gear for slavecounts in mastercounts

gear for slavecounts in mastercounts after acounts

parameters

slavecounts counts of the axis encoder

mastercounts counts of the master encoder

acounts counts of the master encoder to "wait for" before applying the gear/for...in...

This statement temporarily modifies the gear ratio of the slave axis such that a slavecounts correction (offset)
occurs over a master-feedback displacement of mastercounts. The slavecounts correction may be positive or
negative. An optional after condition can be applied to delay application of the gear/for/in.

 Offset Slave Position Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

offset slave by slavecounts in time

parameters

slavecounts counts of the axis encoder

time time, sec

This statement offsets the position (and therefore phase) of the axis such that a slavecounts correction (the
offset) occurs over a period of time. The slavecounts correction may be positive or negative.

 Wait for Counts of Master Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait master counts

parameters

counts counts of the master

This statement waits until the specified number of master encoder counts has been generated.

 Wait for Counts of Slave Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

74

QuickMotion Reference Guide

Control Technology Corp.

wait slave counts

parameters

counts counts of the axis (slave)

This statement waits until the specified number of axis (slave, target-position) counts has been generated.

 Wait Within Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait source within start , end

parameters

source master1, master2, master3, master4 or slave

start a modulo starting bound

end a modulo ending bound

This statement waits for the modulo position (either mposc1-4 or sposc) to lie within the specified bounds.

 Wait Outside Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait source outside start , end

parameters

source master1, master2, master3, master4 or slave

start a modulo starting bound

end a modulo ending bound

This statement waits for the modulo position (either mposc1-4 or sposc) to lie outside the specified bounds.

 Clear Temporary Gearing Counters Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

zero masslv counters

parameters

masslv master clears tmc1 and tmc2

slave clears tsc1 and tsc2

QuickMotion Reference Guide 75

Doc. No. 951-530017-019

This statement atomically clears the temporary master or slave counters.

76

QuickMotion Reference Guide

Control Technology Corp.

4.10 Position Capture & Registration

Summary:

set capture transition of input input { gate input gateinput gatestate }

set capwin range start, end using reference { arm }

wait capture { if limit of limit goto limitlabel }

(Also reference the EtherCAT Applications Guide for additional details pertaining to network drive control).

 Set Capture Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set capture transition of input input { gate input gateinput gatestate }

parameters

transition rise, fall or edge (any)

input the input# (1-10, representing all the inputs on the M3-40A card)

gateinput the input# (1-10, representing all the inputs on the M3-40A card)

gatestate on or off

This statement initializes the parameters to be used for all captures on this axis, specifying the input (capInput) to
use and the optional gated input. If gating is specified, then the specified gating input (capGate) must be at the
specified gating state (capGateState).

The following variables are computed and available after a successful capture:

capposc capture position in encoder counts
cappos capture position in user units
capTriggered flag set to 1 when capture occurs

Note: capposc and cappos are only valid when capTriggered is a 1. Once armed capposc/cappos will reflect the
value latched when the capture input goes active but is not necessarily within the defined capture window.
capTriggered verifies the capture window against the latched capposc/cappos, prior to setting.

If more than one running MSB on an M3-40A card arms the same input for capture, unexpected capture results
may occur.

Only one input may be armed for capture at a time per axis. If another input is presently armed when this
command is issued, the other input is effectively disarmed.

 Set Capture Window Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

set capwin range start, end using reference { arm }

QuickMotion Reference Guide 77

Doc. No. 951-530017-019

parameters

start Start window position to compare against reference. Reference >= start.

end End window position to compare against reference. If equals start then no window
exists and capture will occur based on input. Reference <= end.

reference the encoder count scaled reference variable to compare to:

fposc feedback position

mposc1 - mposc5 master position counters #1 through #5

mposc master position counter

smodc slave position (modulo)

smark slave marked position

tmc1 tmc2 temporary master counters #1 & #2

tsc1 tsc2 temporary slave counters #1 & #2

sdc slave decrement counter

fposc1 feedback position of axis 1 (fposcA)

fposc2 feedback position of axis 2 (fposcB)

tmodc temporary master counter mod mmc
sfposc secondary feedback position of axis

arm If included will arm the capture, if not arm will need to be done by a Wait or On
command.

This statement initializes a window to be monitored for valid captures to occur, anything outside this window is
considered invalid and ignored. If the capture occurs outside this window it will automatically be re-armed within
the loop period (default 800 uS). If ‘arm’ is specified this statement will automatically arm the capture prior to
completing this instruction. The capwinStart variable is the start of range and the capwinEnd variable is the end
of range, inclusive.

 When using open loop stepper tposc is not available thus issue the command 'set simulated feedback on' to
have tposc copied to fposc, on each control loop, allowing the use of this command.

 Wait Capture Positioning Slewing Tracking
 BG MSB

 FG MSB

syntax

wait capture { if limit of limit goto limitlabel }

parameters

limit optional master encoder count limit

limitlabel optional label to branch to if limit is reached

This statement waits for the capture and arms the capture input. If the capture occurs the next statement in the
MSB is executed. A maximum limit of counts prior to exiting (capLimit/capLimitflag) can be set. This limit
references the ‘reference’ set by ‘set capwin’ and the sign must be adjusted accordingly. The capWait variable
will be set to 1 while the ‘wait capture’ is active, 0 if not.

If a limit (capLimit) is specified, then the statement will branch to the specified goto limitlabel after that number
of master encoder counts has passed.

78

QuickMotion Reference Guide

Control Technology Corp.

4.11 S-Curve

S-Curve support is optionally available for the move commands, from a stopped position. When using timed
commands the distance, acceleration, and velocity will be calculated for the given time and then translated to an
S-Curve move. The time will not be the same as the non S-Curve move but all other parameters will be, including
position. Variables of interest are:

‘runv’ - velocity fed to the PID algorithm internal use only, read only.

‘jerk_a/jerk_d’ - acceleration/deceleration actual jerk, read only .

‘jerk_a_req/jerk_d_req’ – requested acceleration/deceleration jerk in units/sec3, read/write. Set to 1 for
automatic calculation.

‘sign’ – nonzero for S-Curve move, 1 for CCW rotation and -1 for CW rotation, read only.

The minimum jerk that can be used is calculated by the formula (a
max

 * a
max

)/v
max

), applied independently to the

requested acceleration and deceleration jerk. The maximum velocity is the same as the non S-Curve move and
defined by the expression:

sign = 1;
if (delta < 0) {

sign = -1;
delta = -delta;

}
a
max
 = sign * acceleration;

d
max
 = -sign * deceleration;

V
max
 = sqrt(2.0 * a

max
 * d

max
 * sign * delta / (d

max
 - a

max
));

If ‘jerk_a_req/jerk_d_req’ is 0 then a normal move will be attempted. If only one is set then ‘jerk_a/jerk_d’ will be
set equal. If the requested jerk is greater than the minimum then it will be used. The variables ‘jerk_a/jerk_d’ are
the actual jerk used for the move. Also note that S-Curve uses twice the acceleration and deceleration specified
by the non S-Curve move request.

Below shows a sample S-Curve where the jerk is set to 1, thereby having the motion card calculate the optimum
jerk and the velocity set to a large number so that the motion card will calculate the maximum velocity possible for
the move. Note that the step graph is the segment (substep), 1 to 7, of the S-Curve, with 0 being segment 1. If for
some reason the proper velocity or distance can not be attained by the parameters given, the non S-Curve curve
move will be used. The end position can not be changed and a slew stop will do the non S-Curve stop. In the
example below the motion card will calculate the maximum velocity and optimum jerk. Note there is little or no
segment 4 (constant velocity). Also linear segments 2 and 6 are 0.

QuickMotion Reference Guide 79

Doc. No. 951-530017-019

Resulting motion S-Curve using QuickScope:

 800uS is the default loop period. If 500uS is desired use the ‘set loopperiod .0005’ command prior to drive
enable.

80

QuickMotion Reference Guide

Control Technology Corp.

4.12 Linear and Circular Interpolation (Vectors)

Reference the EtherCAT Applications Guide for details.

QuickMotion Reference Guide 81

Doc. No. 951-530017-019

5 Chapter 5: Camming and Data Tables

Camming tables in QuickMotion are two-dimensional arrays of floating-point data. There are 6 tables available for
use, numbered 0 through 5, each having up to 2000 rows and always 2 columns. These columns are named “x”
and “y”. Although their primary use is to hold data for spline- and CAM-based motion, they can be used to hold
arbitrary data such as positions for recipe-based motion. Although limited to 6 tables, these tables can also be
swapped out dynamically and refreshed with new data when loaded from the controller file system.

Spline tables use the “x” column as time and the “y” column as a relative position. CAM tables use the “x”
column as a relative master position and the “y” column as a relative slave position.

Since spline and CAM tables use relative position data, the first point pair in these tables must be 0.0, 0.0
(time/master-position of 0, position/slave-position of 0). The exception to this is with CAM tables where the y
component can be non-zero in newer firmware revisions, thereby establishing an offset. In addition, for any
tables used for spline and CAM operations, all “x” values must be increasing, that is: a given row’s “x” must be
greater than the previous row’s “x”. Also, the minimum number of rows (pairs) in these tables is 3.

 It is recommended that CAM tables and instructions be used whenever possible. Significant enhancements
have been made to camming which have currently not been carried forward to splines. Some of this consists of
the ability to start on non-zero y column values, ability to start anywhere within a table, and forward and reverse
table traversing.

Points in a spline or CAM table are also referred to as knots, as they represent critical loci that must be passed
through when interpolation occurs.

For example, in the following spline table:

0.0 0.0
1.5 2.0
2.0 2.5
3.0 3.0
4.0 2.0
5.0 0.0

there are 6 knots. Since this is a spline table, the last 5 knots are interpreted as follows:

At time = 1.5 seconds, the position of the axis should be 2.0 user-units beyond where the axis started
this spline move.
At time = 2.0 seconds, the position of the axis should be 2.5 user-units beyond where the axis started
this spline move.
At time = 3.0 seconds, the position of the axis should be 3.0 user-units beyond where the axis started
this spline move.
At time = 4.0 seconds, the position of the axis should be 2.0 user-units beyond where the axis started
this spline move.
At time = 5.0 seconds, the position of the axis should be back where the axis started this spline move.

The position of the axis between these “knots” is determined by the interpolation method specified by the QM
code when the table is started.

The three available interpolation methods in QM for spline (and CAM tables) are:

82

QuickMotion Reference Guide

Control Technology Corp.

linear a straight-line joins each knot

quadratic a piecewise 2nd degree polynomial is fitted between this knot and the next; the first
derivative of the first point is forced to 0.

cubic a piecewise 3rd degree polynomial is fitted between this knot and the next two knots; the
first and second derivatives of the first point is
forced to 0.

The following graph shows different interpolation methods using the following table of knots:

0.000 0.000

0.500 1.250

1.000 1.500

1.750 2.000

2.250 3.250

2.750 3.375

3.000 4.000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.5 0 0.5 1 1.5 2 2.5 3 3.5

l inear quadratic cubic knots

CAM tables are interpreted similar to their time-based spline counterparts. For example, in the following CAM
table:

0.0 0.0
2.5 1.0
4.0 -1.0
5.0 0.0

the last 3 knots are interpreted as follows:

QuickMotion Reference Guide 83

Doc. No. 951-530017-019

At a relative master position of 2.5 user-units, this (slave) axis should be 1.0 user-units beyond where it
started.
At a relative master position of 4.0 user-units, this (slave) axis should be 1.0 user-units before where it
started.
At a relative master position of 5.0 user-units, this (slave) axis should be where it started.

The master position is kept in the QM variable, mpos and is scaled to user-units by dividing by the axis

parameter mppr. No other scaling occurs (i.e. uun and uud are not utilized). A raw (counts) variable is also

available in mposc.

 Unlike splines, Cam tables may start on a non-zero relative position (y). This position is used as an offset.

 'activeCAM_row' may be set to any desired row upon which mpos will be initialized to that which is the 'x'
value of that row, allowing the table to start in that position.

 'invertmaster' variable is by default set to 0, meaning the cam table is traversed moving from row 0 to N. If
'invertmaster' is set to 1 the cam table position will begin at the end of the table and traverse N to 0.
'activeCAM_row' determines the start position, initialized by the precompute command either to the end or start
of the table based upon 'invertmaster'. Prior to a 'table start' command 'activeCAM_row' can be changed to a
different start position. 'invertmaster', when set causes mpos to decrement on positive master pulses, thus the
reverse traversing of the table.

 'camming_invertend' variable is by default set to 0, meaning follow the logic described above for
'invertmaster'. If you wish to invert the logic of the 'invertmaster', with regards to camming table positioning only,
set this flag. The 'invertmaster' variable will still control whether mpos is added or subtracted from based upon
the master but 'caming_invertend', if set, allows you to start at the other end of the camming table. The direction
you traverse the camming table is important since if you are at the start of the table and go slightly negative you
will hold position but if you go past the end of the table the command will be considered completed.

invertmaster camming_invertend
 0 0 master difference added to mpos, assume moving from beginning
 of camming table to end (thus go beyond end COMPLETE).
 0 1 master difference added to mpos, assume moving from end
 of camming table to beginning (thus go beyond beginning COMPLETE).
 1 0 master difference subtracted from mpos, assume moving from end
 of camming table to beginning (thus go beyond beginning COMPLETE).
 1 1 master difference subtracted from mpos, assume moving from beginning
 of camming table to end (thus go beyond end COMPLETE).

84

QuickMotion Reference Guide

Control Technology Corp.

5.1 Loading Tables

Summary:

table n clear

table n addpair xexpression , yexpression

table n addseries pairs

table n copy from rowOffset1 to table m rowOffset2 numRows

table n loadoffset rowOffsetFile, numPairs,rowOffsetTable

table n loadseries source fileNumber

In order to use a table, it must be loaded with point pairs. There are several QM statements which facilitate
loading of tables. These statements allow tables to be loaded either directly from within program code, thus static
data, or dynamically from binary table files which reside on the controller file system. The commands that effect
table loading are:

 Table Clear Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n clear

parameters

n the table to clear

Clears a table of all of its points, thus setting the number of data points to 0, within a table.

table 1 clear;

There can be no active motion command when this statement is issued.

 Table Add Pair Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n addpair xexpression , yexpression

parameters

n the table to add a point pair to

xexpression an expression which when evaluated will be utilized as the

value in the “x” column

yexpression an expression which when evaluated will be utilized as the

value in the “y” column

This statement adds a point pair to a table. This statement is used when the table is computed at MSB runtime
since the pair is computed by two expressions.

QuickMotion Reference Guide 85

Doc. No. 951-530017-019

table 2 addpair 3.75 + ztime, q + zoffset;

 There can be no active motion command when this statement is issued.

 An error will occur if there are already 2000 rows in the table.

 Table Add Series Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n addseries pairs

parameters

n the table to add a point pair to

pairs a series of one or more pairs (in the form of x,y), colon-

delimited

This statement adds constant point pairs to a table.

// add 4 point pairs to table 1

table 1 addseries 0.0,0.0 : 1.0,1.5 : 2.0,1.75 : 3.0,2.0;

 There can be no active motion command when this statement is issued.

 An error will occur if adding these pairs will result in a table with more than 2000 rows.

 Table Copy Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 table n copy from rowOffset1 to table m rowOffset2 numRows

parameters

n The table which is source of the copy.

rowOffset1 The source table row offset, 0 is no offset.

m The table which is destination of the copy.

rowOffset2 The destination table row offset, 0 is no offset, -1 is

append.

numRows The number of rows to copy, 0 is all.

This statement allows for one table to be copy or appended to another table. The destination table does not need
to exist. The offsets can be used to merge table data.

table 1 copy from 0 to table 2 0 0; // Copy all of table 1 to 2

86

QuickMotion Reference Guide

Control Technology Corp.

 Table Loadoffset Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n loadoffset rowOffsetFile, numPairs,rowOffsetTable

parameters

n The table to set the offset information on.

rowOffsetFile The file row offset to begin transfer on, 0 is no offset.

numPairs The number of cam file pairs to transfer, 0 is all.

rowOffsetTable The cam table row offset to begin storing file at, 0 is

start.

This statement works in conjunction with the 'loadseries' command, setting the offsets to be used. The offsets
can be used to merge table data. This command only initializes parameters for 'loadseries' and does not directly
effect the table.

table 1 loadoffset 0 0 0; // Default, transfer all from start .

 Table Loadseries Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 table n loadseries source fileNumber

parameters

n The table to load the cam file into.

source The location on disk where file will be found, ‘flash’ or

‘ram’ (/_system/Datatables or /RAMDISK/Datatables).

fileNumber The file to transfer, ‘camtable#.tbl’, where # is any

valid positive number. A variable may be referenced as

well.

This statement requests a cam file to be transferred from the controllers file system. The file is transferred to the
MSB for local storage and must be precomputed prior to operation. The ‘loadoffset’ parameters are referenced
for this command as to where within the file and table to begin the transfer.

table 1 loadseries ram 1; // Load file ‘camtable1.tbl’

The file format of 'camtable#.tbl' consists of a binary file of 32 bit float pairs with a file record structure as:

float rows[NUMROWS][2];

Where NUMROWS is the number of cam file pair entries, with the first starting at 0, 0. The same rules as the
'addseries' command exists. Each float is stored in little endian format with X being the first float.

As an example of a 3 row table with the values of:

0, 0
250, 25.67

QuickMotion Reference Guide 87

Doc. No. 951-530017-019

500, 50.48

The binary data within a file would consist of 24 bytes, 4 bytes per entry in little endian and IEEE-754 floating
point format. Below is byte representation of the required file, in hex:

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x7A 0x43 0x29 0x5C 0xCD 0x41
0x00 0x00 0xFA 0x43 0x85 0xEB 0x49 0x42

IEEE-754 conversion calculator is available at:

http://babbage.cs.qc.cuny.edu/IEEE-754/Decimal.html

For example, 50.48, is 0x4249EB85, reversed when stored in the file since in little endian format (low byte first).

http://babbage.cs.qc.cuny.edu/IEEE-754/Decimal.html

88

QuickMotion Reference Guide

Control Technology Corp.

5.2 Using Tables for Spline/CAM

Summary:

table n continue

table n precompute

table n start imethod tscale , rpscale , repeatcount

table n start imethod cam mpscale , spscale , repeatcount

stop table

 Table Continue Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n continue

parameters

n The table to continue that was previously stopped.

Continues a cam table that was stopped by the ‘stop table’ command. Note that this command should only be
used if the master position stopped at the beginning of the next table row position otherwise any row that is
currently being executed during a ‘stop table’ (immediate stop) will be re-executed. The master position allows for
a slewed stop. Upon execution of ‘stop table’, with the servo not moving, would then save all the camming
information so that you can exit camming, jog into position, and then continue with the same camming table from
where left off with the ‘table n continue’ command.

table 1 continue;

There can be no active motion command when this statement is issued.

 In many cases this command is no longer needed since the 'activeCAM_row' can be set prior to 'table start'.
Only supported in camming mode, not spline.

 Table Pre-compute for Spline/CAM Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n precompute

parameters

n the table to pre-compute

This statement readies a table for use by a spline/CAM motion. After points have been added to a table, there are
a series of computations that need to occur before the table can be utilized for spline and CAM motion
operations. This statement causes those computations to occur.

QuickMotion Reference Guide 89

Doc. No. 951-530017-019

There is no need to issue this command if a table is being utilized simply for data (i.e. for tbln, tblx or tbly
operations).

Failure to precompute a table before starting the table will cause a hard fault.

 It takes roughly 250ms to precompute a 1000 row table.

 The table must contain at least 3 points and all ‘x’ column values must be increasing or an error will occur.
The first point in the table must be 0.0,0.0 otherwise an error will occur.

 In camming mode 'invertmaster' set to 0 will cause 'precompute' to initialize the table to move
from start to end, if set then from end to start, with positive master position motion.

// prepare the table for CAM use

table 1 precompute;

 Table Start Spline Motion Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n start imethod tscale , rpscale , repeatcount

parameters

n the table to utilize for motion

imethod linear uses linear interpolation

quadratic uses 2nd order interpolation

cubic uses 3rd order interpolation

tscale time scale factor: the values in the “x” (time) column in

the table are effectively divided by this number

rpscale relative position scale factor: the values in the

“y” (relative position) column in the table are effectively

multiplied by this number

repeatcount the number of times to “run through” the table (0=forever)

This statement starts spline motion using the specified table.

The current (target) position is used as the starting relative-position for the motion.

The table must be ready for use (i.e. a table precompute operation has been successfully completed on the table).

 “In position” will be true only when the table has completed all required repeats. If 0 (forever) is specified for
the repeatcount, then “In position” will never be true unless a stop table is issued.

 The scale factor tscale must evaluate to a value greater than 0 otherwise an error will occur.

90

QuickMotion Reference Guide

Control Technology Corp.

 The scale factor rpscale must evaluate to a value other than 0 otherwise an error will occur.

 The scale factor rpscale is not affected by uun or uud. The generated position is also unaffected by uun
or uud.

[top]

zero feedback position;

table 1 start quadratic 1.0, 1.0, 0; // run through the table
forever, 'table stop' command will cause the background motion
command to stop.

 Table Start CAM Motion Positioning Slewing Tracking BG MSB

 FG MSB

syntax

table n start imethod cam mpscale , spscale , repeatcount

parameters

n the table to utilize for motion

imethod linear uses linear interpolation

quadratic uses 2nd order interpolation

cubic uses 3rd order interpolation

mpscale master-position scale factor: the values in the

“x” (master-position) column in the table are effectively

divided by this number

spscale relative slave-position scale factor: the values in the “y”

(relative slave position) column in the table are

effectively multiplied by this number

repeatcount the number of times to “run through” the table (0=forever)

This statement starts CAM motion using the specified table.

The master position (mpos, mposc) is not cleared when this statement is executed, the activeCAM_row will be

used to offset into the cam table and that position will become mpos/mposc. 'table precompute' will set the
activeCAM_row to 0.

The current (target) position is used as the starting relative slave-position for the motion.

The table must be ready for use (i.e. a table precompute operation has been successfully completed on the table).

 If the master position “backs up” past 0 (its initial position) and the “repeats left to do” counter is greater
than 1, then the “repeats left to do” counter is decremented and the master-position wraps. If the
repeatcount was specified as 0 (forever), then the master-position will always wrap.

QuickMotion Reference Guide 91

Doc. No. 951-530017-019

 “In position” will be true only when the table has completed all required repeats. If 0 (forever) is specified for
the repeatcount, then “In position” will never be true unless a stop table is issued.

 The scale factor mpscale must evaluate to a value greater than 0 otherwise an error will occur.

 The scale factor spscale must evaluate to a value other than 0 otherwise an error will occur. The scale factor
rpscale is not affected by uun or uud. The generated position is also unaffected by uun or uud.

[top]

zero feedback position;

table 1 start quadratic cam 1.0, 1.0, 1;

 Table Stop Positioning Slewing Tracking BG MSB

 FG MSB

syntax

stop table

This statement stops spline or CAM motion. If in CAM motion then the current table state is saved in case a
'table continue' command is executed.

If there is no active table start (spline/CAM) motion, then this command is effectively ignored and no fault
occurs.

Unlike other stop statements, stop table will never generate a hard fault.

wait until mpos > 9;

stop table;

92

QuickMotion Reference Guide

Control Technology Corp.

5.3 Accessing Table Data

As mentioned earlier, tables may also be used to store/retrieve data. In QM, there are special array access
operators called tblx[], tbly[] and tbln[] that allow the user to retrieve information from a table.

tblx[] and tbly[] retrieve the “x” value (tblx) or “y” value (tbly) from a given row in a table. tbln[]
retrieves the total number of rows in a table.

Their syntax is as follows:

tblx[table#, row]

tbly[table#, row]

tbln[table#]

 Any attempt to read a value outside the bounds of the table will result in a value of 0.

They can be used in any QM expression, as show in the example QM code below:

// use table 1 for "move in time" pairs

// x will hold the move time (although it can hold anything we want)

// y holds an absolute position

// note that 'x' values in the table don't have to be

// in increasing form as they do for spline/cam

// since we are using the table just as data

// also note that there is no 'precompute' as the table is

// just being used for data and not spline/cam

table 1 clear;

table 1 addseries 1.0,1.0 : 0.5,1.5 : 2.0,3.75 : 1.0,6.0;

[top]

zero feedback position;

// set index to 0 (indexes into tables are 0-based)

i = 0;

QuickMotion Reference Guide 93

Doc. No. 951-530017-019

// grab how many pairs are in table 1

n = tbln[1];

[loop]

// done?

if i >= n goto top;

// grab data

move in tblx[1,i] to tbly[1,i];

wait for in position;

delay 1000;

// increment index

i = i + 1;

goto loop;

5.3.1 Diagnosing Table Issues

When table data is loaded by an MSB it can be difficult to determine if it is correct from a diagnostic viewpoint.
Diagnostic variables exist that can be monitored to allow a user to walk through the table to visually or
programmatically verify data from QuickBuilder. A Quickbuilder Debug Window can be used to view the
Diagnostic Variables listed below:

Diagnostic
Variables Description Type

debugTable Cam table to view, from 0 to 5, representing table 1 to 6 since 0 based. read-write

debugTableRows Number of rows presently in the selected cam table, debugTable. read-only

debugTableRow Current row number to view in the selected cam table, debugTable. read-write

debugTableX X value for selected debugTableRow. read-only

debugTableY Y value for selected debugTableRow. read-only

94

QuickMotion Reference Guide

Control Technology Corp.

 The above variable are only available from a QuickBuilder Debug Window, when executing an MSB use the
tblx, tbly, and tbln commands discussed in the previous section.

5.4 Microsoft Excel as Table Data

It is relatively simple to use data from Microsoft Excel as table data.

One can easily create four columns with x-data, a column containing a comma (“,”), y-data and lastly a column
containing a colon (“:”) as follows:

Since the QuickBuilder editor allows free-form lines, the data can simply be copied and pasted into QM code in an
MSB such as:

table 1 clear;

table 1 addseries

// paste Excel cells here
;

QuickMotion Reference Guide 95

Doc. No. 951-530017-019

 The last colon (“:”) in the last row will need to be removed using this method.

 Refer to the loadseries command to dynamically load tables from a binary file stored on the
controller's file system.

5.5 Virtual Master

At times a virtual master is required. This can be done in one of two ways:

1. Use the move master command to generate background pulses on the selected access based on timer loop
tick counts. This allows the same access to operate normally, as an axis.

2. Setup a simulated axis, which runs as though it was receiving real encoder input, although it is not. The
master position can then be published so others can track to it. Just about all motion commands are valid
during a simulation, including s-curve.

Once a method of generating a master position is determined it can then be published across the backplane of the
controller using variant 36827 (see Virtual Master Broadcasting).

 Move Master Position Positioning Slewing Tracking BG MSB

 FG MSB

syntax

move master at rate for limit { using ramp }

move master at rate forever limit { using ramp }

parameters

rate The pulse rate of the encoder in pulses added per position

loop period (800us default on the M3-40A).

limit The total number of pulses to generate.

ramp Optional ramp added or subtracted from rate at the position

loop period (800us on the M4-40A).

This statement virtually “moves” the master encoder by changing its “position” at the specified rate for a certain
number of generated pulses (first form, specified by limit). If the limit is set to 0 then just the rate will change,
dynamically, using any specified ramp, from the current rate.

To generate a continuous stream of pulses, use the second form. move_master_ramp and move_master_rate
variables can be referenced to check current settings of virtual master.

Reference set master mode { using global } for additional information.

Example:

// stop the virtual axis
move master at 0 forever using 1;
// set the virtual access global
set master virtual using global; // this will place the master information in dual ported memory for
broadcast to slave axis

96

QuickMotion Reference Guide

Control Technology Corp.

// start the virtual axis
move master at 100000 forever using 1;

One of the drawbacks of the 'move master at' command is that it is based on the loop period and not user units.
This can make things difficult to program. The benefit is the axis is available for motion. If an axis can be
reserved and dedicated as a master then a simulated feedback can be used. In essence the axis becomes a virtual
axis, responding to commands as it would on a real axis:

set simulated feedback on; // this will cause fposc to = tposc after each loop period, drive must not be
enabled

5.5.1 Broadcasting (M3-40 only)

When the 'set master virtual using global' command is given, mposc delta counts (mposc - last_mposc) are placed
in a dual ported memory for broadcast by the controller, across the backplane. This allows muliple axis to follow a
master. Up to 4 masters are currently support with a broadcast update rate of 4ms. Prior to broadcasting, the
controller must be initialized with the proper master/slave information

A special variant table located at 36827 supplies the interface to control virtual broadcasting. In Quickbuilder
define a table of type 'int' with an override of 36827.

Once created the variable table columns are defined as follows where masterNum is 0 to 3 (up to 4 masters):

MasterArray[masterNum][0] - 0 disables broadcasting, non-zero enables.

MasterArray[masterNum][1] - Master axis number, 1 to 32.

MasterArray[masterNum][2] - Slave axis bit positions, up to 32 supported (16 2 axis cards). Which slaves to
replicate master information to.

Example:

QuickMotion Reference Guide 97

Doc. No. 951-530017-019

MasterArray[0][0] = 0; // disable any running master

MasterArray[0][1] = 1; // Axis number 1 will be a master

MasterArray[0][2] = 14; // Axis 2, 3, and 4 are slaves referencing master: 0x0000000E

5.6 Segmented Moves and Examples

Summary:

segmove table clear

segmove table accdec to vel using rate

segmove table accdec to vel for displacement

segmove table slew until position

segmove table stop at position using rate

segmove table start relative

Topics:

· Concept

· Commands

· Examples

5.6.1 Concept

A segmented move is a precompiled move with multiple distances, acceleration, and velocities tied together.
Below is the velocity profile of an example segmented move.

Up to 16 Segmented Move “tables” can be defined with up to 20 segments each residing within them. Once a
segment table has been defined and then started, you can redefine that same table while it runs without affecting
the segment table in progress.

Below is an example of a segmented move with 5 segments using table 1. You define each acceleration or
deceleration ramp and each constant velocity ramp as a separate segment.

98

QuickMotion Reference Guide

Control Technology Corp.

5.6.2 Commands

Creating and running a table is easy and uses the following procedure:

1. Clear the Table.
2. Create up to 20 acc/dec and constant velocity segments.
3. Start the Table.

Clear Segmented Move Table Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table clear

parameters

 table what table to clear: 1 to 16

This command clears any existing table information
Example: segmove 1 clear;

 Add Segmented Move to Table at rate Positioning Slewing Tracking BG MSB

QuickMotion Reference Guide 99

Doc. No. 951-530017-019

 FG MSB

syntax

 segmove table accdec to vel using rate

parameters

 table Which table to add to: 1 to 16

vel Velocity, user-units/sec

rate Acceleration/deceleration rate, user-units/sec/sec

This command adds an acc/dec segment from the current velocity to the new <vel> at the specified <rate>.
Example: segmove 1 accdec to Vel1 using Acc1;

Add Segmented Move to Table over
displacement

 Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table accdec to vel for displacement

parameters

 table Which table to add to: 1 to 16

vel Velocity, user-units/sec

displacement Incremental position, user-units

This command add an acc/dec segment from the current velocity to the new <vel> over some <displacement>.
Note this is an incremental acc/dec segment.
Example: segmove 1 accdec to Vel2 for Pos2;

Add Segmented Move to Table (slew) Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table slew until position

parameters

 table Which table to add to: 1 to 16

position Velocity, user-units/sec

This command adds a constant velocity segment until reaching some specified <position>. This is an absolute
position from the start of the profile. Prior segments in table must represent movement before this command is
accepted, otherwise a fault will occur as table is built
Example:
segmove 1 slew until Pos3;

Add Segmented Move to Table (stop) Positioning Slewing Tracking BG MSB

100

QuickMotion Reference Guide

Control Technology Corp.

 FG MSB

syntax

 segmove table stop at position using rate

parameters

 table Which table to add to: 1 to 16

position Position to stop at, user-units

rate Acceleration/deceleration rate, user-units/sec/sec

This command stops motion at the specified position, with a given rate. This will cause motion to stop at an
absolute position at a specified deceleration rate. Prior segments in table must represent movement before this
command is accepted, otherwise a fault will occur as table is built.
Example:
segmove 1 stop at Position using Accel;

Add Segmented Move to Table (relative) Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 segmove table start relative

parameters

 table Which table to add to: 1 to 16

This command starts a relative segmented move – a “zero feedback position” occurs automatically upon
executing this command.
Example:
segmove 1 start relative;

5.6.3 Examples

The following pages include screen shots of move profiles and the code used to create them.

QuickMotion Reference Guide 101

Doc. No. 951-530017-019

[Top]
segmove 1 clear; //clear segment table 1
segmove 1 accdec to 10 for 10; //accel to a vel of 10 over a dist of
10
segmove 1 slew until 20; //move at current vel 10 till position
20
segmove 1 accdec to 30 for 20; //accel to a vel of 30 over a dist of
20
segmove 1 slew until 70; //move at current vel 30 till position
70
segmove 1 accdec to 20 for 30; //decel to a vel of 20 over a dist of
30
segmove 1 slew until 120; //move at current vel 20 till position
120
segmove 1 accdec to 0 for 10; //decel to a vel of 0 over a dist of
10(stop)
wait for in position; //Wait for previous moves to be
complete
segmove 1 start relative; //Start the move
delay 500 ms; //delay 500 ms;
goto Top; //goto Top and repeat

102

QuickMotion Reference Guide

Control Technology Corp.

[Top]
segmove 1 clear; //clear segment table 1
segmove 1 accdec to 10 using 10; //accel to a vel of 10 using accel of
10
segmove 1 slew until 35; //move at current vel 10 till position
35
segmove 1 accdec to 40 using 200; //accel to a vel of 40 using accel of
200
segmove 1 slew until 70; //move at current vel 40 till position
70
segmove 1 accdec to 5 using 30; //decel to a vel of 5 using accel of 30
segmove 1 slew until 120; //move at current vel 5 till position
120
segmove 1 accdec to 0 using 60; //decel to a vel of 0 using accel of
60(stop)
wait for in position; //Wait for previous moves to be
complete
segmove 1 start relative; //Start the move
delay 500 ms; //delay 500 ms;
goto Top; //goto Top and repeat

QuickMotion Reference Guide 103

Doc. No. 951-530017-019

[Top]
segmove 1 clear;
segmove 1 accdec to 10 for 10;
segmove 1 slew until 20;
segmove 1 accdec to 30 for 20;
segmove 1 slew until 100;
segmove 1 accdec to 20 for 30;
segmove 1 accdec to 0 for 2;
wait for in position;
delay 500;
segmove 1 start relative;
goto Top;

104

QuickMotion Reference Guide

Control Technology Corp.

[Top]
segmove 1 clear;
segmove 1 accdec to Vel1 for Pos1;
segmove 1 accdec to Vel2 for Pos2;
segmove 1 slew until Pos3;
segmove 1 accdec to Vel1 for Pos2;
segmove 1 accdec to 0 for Pos1;
wait for in position;
delay 500;
segmove 1 start relative;

QuickMotion Reference Guide 105

Doc. No. 951-530017-019

6 Chapter 6: Motion Variables

6.1 QuickMotion User-defined Variables

When entering code into an MSB, variables are automatically defined as they are typed in. A total of 48 user
variables per axis are allowed. Each variable is automatically created as a double-precision floating point variable.
 When you translate a QuickBuilder program the number of variables used on each axis will be displayed, should
too many be referenced an error will be flagged:

Variables used in an MSB are automatically assigned to each axis that uses that particular MSB.

For example in the following example two MSB variables are used: speed and dist.

// move at assigned speed for assigned distance
[top]
move at speed for dist;
wait for in position;
delay 500;

goto top;
end;

In this sample project, this is the only MSB that QuickStep is calling for the axis named ax1, the speed and dist
variables are automatically added to the ax1 object at the time of translation in QuickBuilder. Note that they will
not be shown in the resource tree under an axis object until the project is translated, because it is only at this
point that QuickBuilder knows which axes are using which MSBs.

Because a single MSB can be used by more than one axis, the actual variable name has the axis name pre-pended
to it so that it can be uniquely accessed by QuickStep (QS4). So in the above example, the variable dist used on

106

QuickMotion Reference Guide

Control Technology Corp.

ax1 has a name of ax1.dist that is used to access it from QuickStep. If that same MSB were to be used on ax2 as
well the dist variable ax2.dist would be used in QuickStep.

Note that axis prefixes are only used at the QuickStep level and not within MSBs. The MSB cannot directly
access a variable from an MSB running on a different axis. If this information is needed, it can be obtained by first
assigning the desired MSB variable to a QuickStep variable. This QuickStep variable can then be assigned to a
variable in the other MSB. The methodology for reading and writing variables between QuickStep and an MSB is
shown below.

QS4 Example code:

// QS4 Sample code showing how to update variables between
// QuickStep and MSBs

// set the MSB variable x for Axis1 DrillPosition
// where, DrillPosition is a QuickStep variable
Axis1.x = DrillPosition;

// set the MSB variable speed for Axis1 to 5
Axis1.Speed = 5;

// set the QuickStep variable AxOneTarget
// to the MSB variable Axis1.Target
AxOneTarget = Axis1.Target

Axis1 MSB Example code:

// MSB Sample code showing how to use updated variables
// between QuickStep and MSBs

Halfspd = Speed/2;

/* Make a trap move to the DrillPosition specified in the QS4 step at
half speed */
move at Halfspd to x;

wait for in position; // Wait for move to complete
pulse 1 for 1000; // Turn the drill output on for 1 sec

/* Move to Target at the speed specified above. */

move at Speed to Target;

QuickMotion Reference Guide 107

Doc. No. 951-530017-019

6.2 QuickMotion Pre-defined Variables

In addition to user-defined variables, there are approximately 100 pre-defined variables for an axis in the
QuickMotion language.

Many of these variables correspond to properties in the QS4 world.

The pre-defined variables are organized on the following pages into tables by function. The functional groups
are:

· Status Variables – These are read-only variables that give information as to the status of a given axis,
such as fault code, in position, over-travel reached, etc.

· Control Variables – These are a mix of read-only and read-write variables used to set general control
conditions for the axis and how it interfaces with the drive. Some of these can only be adjusted before
the axis is enabled.

· Tuning Variables – These variables are all read-write and they are used to adjust the control loop
characteristics. These values can be adjusted while the axis is running either by using the tuning wizard
in QuickBuilder, or by directly changing the value of the variable.

· Feedback Variables – These variables are a mix of read only and read-write that set the characteristics of
the encoder feedback. This is where the counts per revolution and the user unit conversions are set.

· IO and Register Variables – These variables are used to read the status of the Axis I/O; change the
status of outputs, and assign special functionality to an I/O point such as input to be used for positive
over travel. Additionally general purpose global registers are available.

· Tracking Variables - This is a large set of variables used to set up electronic gearing and registration
type applications. These variables greatly simplify these types of applications from a programming
perspective, plus they dramatically improve performance.

· Capture Variables - These variables are used for registration/capture routines.

· Diagnostic Variables - These variables are useful in monitoring low level functionality internal to
QuickMotion.

· Quickstep Variables - These variables are used when programming in Quickstep rather than
QuickBuilder.

· Fault Variables - These variables are used to analyze axis fault conditions.

· Setup Variables - These variables are used to initialize and/or check certain parameters read during
initialization and setup.

· RFID Variables - These variables are used with Turck RFID readers. Reference the EtherCAT
Applications Guide.

· Vector Variables - These variables are used for vector moves during the implementation of 2D, 3D
Linear Interpolation, and 2D Circular Interpolation (EtherCAT only).

108

QuickMotion Reference Guide

Control Technology Corp.

Status Variables Description Type

axisnum EtherCAT Only: Contains the axis number an MSB is running on,
starting at 1.

INT32, read-write

activeCAM_row Active cam row presently executing in cam table. INT32, read-only

camRequest 1 requesting cam file from controller disk, 0 idle, else error code. INT32, read-only

capStatus Capture status, bit 8 (axis 1), bit 9 (axis 2). 1 = active. INT16, read-only

enabled Holds the state of drive enable. When used with EtherCAT this
reflects the state of power on the drive (Voltage Enabled) and ready
to run. Will be set after a 'drive enable' instruction if executes
without error.

BYTE8, read-only

fault1
fault2 (not used)
fault3 (not used)
fault4 (not used)

Fault status words, reference Chapter 8. BYTE8, read-only

faulted Set to true when a fault has occurred. BYTE8, read-only

inpos Holds the state of in position.

In Position is true when the target generator is inactive and when
the position error (perr) is within bounds set by inposw. When
used with EtherCAT this reflects that the drive is "in position" that
was commanded.

BYTE8, read-only

overpos Set to true when target position (tpos) >= poslim or when the
associated hardware positive overtravel limit is active.

BYTE8, read-only

overneg Set to true when target position (tpos) <= neglim or when the
associated hardware negative overtravel limit is active.

BYTE8, read-only

overtrq Set to true when the commanded torque trqc has been clamped to
the torque limit (either tmax or tlim). Not used for EtherCAT.

BYTE8, read-only

pstate Current axis motion state (M3-40):

enum PSTATE {
 IDLE, // ready to run
 RUNNING, // processing sub-steps
 COMPLETE, // done running, awaiting IDLE
 STOP, // stop
 SLEWSTOP, // slewed stop
 SLEWING, // slewing

BYTE8, read-only

QuickMotion Reference Guide 109

Doc. No. 951-530017-019

Status Variables Description Type

 PRESPLINE, // pre 'SPLINE' move
 PRECAM, // pre 'CAM' move
 CONT_CAM, // continue ‘CAM’ move that was stopped
 INSPLINE, // in 'SPLINE' move
 INCAM, // in 'CAM' move
 TABLESTOP, // stop table
 TRACKING, // geared
 PRETRACKING // initialization for TRACKING (geared)
mode
};

EtherCAT (IncentiveECAT and M3-41):

enum PSTATE {

 IDLE, // ready to run
 RUNNING, // processing sub-steps
 COMPLETE, // done running, awaiting IDLE
 STOP, // stop
 SLEWSTOP, // slewed stop
 SLEWING, // slewing
 PRESPLINE, // pre 'SPLINE' move
 PRECAM, // pre 'CAM' move
 CONT_CAM, // continue ‘CAM’ move that was stopped
 INSPLINE, // in 'SPLINE' move
 INCAM, // in 'CAM' move
 TABLESTOP, // stop table
 TRACKING, // geared
 PRETRACKING // initialization for TRACKING (geared)
mode
 EXIT_TRACKING,
 ECAT_COMPLETE_PENDING,
 ECAT_PROFILE_POS_INIT,
 ECAT_PROFILE_POS_STARTING1,
 ECAT_PROFILE_POS_STARTING1A,
 ECAT_PROFILE_POS_STARTING2, // 20
 ECAT_PROFILE_POS_RUNNING,
 ECAT_PROFILE_POS_WAIT_INPOS,
 ECAT_PROFILE_VEL_INIT,
 ECAT_PROFILE_VEL_WAIT_DELAY1,
 ECAT_PROFILE_VEL_WAIT_DELAY2,
 ECAT_PROFILE_VEL_WAIT_DELAY3,
 ECAT_PROFILE_VEL_WAIT,
 ECAT_PROFILE_TORQUE_INIT,
 ECAT_PROFILE_INIT_CSP,
 ECAT_PROFILE_INIT_INTERPOLATED,
 ECAT_PROFILE_WAIT_CSP1,
 ECAT_PROFILE_WAIT_CSP2,
 ECAT_MODE_WAIT_CSP, // 33
 ECAT_MODE_WAIT_INTERPOLATED,
 ECAT_MODE_WAIT_PROFILE, // This just idles, awaiting
 // for the Profile request to be processed.

 ECAT_PROFILE_INIT_QSTOP,
 ECAT_PROFILE_WAIT_QSTOP1,

110

QuickMotion Reference Guide

Control Technology Corp.

Status Variables Description Type

 ECAT_PROFILE_WAIT_QSTOP2,
 ECAT_PROFILE_WAIT_QSTOP,
 ECAT_PROFILE_AT_VEL, // 40
 ECAT_PROFILE_AT_TORQUE,
 ECAT_HOMING_INIT,
 ECAT_HOMING_STARTING1,
 ECAT_HOMING_STARTING1A,
 ECAT_HOMING_STARTING2, // 45
 ECAT_HOMING_RUNNING,
 ECAT_HOMING_WAIT_INPOS_KOLLMORGEN,
 ECAT_HOMING_WAIT_INPOS,
 ECAT_HOMING_WAIT_INPOS_IAI,
 ECAT_PROFILE_POS_WAIT_ABORTING, // 50
 ECAT_PROFILE_VEL_STOP,
 ECAT_PROFILE_VEL_STOPPING,
 ECAT_HOMING_ABORT_START,
 ECAT_HOMING_ABORT_WAIT, // 54
 ECAT_OFFLINE = -1,
 ECAT_USER_OFFLINE = -2 // User requested offline
};

tracking_pstate EtherCAT only, used mainly for vector moves on axis that is
following main axis (Arc and linear interpolation). Same states as
'pstate'.

Contains the current execution state of the drive during a ‘move on
a gear’ operation. ‘pstate’ must be in TRACKING mode for this
property to be valid.

INT32, read only

time A settable, accurate time counter (sec). This is a floating point
variable with precision of the control loop period (800uS default,
M3-40. 1mS, M3-41/IncentiveECAT). The value will increment
by the control loop period value each interrupt cycle. time = time
+ period;

DOUBLE, read-write

touchProbeStatus EtherCAT Only:

Maps directly to drive object 0x60b9.

INT32, read only

zpulse* Set to true when the Z-pulse has been seen.

*Note: Currently this does not work properly and only detects the
first Z-pulse. Workaround is to watch for a change in ztheta as an
indication of Z-pulse. Not used on EtherCAT, only M3-40.

BYTE8, read-only

QuickMotion Reference Guide 111

Doc. No. 951-530017-019

Control
Variables Description Type

acc Default acceleration rate for absolute and incremental motion.
Scaled in user-units/sec/sec.

FLOAT32, read-write

cmode Control mode – controls the structure of the position/velocity
loops.

M3-40:

Torque (0) – Control loop outputs a torque command (velocity
loop is active).

Velocity (1) – Control loop outputs a velocity command to the drive
(velocity loop is inactive).

Stepper (2) – Control loop outputs step and direction pulses
to the drive (velocity loop is inactive).

Open loop (16) – Or this with Torque mode for open loop,
direct dac control. Write directly to trqc, -10 to 10 (float)
representing volts.

M3-41/IncentiveECAT:

$CYCLIC_SYNC_POSITION_MODE 0 (default)
$PROFILE_VELOCITY_MODE 1
$INTERPOLATED_MODE 3
$PROFILE_POSITION_MODE 4
$PROFILE_TORQUE_MODE 5 (not supported)
$CYCLIC_SYNC_TORQUE_MODE 6 (not supported)
$CYCLIC_SYNC_VELOCITY_MODE 7 (not supported)
$HOMING_MODE 8
$VELOCITY_MODE 9

This variable cannot be changed while the axis is enabled

BYTE8, read-write

dec Default deceleration rate for absolute and incremental motion.
Scaled in user-units/sec/sec.

FLOAT32, read-write

encoder_mode EtherCAT Only:

Enable Absolute Positioning mode by setting the encoder_mode axis
property variable to a 1, prior to executing the ‘drive enable’
command. This will set the current position to that read from the
drive, assuming battery backup, rather than 0. A value of 0 is for an
incremental encoder. This variable can also be automatically set by
using the axis property pull-down menu option: absolute.

INT32, read-write

gtimebase A global timebase variable that affects both axes. This
variable in conjunction with the per-axis timebase sets the

FLOAT32, read-write

112

QuickMotion Reference Guide

Control Technology Corp.

Control
Variables Description Type

effective per-axis natural time base of the target generator.

This parameter should only be set through a reference to the
first axis in an MSB or from a QS4 program.

Should not be used on M3-41/IncentiveECAT as it will
increment the time between control loops used in calculations
but not change the control loop period itself. Defaults to 1.0
since the control loop time is:

loop time = Tick Period * gtimebase;

homing_speed1 EtherCAT only:
Some homing modes require multiple speeds, with this one being the
speed to the switch (object 0x6099.1).

FLOAT32, read-write

homing_speed2 EtherCAT only:
 Some homing modes require multiple speeds, with this one being
the speed to the index (object 0x6099.2).

FLOAT32, read-write

inpos_t EtherCAT only:
Settling time for in position prior to notifying application in
milliseconds. This value is written to the drive object 0x6068.0 if it
is available.

INT32, read-write

inpos_w EtherCAT only:
In Homing and Profile Position mode this is the in position window
that is acceptible prior to acknowledging motor is in position.
Object 6067.0 is written to if available. In CSP and other modes the
perr must be less than inpos_w in order for inpos to be set as 1.

This variable maps to inposw which is available on M3-40 boards.

FLOAT32, read-write

invel_t EtherCAT only:
Time required, in milliseconds, to be at the target velocity, Profile
Velocity mode. Maps to object 0x606E.0.

INT32, read-write

invel_w EtherCAT only:
In Profile Velocity mode this is the window velocity is to be
maintained in. inpos_w X Target Velocity. Object 606D.0 is
written to if available.

FLOAT32, read-write

jerk_a_req Requested acceleration jerk (default 0), units/sec3. Jerk (S-curve
generation) for absolute and incremental motion (scaled in user-
units/sec/sec/sec). If set to zero (0.0), then S-curve generation is
disabled. Set to -1 for automatic calculation based on move.

FLOAT32, read-write

jerk_d_req Requested deceleration jerk (default 0), units/sec3. Jerk (S-curve
generation) for absolute and incremental motion (scaled in user-
units/sec/sec/sec). If set to zero (0.0), then S-curve generation is
disabled. Set to -1 for automatic calculation based on move.

FLOAT32, read-write

jerk_a Actual acceleration jerk used, units/sec3. FLOAT32, read-only

QuickMotion Reference Guide 113

Doc. No. 951-530017-019

Control
Variables Description Type

jerk_d Actual deceleration jerk used, units/sec3. FLOAT32, read-only

newvel New velocity is used in conjunction with the 'new endposition'
command to request a different velocity than is current. If 0 then is
ignored.

FLOAT32, read-write

sppr Steps/rev to output when in stepper mode (when cmode is Stepper).
 Not used on M3-41/IncentiveECAT.

INT3, read-write

stoprate Rate at which to do a slewed stop (uu/sec/sec) FLOAT32, read-write

theta Motor angle. In EtherCAT this value is incremented by the
position change (+/-) each control loop tick. UINT32.

INT16, read-only

time Incremented by loop period each interrupt. DOUBLE, read-write

timebase Used to override the natural time base of the target generator. When
set to 1.0 (the default value), the target generator’s “time” is un-
scaled. When set to a value between 0.0 and 1.0, the target
generator’s “time” is slowed-down, effectively generating lower
velocities. When set to 0.0, motion stops.

Changing the timebase only effects commanded motions, it does not
alter other commands such as delay. Do not change on EtherCAT
systems, should stay as default of 1.0.

FLOAT32, read-write

tlim M3-40:

Torque limit (Nm) – torque command limit.

EtherCAT:

Does not apply to most EtherCAT systems. Used on some drives
in PROFILE TORQUE MODE and by IAI, reference the
EtherCAT Applications Guide.

FLOAT32, read-write

tmax M3-40:

Scale factor – maximum torque (Nm) that is generated at the motor
when the control loop commands 10V to the drive.

This is set using the property inspector and cannot be changed in
QM code. Consult the connected motor and drive specifications to
properly set this value.

This property is valid when cmode is Torque.

EtherCAT:

FLOAT32, read-write

114

QuickMotion Reference Guide

Control Technology Corp.

Control
Variables Description Type

Used on most drives to limit the torque while in CSP mode.
Reference the EtherCAT Applications Guide for specifics.

vmax M3-40:

Scale factor – velocity generated when the control loop commands
10V to the drive.

Scaled in RPM (rotational) or linear-units/min (linear).

This is set using the property inspector and cannot be changed in
QM code. Consult the connected motor and drive specifications to
properly set this value.

This property is valid when cmode is Velocity.

EtherCAT:

Used to limit velocity in CSP mode to a maximum. Also to set the
maximum velocity for Velocity and Position modes and homing
speeds in Homing modes.

FLOAT32, read-write

ztheta M3-40:

Motor angle of Z.

EtherCAT:

Not used.

INT16, read-only

Tuning Variables Description Type

_highBW Internal use only. Not used with EtherCAT. BYTE8, read-write

_inertia Internal use only (tuning inertia). Not used with EtherCAT. DOUBLE, read-write

_wn Internal use only (tuning wn). Not used with EtherCAT. DOUBLE, read-write

_zeta Internal use only (tuning zeta). Not used with EtherCAT. DOUBLE, read-write

aff Velocity-loop acceleration feed-forward gain. Not used with
EtherCAT.

FLOAT32, read-write

QuickMotion Reference Guide 115

Doc. No. 951-530017-019

Tuning Variables Description Type

Scaled as Nm/(rev/sec)/sec or Nm/(linear-unit/sec)/sec of
commanded velocity.

kd Velocity-loop derivative gain (D). Not used with EtherCAT.

Scaled as Nm-sec/(rev/sec)or Nm-sec/(linear-unit/sec) of velocity
error.

FLOAT32, read-write

kfilt A compensation value for the Kalman-filter used in the velocity
estimator. Not used for EtherCAT.

FLOAT32, read-write

kgain A compensation value for the Kalman-filter used in the velocity
estimator. Not used for EtherCAT.

FLOAT32, read-write

ki Velocity-loop integral gain (I). Not used with EtherCAT.

Scaled as Nm/(rev/sec)/sec or Nm/(linear-unit/sec)/sec of velocity
error.

FLOAT32, read-write

kv Velocity-loop proportional gain (P). Not used with EtherCAT

Scaled as Nm/(rev/sec) or Nm/(linear-unit/sec).

FLOAT32, read-write

kvf Velocity-loop factor (0.0-1.0). Not used with EtherCAT.

When set to 1.0, the velocity loop is a classic PID structure. When
set to 0.0, the velocity loop is a classic PDF structure. When set to
a value in between, the velocity loop is a combination of both.

FLOAT32, read-write

nonvolatile Writing a 1 will cause tuning parameters to originate from
nonvolatile serial flash instead of the defaults used in the property
window when the program was first created. 0 clears this feature
(one per axis). Not used for EtherCAT

BYTE8, read-write

pdead Position-loop dead-band (user-units). if perr <= pdead then perr =
0.

FLOAT32, read-write

pff Position-loop velocity feed-forward gain (0.0 – 1.0). Not used on
EtherCAT.

FLOAT32, read-write

ppg Position-loop proportional gain. Not used with EtherCAT.

Scaled as 1000/min.

FLOAT32, read-write

vff Velocity-loop velocity feed-forward gain. FLOAT32, read-write

116

QuickMotion Reference Guide

Control Technology Corp.

Tuning Variables Description Type

Scaled as Nm/(rev/sec) or Nm/(linear-unit/sec) of commanded
velocity.

EtherCAT:

Used on some drives to set velocity feed forward value when
initiating CSP mode. Not all drives support it, typically object
0x60B1.

Feedback
Variables Description Type

camming_invertend Inverts logic of invertmaster with regards to camming table start
position and assumed direction traversing. By default 0, follow
invertmaster, 1 to do opposite of invertmaster (!invertmaster).

BYTE8, read-write

encoderZ
Z encoder input. Not used on EtherCAT

INT64, read-only

encoderZ3 Combination of Axis 1 and Axis 2 Z inputs A/B. Not used on
EtherCAT.

INT64, read-only

fpos The feedback position scaled in user-units. DOUBLE, read-only

fposc The feedback position scaled in encoder counts. INT64, read-only

gratio Present gear ratio. DOUBLE, read-only

inposw In Position window. Controls when the axis is deemed in position.
Scaled in user-units. Typically EtherCAT object 0x6067 when
supported. Also used for EtherCAT settling to make sure perr is
smaller than inposw when the drive has finished move.

DOUBLE, read-write

invertcmd M3-40:

Whether to invert the sign of the command output:

0 = no inversion

1 = invert

dac voltage = - dac voltage

EtherCAT: Not used.

BYTE8, read-write

invertfeed Whether to invert the way the feedback encoder counts:

0 = count normally

1 = count inverted

BYTE8, read-write

 invertmaster Whether to invert the way the master encoder counts:

0 = count normally

1 = count inverted

BYTE8, read-write

QuickMotion Reference Guide 117

Doc. No. 951-530017-019

Feedback
Variables Description Type

mppr Master encoder counts per revolution (or per linear unit for linear
feedback devices).

INT32, read-write

neglim Negative over-travel limit, scaled in user-units.

overneg = tpos <= axistc->neglim;

DOUBLE, read-write

perr The position error (scaled in user-units). DOUBLE, read-only

perrlimit The limit before a following-error fault is generated. The variable is
scaled in user-units.

0 = disable following-error fault check

DOUBLE, read-write

ppr Feedback encoder counts per revolution (or per linear unit for linear
feedback devices).

INT32, read-write

poslim Positive over-travel limit, scaled in user-units.

overpos = tpos >= axistc->poslim;

DOUBLE, read-write

runv Calculated run velocity fed to PID algorithm. Used internally as
next tick time velocity.

FLOAT32, read-write

settling EtherCAT only:

Time in seconds to allow things to settle when commanding a new
move while already in motion and will be changing directions.

DOUBLE, read-write

sign Nonzero for SCurve move, 1 for CCW, -1 for CW.

EtherCAT also uses it to show direction of all moves.

BYTE8, read-only

stepsout
Stepper pulses output. Not used on EtherCAT.

INT64, read-only

substep Segmented move current step on. Trapazoidal is 0 to 2, S-Curve is
0 to 6. Used for diagnostics.

BYTE8, read-only

sfmod The secondary position modulus. Used to control when sfposc
wraps around to 0.

INT64, read-write

sfpos Secondary feedback position (in revolutions).

sfpos = sfposc * (1/ppr)

DOUBLE, read-only

sfposc A secondary feedback position (scaled in counts).

A separately maintained feedback position similar to fposc with the
exception that the position will “wrap” (modulo) at 0 and at sfmod
(unless sfmod is set to 0).

sfposc = fposc % sfmod;

INT64, read-only

118

QuickMotion Reference Guide

Control Technology Corp.

Feedback
Variables Description Type

tpos The target position scaled in user-units. DOUBLE, read-only

tr EtherCAT Only: Translation ratio. Result of uun/uud used by the
program.

DOUBLE, read-only

tposc The target position scaled in encoder counts. INT64, read-only

trqc M3-40:

The commanded torque value (Nm). Note that if in torque mode
and cmode open loop bit set (bit 5) then this becomes DAC analog
output -10 to 10V, floating point.

EtherCAT:

Used only on velocity drives as torque compensation. Presently
not used by any drives, reserved for future use.

FLOAT32, read-only

uud User-units conversion factor (denominator).

Motion commands are divided by this value (after multiplying by
uun) to scale user-units to revolutions (or linear unit or linear
feedback devices).

INT32, read-write

uun User-units conversion factor (numerator).

Motion commands are multiplied by this value (then divided by
uud) to scale user-units to revolutions (or linear unit or linear
feedback devices).

INT32, read-write

units_ratio EtherCAT Only:

User-units conversion factor (uun/uud as a double).

If uun is set to 0 then units_ratio will be used for more precise ratio
settings then uun/uud.

DOUBLE, read-write

vcmd Commanded velocity (in rev/sec or linear-units/sec).

EtherCAT:

Used to set target velocity for drives and modes that require.
Presently just MOTIONLINX uses this variable, otherwise set to
default of 1.0.

M3-40 - read-only

EtherCAT - read-
write

vel Feedback velocity (in rev/sec or linear-units/sec). FLOAT32, read-only

QuickMotion Reference Guide 119

Doc. No. 951-530017-019

Feedback
Variables Description Type

verr Velocity error (in rev/sec or linear-units/sec). Not used with
EtherCAT.

FLOAT32, read-only

zfpos Holds the last feedback position before it was modified by a “zero
feedback position” or “zero following error” statement. Not used
with EtherCAT.

DOUBLE, read-only

ZPULSE_POS The next Z-pulse location in the positive direction; user-units. Not
used with EtherCAT.

DOUBLE, read-only

ZPULSE_NEG The next Z-pulse location in the negative direction; user-units. Not
used with EtherCAT.

DOUBLE, read-only

ztpos Holds the last target position before it was modified by a “zero
feedback position” or “zero following error” statement. Not used
with EtherCAT.

DOUBLE, read-only

IO and Register
Variables Description Type

ctr0-ctr7 Axis counters (64-bit). These variables count off-to-on transitions
of the eight axis-related inputs (5 digital inputs, A, B and Z).

variable input (M3-40A/B/C)

ctr0 din1

ctr1 din2

ctr2 din3

ctr3 din4

ctr4 din5

ctr5 A-encoder channel

ctr6 B-encoder channel

ctr7 Z-encoder channel

EtherCAT: See EtherCAT Applications Guide.

INT64, read-write

din1 – din5 The state of digital inputs 1 through 5.
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

din6 – din10 The state of digital inputs 6 through 10.

Valid only when the module is in 1½ axis mode
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

dout1 – dout5 The state of digital outputs 1 through 5.
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

dout6 – dout10 The state of digital outputs 6 through 10.

Valid only when the module is in 1½ axis mode
EtherCAT: See EtherCAT Applications Guide.

BYTE8, read-only

120

QuickMotion Reference Guide

Control Technology Corp.

IO and Register
Variables Description Type

dins The state of digital inputs 1 through 5 (or 10 if in 1 ½ axis mode) as
a single integer.

Each input has its own binary value starting with 1 for din1, 2 for
din2, 4 for din3, 8 for din4, etc. As an example, if din3 and din5
were both on, dins would equal 20.
EtherCAT: See EtherCAT Applications Guide.

INT32, read-only

douts The state of digital outputs 1 through 5 (or 10 if in 1 ½ axis mode)
as a single integer.

Each output has its own binary value starting with 1 for dout1, 2 for
dout2, 4 for dout3, 8 for dout4, etc. As an example, if dout3 and
dout5 were both on, douts would equal 20.
EtherCAT: See EtherCAT Applications Guide.

INT32, read-only

driveenable The digital output number to use for “drive enable.”

Positive input number for true state=high

Negative number for true state=low

0 = use no output

When an output is assigned for use as drive enable, all set/clear
operations to that output are ignored.

BYTE8, read-write

global_flag1 to
global_flag5

EtherCAT only:

5 general use global flag registers directly accessible by all MSB's
and QuickBuilder program.

DOUBLE, read-write

global_inputs M3-41 Only:

Local I/O is present on the 5300 M3-41 EtherCAT module. This
module has 6 inputs which is global to all MSBs. The MSB
property ‘global_inputs’ is used to read the 6 inputs, with the first
bit being the first input.

INT32, read-only

global_outputs M3-41 Only:

Local I/O is present on the 5300 M3-41 EtherCAT module. This
module has 2 outputs which are global to all MSBs. The outputs
are referenced as 9 and 10 when using the ‘setout’/’clrout’
instructions. The MSB property ‘global_outputs’ can be used in
addition to ‘setout’/’clrout’ for read/write operations of the local
outputs.

INT32, read-write

global_reg1 to
global_reg32

EtherCAT only:

32 general use global registers directly accessible by all MSB's and
QuickBuilder program.

DOUBLE, read-write

overposin The digital input number to use for positive over-travel.

Positive input number for true state=high

Negative number for true state=low

 0 = disable positive over-travel checking

BYTE8, read-write

overnegin
The digital input number to use for negative over-travel.

Positive input number for true state=high

Negative number for true state=low

BYTE8, read-write

QuickMotion Reference Guide 121

Doc. No. 951-530017-019

IO and Register
Variables Description Type

0 = disable negative over-travel checking

running The digital output number to use for “MSB active” (running).

0 = use no output

When an output is assigned for use as “MSB active” (running), all
set/clear operations to that output are ignored.

BYTE8, read-write

Tracking
Variables Description Type

antibackup Whether or not to allow the slave to generate geared pulses in
response to negative displacements of the master

0 = allow generated pulses in all cases
1 = accumulate negative displacements of the master and generate
geared slave pulses when accumulated total > 0

BYTE8, read-write

master_feedback EtherCAT Only:

Any axis can track another axis by simply dropping into tracking
mode. To reference which axis to track, use the variable
‘master_feedback’, which by default is 1. Set this variable to the
axis you wish to track, set whether to reference fpos or tpos of the
master axis, and then drop into tracking mode.

// ******** TRACKING MODE **********

[SetTracking]

 zero master counters;

 master_feedback = 1;

// Set we will track axis 1

// Set the feedback mode first so when enter tracking it is

// referencing correct master. ‘set master feedback’ references

// the other axis fposc or feedback position.

// ‘set master target1’ references the other axis tpos position.

 set master feedback;

 set mode tracking; // Enter tracking mode

M3-41:

Another option, only available on the M3-41 hardware module, is
the provision for directly connecting up to 3 local quadrature
encoders. These encoders can be used as master references by the
EtherCAT axis. To reference these encoders, the master_feedback
variable is set to 1001, 1002, or 1003, for each of the respective
encoder inputs. Once master_feedback is referencing a local
encoder, its present value will appear in ‘mpos’ and ‘mposc’ MSB
variables. In addition, all local encoder counts can be accessed
using the ‘ctr’ array, index 5 to 7 from an MSB, or ctr5, ctr6, and
ctr7 from QuickBuilder.

Master_feedback = 1001, ctr[5]/ctr5, P1 connector pins:

INT32, read-write

122

QuickMotion Reference Guide

Control Technology Corp.

Tracking
Variables Description Type

P1-19 A0+

P1-20 A0-

P1-21 B0-

P1-22 B0+

Master_feedback = 1002, ctr[6]/ctr6, P1 connector pins:

P1-23 A1+

P1-24 A1-

P1-25 B1-

 P1-26 B1+

Master_feedback = 1003, ctr[7]/ctr7, P1 connector pins:

P1-27 A2+

P1-28 A2-

P1-29 B2-

P1-30 B2+

mcinv The bit-oriented variable controls when mposc1-5 are cleared. Bit
0, the least-significant bit, controls mposc1. Bit 1, the next
significant bit controls mposc2, etc.

Bit 16 to bit 20 controls whether mposc# is cleared upon entering
tracking mode. If set cleared.

Bit 21 to bit 22 controls whether tsc1/tsc2 is cleared upon entering
tracking mode. If set cleared.

INT32, read-write

mdelta1 Master position delta, counts

This variable holds the displacement that occurred in the master
encoder between position captures. Essentially this is the last
value of mposc1 before mposc1 is cleared due to a position
capture.

Cleared upon entering tracking mode.

INT32, read-only

mdelta2 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc2 before mposc2 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

QuickMotion Reference Guide 123

Doc. No. 951-530017-019

Tracking
Variables Description Type

mdelta3 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc3 before mposc3 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

mdelta4 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc4 before mposc4 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

mdelta5 Master position delta, counts

This variable holds the displacement the occurred in the master
encoder between position captures. Essentially this is the last
value of mposc5 before mposc5 is cleared due to a position
capture.

Cleared upon entering tracking mode

INT32, read-only

mmc Master position modulus (0=functionality disabled)

This variable is used as a modulus for the variables mposc1-5 and
tmod. Whenever updated, mmc is applied by formula:

mposc1 = mposc1 mod mmc

mposc2 = mposc2 mod mmc

mposc3 = mposc3 mod mmc

mposc4 = mposc4 mod mmc

mposc5 = mposc5 mod mmc
tmodc = tmodc mod mmc

INT32, read-write

mposc Master position, counts

This variable is cleared when the mode is changed to tracking.
This variable is unaffected by mmc or changes to mposc1-5.

This counter rolls over at 65536 times the value of mppr when in
tracking mode.

INT64, read-write

mposc1
Master position, counts (modulo by mmc)

INT32, read-only

124

QuickMotion Reference Guide

Control Technology Corp.

Tracking
Variables Description Type

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #1 makes an off-to-on transition
unless the 0-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 16 in mcinv set
will disable clearing upon entering tracking mode.

mposc2 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #2 makes an off-to-on transition
unless the 1-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 17 in mcinv set
will disable clearing upon entering tracking mode.

INT32, read-only

mposc3 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #3 makes an off-to-on transition
unless the 2-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 18 in mcinv set
will disable clearing upon entering tracking mode.

INT32, read-only

mposc4 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #4 makes an off-to-on transition
unless the 3-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 19 in mcinv set
will disable clearing upon entering tracking mode.

INT32, read-only

mposc5 Master position, counts (modulo by mmc)

This variable is cleared when the mode is changed to tracking.

This variable is cleared when input #5 makes an off-to-on transition
unless the 4-bit in mcinv is set in which case this variable is cleared
when the input makes an on-to-off transition. Bit 20 in mcinv set
will disable clearing upon entering tracking mode

INTE32, read-only

move_master_counts Move master counts target if not forever. INT32, read-only

move_master_rate_targ
et

Move master rate target setting (virtual master).
INT32, read-only

move_master_ramp Move master ramp setting (virtual master) INT32, read-only

QuickMotion Reference Guide 125

Doc. No. 951-530017-019

Tracking
Variables Description Type

move_master_rate Move master rate setting (virtual master) INT32, read-only

mpgai Master position during gear…at…in, counts

This variable holds the number of consumed master position
counts during the last gear…at…in statement

INT32, read-only

mpgfi Master position during gear…for…in, counts

This variable holds the number of consumed master position
counts during the last gear…for…in statement

INT32, read-only

sdc Slave decrement counter

This counter decrements for every output slave count whereas tsc1
and tsc2 increment.

INT32, read-write

spgai Slave position during gear…at…in, counts

This variable holds the number of consumed slave position counts
during the last gear…at…in statement.

INT32, read-only

spgfi Slave position during gear…for…in, counts

This variable holds the number of consumed slave position counts
during the last gear…for…in statement.

INT32, read-only

smodc Slave position counter.

This variable is cleared when the mode is changed to tracking.

INT32, read-only

smod Slave position modulus

This variable is used as a modulus for the variable smodc.
Whenever smodc is updated, smod is applied by formula:

smodc = smodc mod smod

INT32, read-write

smark Slave modulo marker position, counts

When an input transistions in conjunction with the bits specified in
smarkrise and smarkfall, this variable is computed by formula:

smark = sphase – smodc

INT32, read-only

smarkrise This bit-oriented variable controls when smark is calculated.
When the input corresponding to a set bit in smarkrise makes an
off-to-on transition, smark is calculated.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

126

QuickMotion Reference Guide

Control Technology Corp.

Tracking
Variables Description Type

smarkfall This bit-oriented variable controls when smark is calculated.
When the input corresponding to a set bit in smarkfall makes an
on-to-off transition, smark is calculated.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

sphase Slave marker position phase, counts

Used to offset smark.

INT32, read-only

tmc1 Temporary master position counter 1

This variable is auxiliary, settable counter that tracks master
position.

These variables can be zeroed atomically by zero master counters.
Cleared when changing mode to TRACKING.

INT32, read-write

tmc2 Temporary master position counter 2

This variable is auxiliary, settable counter that tracks master
position.

These variables can be zeroed atomically by zero master counters.
Cleared when changing mode to TRACKING.

INT32, read-write

tmodc Temporary master position counter mod mmc. User cleared only. INT32, read-write

tsc1 Temporary slave position, counter 1

This variable is auxiliary, settable counter that tracks slave
position.

INT32, read-write

tsc1rise This bit-oriented variable controls when tsc1 is cleared. When the
input corresponding to a set bit in tsc1rise makes an off-to-on
transition, tsc1 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

tsc1fall This bit-oriented variable controls when tsc1 is cleared. When the
input corresponding to a set bit in tsc1fall makes an on-to-off
transition, tsc1 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

tsc2 Temporary slave position, counter 2

This variable is auxiliary, settable counter that tracks slave
position.

INT32, read-write

tsc2rise This bit-oriented variable controls when tsc2 is cleared. When the
input corresponding to a set bit in tsc2rise makes an off-to-on
transition, tsc2 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

QuickMotion Reference Guide 127

Doc. No. 951-530017-019

Tracking
Variables Description Type

tsc2fall This bit-oriented variable controls when tsc2 is cleared. When the
input corresponding to a set bit in tsc2fall makes an on-to-off
transition, tsc2 is cleared.
Bit 0, the least significant bit, represents input #1, etc.

INT32, read-write

tracking_pstate EtherCAT Only: See Status Variables. INT32, read_only

tracking_sign EtherCAT Only: If the axis is tracking this variable is set to 1 or -
1 depending on the direction of rotation.

INT32, read_only

tracking_status EtherCAT Only: If an axis is tracking this variable represents the
current state of motion:

enum QS2STATE {

NOT_INITIALIZED,

STOPPED_READY,

WAIT_START,

ACCELERATING,

AT_MAX_SPEED,

DECEL_TO_NEW_MAX_SPEED,

DECEL_TO_STOP,

SOFT_STOP,

REG_MOVE,

HOME,

NOT_USED1,

FOLLOWING,

NOT_USED2,

COMMAND_ACCEPTED
};

BYTE8, read-only

tracking_tpos EtherCAT Only: If an axis is tracking then this is the target
position scaled in user-units.

DOUBLE, read-only

tracking_tposc EtherCAT Only: If an axis is tracking then this is the target
position scaled in encoder counts.

INT64, read-only

vmdelta Virtual master delta counts. INT32, read-only

Capture
Variables Description Type

capArmed Capture armed, non zero. If capture is armed and this variable is
cleared any capture will be ignored (equivalent to disabling
capture).

BYTE8, read-write

capEdge Edge to monitor for capture as set by the ‘set capture’ instruction.
 2 – any edge, 1 – rising edge, 0 – falling edge.

INT16, read-only

capGate Capture input used to gate the trigger input, if -1 then always
gated.

INT16, read-write

128

QuickMotion Reference Guide

Control Technology Corp.

capGateState Gate active as on or off, 0 it waiting for gate to be high, 1 if waiting
for gate to be low.

INT16, read-only

capInput Capture input to be used as a trigger. INT16, read-only

capLimit Capture limit value INT64, read_write

capLimitflag Set if capture limit occured BYTE8, read-only

capMod EtherCAT only:
Defaults to 1 and applies a modulus to the captured value.

INT32, read-write

capOffset Amount to move after a capture occurs, fposc + capOffset = new
end position. If 0 then move continues as was originally
instructed.

INT64, read-write

cappos Capture position in user units. capposc * 1/ppr. DOUBLE, read-only

capposc Capture position in counts. This will be fposc + encoder offset if
not in Tracking mode. If Tracking then sfposc + encoder offset.
Latched when defined capture input goes active.

INT64, read-only

capStatus
Capture status, bit 8 (axis 1), bit 9 (axis 2). 1 = active. INT16, read-only

capTriggered Capture occurred flag, non zero. capposc/cappos contains the
latched position when occurred.

BYTE8, read-write

capWait If 1, an MSB is waiting on a ‘wait capture’ instruction, else 0. BYTE8, read-only

capwaitBranch Capture MSB offset branch value. INT16, read-only

capwinEnd End of capture range as set by the ‘set capwin’ instruction. If
same as capwinStart then no window is active.

INT64, read-write

capwinStart Start of capture range as set by the ‘set capwin’ instruction. If
same as capwinEnd then no window is active.

INT64, read-write

capwinType Capture window type (0-17):

fposc (0) feedback position

mposc1 - mposc5 (1-6) master position counters #1 through
#5

mposc (7) master position counter

smodc (8) slave position (modulo)

smark (9) slave marked position

tmc1 tmc2 (10/11) temporary master counters #1 & #2

tsc1 tsc2 (12/13) temporary slave counters #1 & #2

sdc (14) slave decrement counter

fposc1 (15) feedback position of axis 1 (fposcA)

fposc2 (16) feedback position of axis 2 (fposcB)

tmodc (17) temporary master counter mod mmc
sfposc (18) secondary feedback position of axis

EtherCAT: Reference EtherCAT Application Guide.

INT16, read-only

msource Master source setting:
0x01 – feedback1
0x02 – feedback2

BYTE8, read-only

QuickMotion Reference Guide 129

Doc. No. 951-530017-019

0x03 - feedbackz
0x04 – target1
0x05 – target2
0x06 – common
0x07 - virtual

Bit OR of above:
0x80 - global

EtherCAT: Reference EtherCAT Application Guide.

Diagnostic
Variables Description Type

activeBG_MSBs Number of active background MSB's running on axis. BYTE8, read-only

activeFG_MSBs Number of active foreground MSB's running on axis. BYTE8, read-only

debugTable Cam table to view, from 0 to 5 INT32, read-write

debugTableRows Number of rows presently in the selected cam table, debugTable. INT32, read-only

debugTableRow Current row number to view in the selected cam table, debugTable. INT32, read-write

debugTableX X value for selected debugTableRow. FLOAT32, read-only

debugTableY Y value for selected debugTableRow. FLOAT32, read-only

last_ALStatusCode EtherCAT Only:

Last AL Status code read from drive.

INT32, read-write

last_errorCode EtherCAT Only:

Last error code read from drive, typically object 0x603F.

INT32, read-write

last_errorRegister EtherCAT Only:

Last error register from drive, typically 0x1001.

INT32, read-write

last_errorType EtherCAT Only:

Used internally by M3-41/IncentiveECAT.

INT32, read-write

lastOverall Last full loop time of all axis in uS.

EtherCAT: Not used.

FLOAT32, read-only

loopperiod Periodic motion loop interrupt time in uS. FLOAT32, read-only

looprate Number of motion loop interrupts/second. FLOAT32, read-only

130

QuickMotion Reference Guide

Control Technology Corp.

minLoopTime Minimum actual individual axis loop execution time (uS) reached.

EtherCAT: Not used.

FLOAT32, read-only

maxLoopTime Maximum actual individual axis loop execution time (uS) reached.

EtherCAT: Not used.

FLOAT32, read-only

minOverall Minimum actual axis loop execution time (uS) reached for all axis.

EtherCAT: Not used.

FLOAT32, read-only

maxOverall Maximum actual axis loop execution time (uS) reached for all axis.

EtherCAT: Not used.

FLOAT32, read-only

overflowFlag Motion loop overflow flag, set to 1 if loop time exceeded while in
the loop (800uS default, reference 'set loopperiod')

EtherCAT: Not used.

INT32, read-only

scanning EtherCAT Only:

Variable set according to EtherCAT scan state. 0 = not scanning,
1= initializing, 2 = operational and scanning.

INT32, read-only

wStatus EtherCAT Only:

Status Word read from the drive, object 0x6041.

INT16, read-only

wControlWord EtherCAT Only:

Control Word used to issue commands to the drive, object 0x6040.

INT16, read-only

Setup Variables Description Type

axisptr EtherCAT Only:
Properties such as fpos, tpos, etc., are local to an axis and not
shared with other axis MSBs. This limitation can be overridden by
using the ‘axisptr’ property of an MSB. This property controls
what axis the MSB will retrieve its property value on a read and
write operation. It is typically set to the value of ‘axisnum’, which
is the axis number of that axis executing the MSB. Setting this axis
number to any other value will override what axis the property is
retrieved from.

INT32, read-write

dim_factor_num EtherCAT Only:
Reserved for later use with velocity drives.

INT32, read-write

dim_factor_denom EtherCAT Only:
Reserved for later use with velocity drives.

INT32, read-write

dwSlaveID EtherCAT Only:
Slave ID for this axis.

INT32, read-only

eCAT_driveType EtherCAT Only:

The type of drive and axis number that an MSB is executing can be
referenced programmatically via the ‘eCAT_driveType’ and

INT32, read-only

QuickMotion Reference Guide 131

Doc. No. 951-530017-019

Setup Variables Description Type

‘axisnum’ property variables. ‘axisnum’ contains the axis number,
where 1 is the first. ‘eCAT_driveType’ is defined as follows:

$DRIVE_COPLEY 2
$DRIVE_YASKAWA 3
$DRIVE_ELMO (not supported) 4
$DRIVE_KOLLMORGEN 5
$DRIVE_SANYO_DENKI 6
 $DRIVE_EMERSON 7
$DRIVE_AMC 8
$DRIVE_VIRTUAL 9
 $DRIVE_IAI_ACON_MODE3 11
$DRIVE_ABB_MICROFLEX 12
$DRIVE_ABB_MITSUBISHI 13
$DRIVE_ABB_PANASONIC 14
$DRIVE_ABB_LINMOT 15
$DRIVE_MOTIONLINX 17
$DRIVE_WAGO_ENCODER_631 18
$DRIVE_WAGO_ENCODER_637 19

eCAT_manufID EtherCAT Only:
EtherCAT ESI manufacturer ID.

INT32, read-only

eCAT_productCode EtherCAT Only:
EtherCAT ESI product code.

INT32, read-only

qs_decel_time EtherCAT Only:
Reserved for future VFD quick stop deceleration time.

INT32, read-write

vel_accel_time EtherCAT Only:
Reserved for future VFD velocity acceleration time.

INT32, read-write

vel_decel_time EtherCAT Only: Reserved for future VFD velocity deceleration
time.

INT32, read-write

vmin EtherCAT Only:
Reserved for future VFD velocity minimum.

FLOAT32, read-write

RFID Variables Description (EtherCAT Only) Type

RFID_channel Selects the RFID channel to be operated on by the properties
that follow. Entries of 1 to RFID_totalChannels are the valid
selections, with 0 disabling access. All properties should be
initialized to their proper values before setting the
RFID_channel to a non-zero value.

INT32, read-write

RFID_totalChannels Represents the total number of RFID channels available in the
system.

INT32, read-only

RFID_state Represents the current state of the RFID interface logic state
machine as it executes any requests issued by the RFID_control
property variable. Possible values are as follows:

RFID_OFF 0
RFID_IDLE 1
RFID_READING_1 2

INT32, read-write

132

QuickMotion Reference Guide

Control Technology Corp.

RFID Variables Description (EtherCAT Only) Type

RFID_READING_2 3
RFID_READING_WAIT_DONE 4
RFID_WRITING_1 10
RFID_WRITING_2 11
RFID_WRITING_3 12
RFID_WRITING_4 13
RFID_WRITE_DONE 15
RFID_WRITE_WAITTAG 20
RFID_READ_WAITTAG 21
RFID_WAITNOTAG 22
RFID_ERROR 30

RFID_error Turck specific error where bits 7 to 0 represent the category and
bits 15 to 8 are the description. Any time the RFID_error
property is non-zero an error is present. To clear the error the
RFID reader must be reset using the RFID_control property
RESET bit. See EtherCAT Applications Guide for error codes..

INT32, read-only

RFID_address This address is forwarded to the RFID reader to determine
where in its memory block to begin accessing data for read and
write operations. A value of 0 is the first address.
RFID_address is auto-incremented after any read or write by the
amount in RFID_bytesTransferred therefore set it back to the
desired start location after each read or write.

INT32, read-write

RFID_index The index is used to select which
RFID_data_readl/RFID_data_readh or
RFID_data_writel/RFID_data_writeh array item is to be
operated on. Where 0 is the first item, up to 31 (32 array items
for 256 bytes total possible).

 int RFID_data_readl[32];
 int RFID_data_readh[32];
 int RFID_data_writel[32];
 int RFID_data_writeh[32];

INT32, read-write

RFID_data_readl The first 32 bit integer or 4 bytes of data transferred from the
RFID tag. This property is an array of 32 deep, indexed by the
RFID_index property.

int RFID_data_readl[32];

INT32, read-write

RFID_data_readh Read/write, the second 32 bit integer or 4 bytes of data
transferred from the RFID tag. This property is an array of 32
deep, indexed by the RFID_index property in parallel to
RFID_data_readl.

int RFID_data_readh[32];

INT32, read-write

RFID_data_writel Read/write, the first 32 bit integer or 4 bytes of data transferred
to the RFID tag. This property is an array of 32 deep, indexed

INT32, read-write

QuickMotion Reference Guide 133

Doc. No. 951-530017-019

RFID Variables Description (EtherCAT Only) Type

by the RFID_index property.

 int RFID_data_writel[32];

RFID_data_writeh The second 32 bit integer or 4 bytes of data transferred to the
RFID tag. This property is an array of 32 deep, indexed by the
RFID_index property in parallel to RFID_data_writel.

 int RFID_data_writeh[32];

INT32, read-write

RFID_status 32 bit integer with only the first 8 bits reflecting the status as
returned by the Turck RFID reader.

· Done – (Bit 7) Slice is ready to receive command. This bit will
be off until previous command bit is turned off.

· Busy – (Bit 6) Slice is currently processing command. This is
normally on when transceiver is waiting for a tag to be
presented.

· Error – (Bit 5) Slice has encountered an error during last
command. Refer to Error_Cat and Error_Desc for details.
This bit is not always set so check RFID_error for nonzero.

· Trans_Conn – (Bit 4) Transceiver is correctly connected and
communicating with the slice.

· Trans_On – (Bit 3) Transceiver has been turned on by slice.
· TP – (Bit 2) Tag present; Tag is present in transceiver field.

LED on transceiver will blink rapidly.
· TFR – (Bit1) Tag Fully Read; Tag has been present in

transceiver field long enough so that entire tag memory has
been stored in buffer. This bit does not need to be on to
indicate a command has been completed.

INT32, read-only

RFID_control 32 bit integer which is used to request RFID transactions to
occur, read and writing different aspects of the tag and
transceiver. Some of the bits are defined by Turck but have been
enhanced by CTC for additional features.

INT32, read-write

RFID_controlActive Represents the value actually being transferred to the Turck
RFID controller at any moment. During operation bits are
set/cleared automatically by the M3-41 module, especially when
transferring multiple blocks of data. Useful for diagnostic
purposes.

INT32, read-only

RFID_count Represents the value actually being transferred to the Turck
RFID controller as the needed byte count. This property is
automatically set based upon the RFID_bytesTotal required.
Useful for diagnostic purposes.

INT32, read-only

RFID_bytesTotal This property must be set to the total number of bytes to be
transferred to/from the RFID reader. If to the reader
RFID_data_writel/h array is used, if from the reader
RFID_data_readl/h is used. For a single transfer this is typically
set to 8. This property is also used in conjunction with the
‘host read’ and ‘host write’ commands when transfers are done

INT32, read-write

134

QuickMotion Reference Guide

Control Technology Corp.

RFID Variables Description (EtherCAT Only) Type

with the RFID_data_readl and RFID_data_writel properties.
These properties can be used to transfer strings to/from
Quickbuilder variants.

RFID_bytesTransferred This property represents the number of bytes that have been
transferred during a read/write RFID operation as well as ‘host
read’ and ‘host write’. If a ‘host read’ is used to read a
QuickBuilder variant string this property will represent the
length of the string after the access.

INT32, read-write

RFID_tagIDl This property is automatically set when a TAG ID read
operation is performed. This property represents the lower 4
bytes.

INT32, read-write

RFID_tagIDh This property is automatically set when a TAG ID read
operation is performed. This property represents the upper 4
bytes.

INT32, read-write

RFID_lasttagIDl This property is automatically set when a TAG ID read
operation is performed and a unique id is found, different than
that previously read. This property represents the lower 4
bytes. The RFID_lasttagIDl/h is checked against the latest tag id
read to ensure no duplicates are found, if that option is enabled.

INT32, read-write

RFID_lasttagIDh This property is automatically set when a TAG ID read
operation is performed and a unique id is found, different than
that previously read. This property represents the upper 4
bytes. The RFID_lasttagIDl/h is checked against the latest tag id
read to ensure no duplicates are found, if that option is enabled.

INT32, read-write

Vector Variables Description (EtherCAT Only) Type

accX Calculated acceleration along the X axis of the last vector move. DOUBLE, read-only

accY Calculated acceleration along the Y axis of the last vector move. DOUBLE, read-only

accZ Calculated acceleration along the Z axis of the last vector move. DOUBLE, read-only

accVector Circular Interpolation:
Acceleration in radians/second2 that is being used for the calculated
profile.

DOUBLE, read-only

angle Circular Interpolation:
Initialized to 0 and records the calculated angle as it sweeps.

2D and 3D Linear Interpolation:
Calculated angle of the last vector move.

FLOAT32, read-only

angleStart Circular Interpolation:
The angle at which motion should start where 0 is vertical on the Y
axis, minus angle moves left, and positive angle moves right. The
‘angleSweep’ variable is added to this angle.

DOUBLE, read-write

QuickMotion Reference Guide 135

Doc. No. 951-530017-019

Vector Variables Description (EtherCAT Only) Type

angleSweep Circular Interpolation:
The desired amount of angular motion that is to occur relative to the
radius center point. A positive angleSweep rotates clockwise,
negative, counter clockwise.

DOUBLE, read-write

axisY The axis number, from 1 to N, which will be the Y axis, commanded
from the X axis. The Y axis must be set for either 2D or 3D
interpolation to occur.

INT32, read-write

axisZ 3D Linear Interpolation:
The axis number, from 1 to N, which will be the Z axis, commanded
from the X axis.

INT32, read-write

decVector Circular Interpolation:
Deceleration in radians/second2 that is being used for the calculated
profile.

DOUBLE, read-only

decX Calculated deceleration along the X axis of the last vector move. DOUBLE, read-only

decY Calculated deceleration along the Y axis of the last vector move. DOUBLE, read-only

decZ Calculated deceleration along the Z axis of the last vector move. DOUBLE, read-only

magnitude 2D and 3D Linear Interpolation:
Calculated size of the last vector move.

DOUBLE, read-only

radius Circular Interpolation:
The radius in user units of the arc to be drawn. A negative radius
flips the arc.

DOUBLE, read-write

vectorY Circular Interpolation:
The calculated center of the arc for the Y axis will be stored here for
diagnostic reference, in machine units. Make sure you update
vectorY after a circular move if the next move is linear
interpolation.

3D Linear Interpolation:
The desired Y position on an X/Y/Z grid in user units, based upon
revolutions. Note that this value is overwritten after a circular
interpolated move for diagnostic purposes.

2D Linear Interpolation:
The desired Y position on an X/Y grid in user units, based upon
revolutions.

DOUBLE, read-write

vectorZ Circular Interpolation:
The calculated center of the arc for the X axis will be stored here for
diagnostic reference, in machine units.

3D Linear Interpolation:
The desired Z position on an X/Y/Z grid in user units, based upon
revolutions. Note that this value is overwritten after a circular
interpolated move for diagnostic purposes.

DOUBLE, read-write

136

QuickMotion Reference Guide

Control Technology Corp.

Vector Variables Description (EtherCAT Only) Type

velVector Circular Interpolation:
Velocity in radians/second that is being used for the calculated
profile.

DOUBLE, read-only

velX Calculated velocity along the X axis of the last vector move. DOUBLE, read-only

velY Calculated velocity along the Y axis of the last vector move. DOUBLE, read-only

velZ Calculated velocity along the Z axis of the last vector move. DOUBLE, read-only

QuickMotion Reference Guide 137

Doc. No. 951-530017-019

6.3 Host Register Access

The Host Read/Write commands are used to directly access all the main controller's registers, including variant
storage. These registers consist of, but are not limited to:

· Analog I/O
· Digital I/O
· Data tables
· Volatile and non-volatile Variant scalar, vector and tables
· Generic integer registers
· Non-volatile register
· Communications

Reference the Quickstep Register Guide for a summary of available registers:

http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf

Summary:
host read variable, register {, row, column}

 host write variable, register {, row, column}

 Host Read Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 host read variable, register {, row, column }

parameters

 variable Local user variable or axis property to have ‘register’

stored to it.

register Main controller QuickBuilder register as defined in the

Model 5300 Quick Reference Register Guide. May be constant

or variable access.

row Optional row used only for variant register table access.

May be constant or variable access.

column Optional column used only for variant register table

access. May be constant or variable access.

This statement pauses execution of the MSB while the contents of a QuickBuilder register is retrieved from the
main processor. The register value is then stored into the local ‘variable’ or axis ‘property’. The data type will
automatically be converted to that of the local storage. Both integer based registers and variant vectors and
tables are supported. When reading a variant, one cell at a time in the table (if any) is read. If no row or column is
specified, 0 is assumed.

// Read the controller tick timer referencing a variable
// and store to ‘userVar’
reg = 13002;
host read userVar, reg;
// Read the controller tick timer using constant register
// number and store to ‘userVar’
host read userVar, 13002;

http://www.ctc-control.com/customer/techinfo/docs/5300_951/951-530006.pdf

138

QuickMotion Reference Guide

Control Technology Corp.

 Host Write Positioning Slewing Tracking BG MSB

 FG MSB

syntax

 host write variable, register {, row, column }

parameters

 variable Local user variable or axis property to store to controller

‘register’.

register Main controller QuickBuilder register as defined in the

Model 5300 Quick Reference Register Guide. May be constant

or variable access.

row Optional row used only for variant register table access.

May be constant or variable access.

column Optional column used only for variant register table

access. May be constant or variable access.

This statement pauses execution of the MSB while the contents of a local ‘variable’ or axis ‘property’ is written to
a QuickBuilder register on the main processor. The data type will automatically be converted to that of the
QuickBuilder register, thus double will be converted to integer, etc. Both integer based registers and variant
vectors and tables are supported. When writing a variant, one cell at a time in the table (if any) is written. If no
row or column is specified, 0 is assumed.

// Clear the controller tick timer, register 13002,
// referencing the contents of ‘userVar’.
userVar = 0;
reg = 13002;
host write userVar, reg;
// Clear the controller tick timer, register 13002,
// using a constant value.
host write 0, 13002;

QuickMotion Reference Guide 139

Doc. No. 951-530017-019

7 Chapter 7: Quickstep Support

QuickMotion has been designed for high integration with the QuickBuilder language and include such features as
program interaction and user units. A legacy product, Quickstep, uses a register interface for motion control.
This interface is not as tightly coupled but there is a large existing code base thus an MSB emulation mode has
been created which allows the M3-40 module to appear as a 2219 motion control card, used on the 2700 series
controllers, or 5140, within the 5100/5200 controller family.

Register emulation is always available from a read only perspective. In order to fully support the emulation mode
a special MSB has been created and must be loaded. This MSB is the output of a QuickBuilder project where
initial parameters and any minor MSB customization can be made. To simplify initial use a fully compiled project
is available that can be loaded into a 5300 controller for Quickstep program support, QS2MSB. This project is
available from the download portion of CTCs' web site. In the example provided, 2 axis, are supported. To
support more axis simply add the card to the QuickBuilder project as well as 'start axis' references, or if
QuickBuilder is not available, you may simply copy and rename the files with the appropriate axis names. Note
the files which are available after compiling QS2MSB, within the controller sub-directory:

These files consist of the binary output, generated by QuickBuilder, for MSB's (AXIS??_MSB??_msbname.bin)
and their respective configuration parameters (PARAM_AXIS??.bin). They must be placed in the controller
'/_system/Programs/Motion' subdirectory. Upon power up or reset the M3-40A module will automatically look in
this directory and if the files are present then an auto-boot sequence will begin. Namely, the files will be loaded
into the M3-40 card and automatically executed. If a servo has been tuned and parameters saved to the card, the
PARAM file settings will be ignored and only the MSB binary file will be loaded.

Once loaded and running most legacy Quickstep motion applications will run, unchanged.

 Note that the emulation will appear similar to a 2700, 2219 module. Any extended features available within the
5100/5200 controller 5140 module are not currently supported. The Register interface is fully available on all
motion products. If only Registers are desired the above .bin files do not have to be loaded. The .bin files are
used to simulate full Quickstep motion instructions thus if MSB's are used in a normal QuickBuilder program, they
are not needed.

140

QuickMotion Reference Guide

Control Technology Corp.

7.1 Registers

Most of the motion registers supported by the 2700/5100/5200 controller are available within the 5300/Incentive
environment, regardless of whether the emulation mode is run or not. If emulation is not running then write
operations are not supported. These registers consist of:

Motion Registers Grouped by function then axis

The 5300 firmware is designed to access up to 16 axes. For the 14XXX register
values below substitute the axis number for ‘ax’ to get the correct register. Axis #1
= 1; For example the position of axis #1 is stored in register 14001.

140ax Position (counts), R only [QuickBuilder reference = fposc]

141ax Error (counts), R only [QuickBuilder reference = perr * ppr * (uun/uud)]

142ax Velocity (counts / sec), R only [QuickBuilder reference = vel * ppr * (uun/uud)]

143ax Status, R only:

Status Description

0 Axis not initialized

1 Stopped and ready

2 Motion imminent: waiting for start

3 Accelerating

4 At max speed.

5 Decelerating to new max speed

6 Decelerating to stop

7 Soft stop

8 Registration move (armed, not moving)

9 Home

10 Following (not used)

128-255 Error (not used)

144ax Integral Error (count-seconds), R only (not supported)

145ax Velocity Feedforward [QuickBuilder reference
=QS2_VAR_NEW_VEL_FEEDFORWARD]

146ax Deceleration (counts/sec^2) [QuickBuilder reference =
QS2_NEW_DECELERATION]

147ax Dedicated Inputs, R only:

This is a bit map of the input signals

Bit Number Description Bit Number Description

QuickMotion Reference Guide 141

Doc. No. 951-530017-019

0 (lsb) Reg. (not
supported)

4 Rev EOT

1 Home 5 Fwd EOT

2 Start 6 Z/Index (not
supported)

3 Kill 7 Not Used

148ax Acceleration Feedforward [QuickBuilder reference =
QS2_VAR_NEW_ACC_FEEDFORWARD]

149ax Analog Output, R/W - 32,767 = -10.000V; 32,767 = 10.000V, [QuickBuilder
reference = rint(dac_mv * 3.2767)]

Motion Registers Grouped by axis then function

For the 15xxx, 16xxx, 17xxx register values below substitute the axis number for ‘bx’ to get
the correct register. Axis #1 = 0; For example the position of axis #1 is stored in register
15000.

15bx0 Position (counts), R only [QuickBuilder reference = fposc]

15bx1 Error (counts), R only [QuickBuilder reference = perr * ppr * (uun/uud)]

15bx2 Velocity (counts / sec), R only [QuickBuilder reference = vel * ppr * (uun/uud)]

15bx3 Status, R only:

Value Description Value Description

0 Axis not initialized 6 Decelerating to stop

1 Stopped and ready 7 Soft stop (not used)

2 Motion imminent:
waiting for start

8 Registration move
(armed, not moving)

3 Accelerating 9 Home

4 At MAX speed 10 Following (not used)

5 Decelerating to new
MAX speed

128-
255

Error (not used)

15bx4 Integral Error (count-seconds), R only (not supported)

142

QuickMotion Reference Guide

Control Technology Corp.

15bx5 Velocity Feedforward, also used to specify the Output in Direct mode [QuickBuilder
reference = QS2_VAR_NEW_VEL_FEEDFORWARD], output in direct mode not supported,
use Analog Output instead (15bx9).

15bx6 Deceleration (counts/sec^2), R only [QuickBuilder reference =
QS2_NEW_DECELERATION]

15bx7 Dedicated Inputs, R only:

This is a bit map of the input signals

Bit Number Description Bit Number Description

0 (lsb) Reg. (not
supported)

4 Rev EOT

1 Home 5 Fwd EOT

2 Start 6 Z/Index (not
supported)

3 Kill 7 Not Used

15bx8 Acceleration Feedforward [QuickBuilder reference =
QS2_VAR_NEW_ACC_FEEDFORWARD]

15bx9 Analog Output, R/W -32,767 = -10.000V; 32,767 = 10.000V [QuickBuilder reference =
rint(dac_mv * 3.2767)]. On 2219 this is read only and Velocity Feedforward is written to for
Analog Output.

16bx0 Reg. Start, R/W – Position at which the registration will be enabled [QuickBuilder
reference = QS2_CAP_WINSTART]

16bx1 Reg. Window, R/W – The range that the registration will be enabled [QuickBuilder
reference = QS2_CAP_WINEND_REL]

16bx2 Reg. Position, R only – The position at which the registration was detected, when Reg
status is 1 [QuickBuilder reference = capposc]

16bx3 Reg. Offset, R/W – The distance to be moved after the registration input [QuickBuilder
reference = QS2_CAP_WINOFFSET]

16bx4 Reg. Status, R/W – 0 = Armed (write 0 to arm), 1 = Detected, can only set to 0
[QuickBuilder reference = QS2_REG_STATUS]

16bx5 Numerator, R/W – For following the master axis [QuickBuilder reference =
QS2_VAR_MTN]

16bx6 Denominator, R/W – For following the master axis [QuickBuilder reference =
QS2_VAR_MTD]

16bx7 Leader Position, R only – Only valid when following a master axis (not supported)

16bx8 Leader Velocity, R only – Only valid when following a master axis (not supported)

16bx9 Reserved

17bx0 Firmware Revision, R only

17bx1 Filter & Mode, R/W:

QuickMotion Reference Guide 143

Doc. No. 951-530017-019

In Direct mode the Feedforward Velocity gain specifies the output value (0 to
32767) with a value of 32767 = 10V (sign depends on the Filter type).
[QuickBuilder reference = QS2_FILTER_MODE]

Description Value

Lower 3 bits
(0x07) Fil ter type

0 or 3 = PID
1 = + Direct (CW) 2 = - Direct
(CCW)
4 = PAVff 5 = PAV
6 = Stepper 7 = Initialize
Encoder Resolution

Bits 4 & 5
Accel/Decel Type

0 = Linear 1 = S Curve
2 = Parabolic 3 = Inverse

 Parabolic

Bit 7 (0x80) 0=Trajectory Following
1 (value 128) = Encoder Following

Note: Initialize Encoder Resolution, filter type 7 is only a temporary mode that can be
applied anytime there is no motion. It is recommended this be done prior to initial
motion. This can be used to override the default ppr, mppr, and sppr. Upon writing this
value the following registers will be initialized as follows, thus set accordingly prior to
execution:

ppr = QS2_VAR_NEW_VEL_FEEDFORWARD
mppr = QS2_VAR_NEW_ACC_FEEDFORWARD
sppr = QS2_NEW_DECELERATION

After changing the above variables set them back to their previous values and set the Filter
Mode to the proper mode for motion desired.

17bx2 Input Polarity, R/W:

This is a bit map that controls the active level of the input signals,. When the bit is
0 then the input is active when it is On; if the bit is 0 then the input is active Off.

Bit Number Description Bit Number Description

0 (lsb) Reg. (not
supported)

4 Rev EOT

1 Home 5 Fwd EOT

2 Start 6 Z/Index (not
supported)

3 Kill 7 Not Used

17bx3 Home Direction, R/W [QuickBuilder reference = QS2_HOME]

Direction Description

CCW 0 or –1 = Home & Index
-2 = Home Only
-3 = Index Only (not supported)

144

QuickMotion Reference Guide

Control Technology Corp.

CW 1 = Home & Index
2 = Home Only
3 = Index Only (not supported)

17bx4 Options, R only (not supported)

17bx5 Reserved

17bx6 Maximum Following Error, R/W default = 30000 [QuickBuilder reference = perrlimit * ppr]]

17bx7 Speed Limit, R/W – overrides maximum velocity, default = 4194303 steps/sec (not
supported)

17bx8 Maximum Position, R/W – Used as a Software EOT when it is larger than the Minimum
Position (not supported)

17bx9 Minimum Position, R/W – Used as a Software EOT when it is smaller than the Maximum
Position (not supported)

QuickMotion Reference Guide 145

Doc. No. 951-530017-019

7.2 Quickstep Variables

Quickstep Variables Description Type

QS2_Status Axis status as defined by register 143xx. read-write

QS2_Cmd Command to be processed by the MSB,
emulates 2700 2219 module.

read-write

QS2_Overrides Override commands that can be processed by
the MSB during motion without a fault.

read-write

QS2_Holding Holding command to be processed by the MSB. read-write

QS2_Params Parameter command to be processed by the
MSB. Written once any 'VAR_NEW' variables
are updated.

read-write

QS2_VAR_NEW_ACCELERATION X value for selected debugTableRow. read-write

QS2_VAR_NEW_MAX_SPEED Y value for selected debugTableRow. read-write

QS2_VAR_NEW_PROPORTIONAL Requested new kd, processed by MSB as
required. This is also written to by the QS2
profile statement.

read-write

QS2_VAR_NEW_INTEGRAL Requested new ki, processed by MSB as
required. This is also written to by the QS2
profile statement.

read-write

QS2_VAR_NEW_DIFFERENTIAL Requested new kd, processed by MSB as
required. This is also written to by the QS2
profile statement.

read-write

QS2_VAR_NEW_VEL_FEEDFORWARD Processed by MSB application. read-write

QS2_VAR_NEW_HOLDING_MODE Processed by MSB application. read-write

QS2_VAR_NEW_DECELERATION Processed by MSB application. read-write

QS2_VAR_NEW_FORCE_POSITION Processed by MSB application. read-write

QS2_VAR_NEW_FORCE_CUMULATIVE Processed by MSB application. Not currently
used.

read-write

QS2_CAP_WINSTART Processed by MSB application. read-write

QS2_CAP_WINEND_REL Processed by MSB application. read-write

146

QuickMotion Reference Guide

Control Technology Corp.

Quickstep Variables Description Type

QS2_CAP_WINOFFSET Processed by MSB application. read-write

QS2_VAR_NEW_ACC_FEEDFORWARD Processed by MSB application. read-write

QS2_HOME Processed by MSB application. read-write

QS2_VAR_MTN Processed by MSB application. read-write

QS2_VAR_MTD Processed by MSB application. read-write

QS2_LAST_CMD Last QS2_Cmd processed. read-write

QS2_CMD_CNT Number of QS2_Cmd's processed. read-write

QS2_OVERRIDE_CNT Number of override commands processed. read-write

QS2_HOLDING_CNT Number of holding commands processed. read-write

QS2_PARAM_CNT Number of parameter commands processed. read-write

QS2_MSB_STATE General scratch storage used by the MSB to
write program execution state information.

read-write

QS2_FILTER_MODE Reference register 17bx1 for mode settings. read-write

QS2_TMP1 General scratch storage used by the MSB as
needed (integer).

read-write

QS2_TMP2 General scratch storage used by the MSB as
needed (integer).

read-write

QS2_TMP3 General scratch storage used by the MSB as
needed (integer).

read-write

QS2_TMP4 General scratch storage used by the MSB as
needed (integer)

read-write

QS2_REG_STATUS Registration status, write a 0 to arm, else read a
1 if detected.

read-write

QuickMotion Reference Guide 147

Doc. No. 951-530017-019

148

QuickMotion Reference Guide

Control Technology Corp.

7.3 Input Mapping (M3-40 Only)

M3-40A inputs are monitored by the QS2MSB MSB program and when executing the DIN inputs are
monitored similar to a 2219. The inputs are mapped as:

DIN1 - START
DIN2 - REGISTRATION INPUT
DIN3 - FWD LIMIT
DIN4 - REV LIMIT
DIN5 - HOME

QuickMotion Reference Guide 149

Doc. No. 951-530017-019

8 Chapter 8: Fault Codes & MSB Debugging

Should an error occur several registers contain information which can be helpful in detecting what caused
the problem. These registers exist for each axis:

Fault Variables Description Type

fault1
fault2 (not used)
fault3 (not used)
fault4 (not used)

Fault status words, reference Chapter 8. read-only

faulted 0 = no fault, 1 = faulted. read-only

faultFunction Code 0 to N which represents internal function where fault occurred.
Thus far defines as:
FGTick - 1
runMSB - 2
processMSB - 3
process_motion_command - 4
DP_MGRTask_Axis1 - 5
DP_MGRTask_Axis2 - 6
processVFC - 7

read-only

faultMSB The MSB number from 0 to 31 which has faulted. read-only

faultMSBLine The line number as referenced to source code MSB where the fault
occurred. Note that the source must be in sync with what is executing
for this to be correct.

read-only

faultMSBOffset Absolute byte offset into MSB binary opcode where was executing
when fault occurred. Internal use.

read-only

faultOpcode MSB opcode that was being executed when fault occurred. Internal use. read-only

150

QuickMotion Reference Guide

Control Technology Corp.

8.1 Fault Codes

 Note that firmware prior to V1.40 (M3-40A) use outdated fault codes. Changes were made to enhance
diagnostic abilities.

Fault Codes Description Code Value

MF_NO_ERROR No error. 0

MF_GENERICFAULT Generic Motion Fault. 1

MF_INVALIDTIME Negative or Zero 'time' specified in MOVE. 2

MF_INVALIDVEL Negative or Zero 'velocity' specified in MOVE. 3

MF_INVALIDACC Negative or Zero 'acc' specified in MOVE. 4

MF_INVALIDDEC Negative or Zero 'dec' specified in MOVE. 5

MF_INVALIDRATE Negative or Zero 'rate' specified in MOVE. 6

MF_ONLYINBG QM command only allowed in BG MSB. 7

MF_MOTIONACTIVE MOVE attempted while MOVE in progress. 8

MF_UNIMPLEMENTED MOVE attempted while MOVE in progress. 9

MF_WRONGMODE In wrong mode (positioning/tracking/slewing. 10

MF_FGMSBLIMIT FG MSB limit reached. 11

MF_NOTINSLEW Not in SLEW mode. 12

MF_FOLLOWERR Following error limit reached. 13

MF_BADINPUTNO Invalid input number specified. 14

MF_NOTENABLED Not enabled. 15

MF_BADARGUMENT1 Bad argument1/parameter. 16

MF_INVALID_TBL_OP Invalid 'table' operation. 17

QuickMotion Reference Guide 151

Doc. No. 951-530017-019

Fault Codes Description Code Value

MF_NOTINTRACK Not in 'tracking' mode. 18

MF_CANTCONSUME Illegal state for 'consume'. 19

MF_SESGMOVE_ERROR 'Segmented Move' error. 20

MF_SESGMOVE_SIZE 'Segment size' error, too many. 21

MF_NOCAMFILE Requested CAM file not found. 22

MF_REMOTE_READ Read of controller register failed. 23

MF_REMOTE_WRITE Write of controller register failed. 24

MF_NOMSBFILE MSB file does not exist on flash disk. 25

MF_BADARGUMENT2 Bad argument2/parameter. 26

MF_BADARGUMENT3 Bad argument3/parameter. 27

MF_BADARGUMENT4 Bad argument4/parameter. 28

Additional EtherCAT Only Fault
Codes Description Code Value

MF_SDO_READ EtherCAT SDO read failed. Either network error
or object not supported by device.

29

MF_SDO_WRITE EtherCAT SDO write Failed. Either network error
or object not supported by device.

30

MF_DRIVE_ERR_MSG Generic drive error message. 31

MF_ECAT_OFFLINE EtherCAT is offline 32

MF_DCSYNC Execution of DCSync instruction failed. Drive
may be offline or not support objects.

33

MF_INVALID_ECAT_MODE Attempted to set a mode (cmode) the drive does
not support. Typically CSP mode is used
generically.

34

152

QuickMotion Reference Guide

Control Technology Corp.

Additional EtherCAT Only Fault
Codes Description Code Value

MF_STACK_ERROR MSB instruction execution error, attempted to pop
a variable off the stack and it was not there?

35

MF_READONLY Trying to write to a read only variable. 36

MF_INVALID_TBL_OP_Y Attempted to address more tables than available on
Y axis.

37

MF_INVALID_TBL_OP_Z Attempted to address more tables than available on
Z axis.

38

MF_INVALID_TRACKING Attempted an invalid instruction while in tracking
mode. Typically beginning slew.

39

MF_TIMEOUT IncentiveECAT API:

Error occurring while waiting for in-position and
have a timeout occur.

40

MF_ERROR_NO_SERVO IncentiveECAT API:

Error occurring while attempting to read or write to
an axis that does not exist.

41

MF_ABORT_REQUESTED IncentiveECAT API:

Error occurring while executing an API command
and the user application requested an ABORT
occur, restarting the network.

42

MF_ERROR_OO_RANGE Incentive ECAT API:

Error occurring while attempting to online/offline
an invalid axis #.

43

MF_ERROR_INIT_CONFIG Incentive ECAT API:

Attempting to online an offline axis and it failed
while initializing the configuration.

44

MF_ERROR_NO_INIT Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT INIT
state.

45

MF_ERROR_NO_PREOP Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT PRE-OP
state.

46

MF_ERROR_NO_SAFEOP Incentive ECAT API: 47

QuickMotion Reference Guide 153

Doc. No. 951-530017-019

Additional EtherCAT Only Fault
Codes Description Code Value

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT SAFEOP
state.

MF_ERROR_NO_OPERATIONAL Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to place it in the EtherCAT
OPERATIONAL state.

48

MF_ERROR_INIT_PDO Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to initialize the PDO mapping.

49

MF_ERROR_REMAP_CONFIG Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to remap the configuration.

50

MF_ERROR_DC_RESTORE Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to restore propagation delay.

51

MF_ERROR_DC_SYNC01 Incentive ECAT API:

Attempting to online an offline axis and it failed
while trying to setup DC Sync (some drives
require DC Sync operational before the drive is
fully in the OPERATIONAL state.

52

MF_ERROR_ILLEGAL_VAL Incentive ECAT API:

Attempting to online an offline axis and it is no
longer available in the drive table.

53

MF_ERROR_NOT_ONLINE Incentive ECAT API:

Attempting to online an offline axis and it is no
longer available. Probably still offline.

54

154

QuickMotion Reference Guide

Control Technology Corp.

8.2 MSB Status/Control Monitor Fault Processing

There are a number of features within QuickBuilder to enable the debugging of QuickMotion MSB's. This can be
either during normal operation or should a fault occur. A fault is indicate by a flashing FLT LED on the controller
CPU. To observe a QuickMotion fault the Status/Control monitor can be viewed:

Once the Status/Control window appears observe and click the AFS text. Note that each character represents an
axis, with the first on the far left. In the example below a 0 means the axis is OK, F that there is a fault. Below
shows a fault on axis 1 since it is 'F'.

QuickMotion Reference Guide 155

Doc. No. 951-530017-019

Once clicked detailed information about the fault will be shown, if available:

Note that the error occurred at line 6 of the source code of the FrontXCamControl MSB. In referencing that MSB
we can see the line listed, 'table 1 loadseries ram foo' as being the problem. In this case there was no camtable209
file present within the controller flash disk.:

156

QuickMotion Reference Guide

Control Technology Corp.

8.3 MSB Monitor

QuickBuilder offers a MSB Monitor when online in the Editor mode.

This monitor periodically (about every second) refreshes axis information for display. Current fpos, mpos,
vel, tpos and perr are available as well as the instruction and state of MSB's that are executing. A pull
down combo box lists all available axis, that selected is what will be automatically refreshed.

QuickMotion Reference Guide 157

Doc. No. 951-530017-019

If the axis is faulted, using the example from the 'MSB Status/Control Monitor Fault Processing' section,
the following will appear:

 Note that the 'Enable MSB Monitoring' check box must be checked for monitoring to be active. Also the
Editor tab should be green to indicate online debug mode.

 Double clicking on the MSB line appearing in the list box will automatically make that code and line current in
the Editor.

158

QuickMotion Reference Guide

Control Technology Corp.

In situations where a fault had not occurred multiple MSB's would appear executing, as well as their line number
and axis motion status:

QuickMotion Reference Guide 159

Doc. No. 951-530017-019

9 Appendix: Sample Code

WARNING: The following examples are offered for training purposes only and are not intended
to perform any actual real-world application or function.

// --------------- Pause Motion MSB --------------------------

/* This MSB will pause motion by moving the timebase to 0
and then back to 1 based on switch 3 position.
Note: that changes to the timebase variable only impact
the actual motion commands other MSB commands such as
delay are not altered. */

[top]

wait for rise of 3; // wait for rising edge of input3

timebase=0; // set the motion timebase to zero

wait for fall of 3; // wait for falling edge of input3

timebase=1; // put timebase back to 100%
goto top; // repeat

end;
// --------------- Jog MSB --------------------------

/* This MSB performs a simple jogging routine
The variable JogSpeed is passed to this MSB to set
the jog velocity. If switch 1 is on a positive Jog
is activated, if switch 5 is on a negative Jog is activated;
if neither 1 or 5 are on zero speed is commanded, and the
motor stops. */

JogSpeed=1; // set a default jog speed

slew begin; // witch to slewing mode

[loop]

// check the switches

if !din1 && !din5 then speed=0;

if din1 then speed = JogSpeed;

if din5 then speed = -JogSpeed;

slew at speed in 0.5; // slew to speed in .5 sec

delay 510; // wait 510 ms until at speed

if !din2 goto loop; // as long as input 2 is off loop

slew end; // return to position mode

end;

160

QuickMotion Reference Guide

Control Technology Corp.

// --------------- Home via Z MSB --------------------------

// add a move to switch code here if needed

foundz = 0;
// set zdir to 1 to search in the positive dir
// set zdir to -1 to search in the negative dir
zdir = -1;

// check if we know where the Z-pulse is
if zpulse goto knownz;

// dont know where z is, so...
// move positive for +/- 2 revs looking for it
zero feedback position;
move in 0.25 for zdir*2;

[searchloop]
// a z while moving?
// check the zpulse variable (1 if a z pulse has been seen)
if zpulse goto foundmid;
// done?
if !inpos goto searchloop;
// no z, stop and quit
stop;
end;

// found a z mid move, so stop
[foundmid]
new endposition relative 0 using 10000;
wait for in position;

// move to z
[knownz]

// find the Z that is closest
if zdir > 0 goto posz;

[negz]
move in 0.125 to ZPULSE_NEG;
goto exit;

[posz]
move in 0.125 to ZPULSE_POS;
goto exit;

[exit]
wait for in position;
zero feedback position;

QuickMotion Reference Guide 161

Doc. No. 951-530017-019

foundz = 1;
end;

// --------------- Error Handler Example --------------------------

The following MSBs illustrate how an error handler can be used on a motion axis. The code for each is given
below with a brief explanation.

startMT MSB: This MSB starts the asynchronous event handler. In this case
Error_Hdlr will automatically be called whenever there is a
hardfault.

on hardfault start Error_Hdlr; //start an asynchronous event to
monitor for a hardfault error

start movetime FG; //now go do some motion

Error_Hdlr: This MSB contains the error handler code. The comment at the
end gives a listing of valid error codes

// Error handler example MSB

// Check for a fault
if fault1 == 0 goto genfault; //Generic Motion Fault
if fault1 == 1 goto invtime; //Negative or Zero 'time' specified in MOVE
if fault1 == 2 goto invvel; //Negative or Zero 'velocity' specified in
MOVE

//(etc)continue on to trap
all errors if you want

goto unknown; // If you get here there's no
known fault code

[genfault] //routine for general fault goes
here
//(put code here)

162

QuickMotion Reference Guide

Control Technology Corp.

[invtime]
// Invalid Time Fault: Trigger this error by setting move time to 0 in the
movetime MSB

setout 5; //turn on output to signal error

delay 5000; // wait 5 sec

clrout 5; // turn off output 5

delay 1000; // wait 1 sec

reset; // reset all faults

delay 1000; // wait 1 sec
start movetime FG; //re-start the MSB. Hint if you don't change

the movetime
//you'll end up right back here in six seconds.

[invvel]

//(code)

[unknown]

//(code)

end;

movetime MSB: This MSB contains a simple motion routine used to trigger a

hardfault

zero feedback position;

xm=1; //default mode setting

// Do a repeating forward and back move
[top]

time=0; //reset timer

move in time2 for dist mode xm; //move forward

wait for in position;

move in time2 for -dist mode xm; //move back

wait for in position;

movetime=time; //update movetime

goto top;

QuickMotion Reference Guide 163

Doc. No. 951-530017-019

10 Appendix: Command Hyperlinks

Statements:

Utility
Set
Program Flow
Common bits and variables
I/O
Simple Motion
Gearing
Position and Capture
Loading Tables
Spline/CAM
Virtual Master
Segmented Moves
Host Register

Utility Statements:

stop { slewed using rate }

drive enable

drive disable

delay time ms

variable = expression

zero feedback position

zero target position

zero following error

reset

if condition then variable = expression

wait until condition

Set Statements:

set common bit number state

set common var number value

set loopperiod value

set mode positioning

set mode tracking

set timeout ticks

set target position value

set feedback position value

set target position counts vcounts

set feedback position counts vcounts

set simulated feedback on/off

offset position value

offset position counts vcounts

set master mode { using global }

164

QuickMotion Reference Guide

Control Technology Corp.

Program Flow Statements:

[label]

start MSB mode

end { and start MSB mode }

abort MSB

goto label

if condition goto label

on asynchevent asynchhandler

Common bits and variables Statements:

set common bit number state

wait common bit number state

set common var number value

wait common var number range

I/O Statements:

setout outputlist

clrout outputlist

pulse output for n

pls output using reference definitions

pls output state

wait for transition of input { or condition }

generate output output rate freq

generate n steps on pair

variable = ctr[n]

ctr[n] = expression

ctr[n] = offset

generate alternate mode

Simple Motion Statements:

move to position { using acc, dec }

move at maxvelocity to position { using acc, dec }

move trap to position using rate

move in time to position {mode n }

move for displacement { using acc, dec }

move at maxvelocity for displacement { using acc, dec }

move trap for displacement using rate

move in time for displacement {mode n }

wait for in position

new endposition position using rate

new endposition relative displacement using rate

slew begin

slew at velocity in time

QuickMotion Reference Guide 165

Doc. No. 951-530017-019

slew for displacement

slew end

Gearing Statements:

gear at numerator : denominator

gear at numerator : denominator in counts

gear at numerator : denominator in counts after acounts

gear for slavecounts in mastercounts

gear for slavecounts in mastercounts after acounts

offset slave by slavecounts in time

wait master counts

wait slave counts

wait source within start , end

wait source outside start , end

zero masslv counters

Position and Capture Statements:

set capture transition of input input { gate input gateinput gatestate }

set capwin range start, end using reference { arm }

wait capture { if limit of limit goto limitlabel }

Loading Tables Statements:

table n clear

table n addpair xexpression , yexpression

table n addseries pairs

table n copy from rowOffset1 to table m rowOffset2 numRows

table n loadoffset rowOffsetFile, numPairs,rowOffsetTable

table n loadseries source fileNumber

Spline/CAM Statements:

table n continue

table n precompute

table n start imethod tscale , rpscale , repeatcount

table n start imethod cam mpscale , spscale , repeatcount

stop table

Virtual Master Statements:

move master at rate for limit { using ramp }

Segmented Move Statements:

segmove table clear

166

QuickMotion Reference Guide

Control Technology Corp.

segmove table accdec to vel using rate

segmove table accdec to vel for displacement

segmove table slew until position

segmove table stop at position using rate

segmove table start relative

Host Register Statements:

host read variable, register {, row, column}

 host write variable, register {, row, column}

Index 167

Doc. No. 951-530017-019

Index
- A -
axis module 23, 24

axis object: 23, 25

axis properties:

acc/dec 32

cmode 32, 107

driveenable 32

imposw 32

neglim/poslim 32

overnegin/overposin 32

perrlimit 32

ppr 32

tmax 32, 107

uun/uud 32

vmax 32, 107

axis setup: 31

operating modes 37

positioning 37

slewing 37

tracking 37

- C -
camming and data table commands:

loading tables 84

manipulating master position 95

manipulating tables 88

reading and writing data to/from tables 92

using data from Excel spreadsheets 94

camming and data tables: 81

command outputs 8

common bits 51

common variables 51

- D -
document:

general info (QuickMotion Reference) 5

version number (QuickMotion Reference) 5

- E -
encoders 8

- F -
Fault Codes:

Codes, EtherCAT 151, 152, 153

Codes, General 150, 151

MF_ABORT_REQUESTED 152

MF_BADARGUMENT1 150

MF_BADARGUMENT2 151

MF_BADARGUMENT3 151

MF_BADARGUMENT4 151

MF_BADINPUTNO 150

MF_CANTCONSUME 151

MF_DCSYNC 151

MF_DRIVE_ERR_MSG 151

MF_ECAT_OFFLINE 151

MF_ERROR_DC_RESTORE 153

MF_ERROR_DC_SYNC01 153

MF_ERROR_ILLEGAL_VAL 153

MF_ERROR_INIT_CONFIG 152

MF_ERROR_INIT_PDO 153

MF_ERROR_NO_INIT 152

MF_ERROR_NO_OPERATIONAL 153

MF_ERROR_NO_PREOP 152

MF_ERROR_NO_SAFEOP 152

MF_ERROR_NO_SERVO 152

MF_ERROR_NOT_ONLINE 153

MF_ERROR_OO_RANGE 152

MF_ERROR_REMAP_CONFIG 153

MF_FGMSBLIMIT 150

MF_FOLLOWERR 150

MF_GENERICFAULT 150

MF_INVALID_ECAT_MODE 151

MF_INVALID_TBL_OP 150

MF_INVALID_TBL_OP_Y 152

MF_INVALID_TBL_OP_Z 152

MF_INVALID_TRACKING 152

MF_INVALIDACC 150

MF_INVALIDDEC 150

MF_INVALIDRATE 150

MF_INVALIDTIME 150

MF_INVALIDVEL 150

MF_MOTIONACTIVE 150

Control Technology Corp.168

QuickMotion Reference Guide

Fault Codes:

MF_NO_ERROR 150

MF_NOCAMFILE 151

MF_NOMSBFILE 151

MF_NOTENABLED 150

MF_NOTINSLEW 150

MF_NOTINTRACK 151

MF_ONLYINBG 150

MF_READONLY 152

MF_REMOTE_READ 151

MF_REMOTE_WRITE 151

MF_SDO_READ 151

MF_SDO_WRITE 151

MF_SESGMOVE_ERROR 151

MF_SESGMOVE_SIZE 151

MF_STACK_ERROR 152

MF_TIMEOUT 152

MF_UNIMPLEMENTED 150

MF_WRONGMODE 150

- I -
icons used in this manual 7

interpolation, for splines and CAM tables:

cubic 81

linear 81

quadratic 81

- K -
knots 81

- M -
M3-40A servo module: 7, 10, 12, 24

LED mapping 15

pinouts 15

M3-40B stepper module:

LED mapping 16

pinouts 16

M3-40C stepper module:

LED mapping 17

pinouts 17

M3-40D servo module 7

MF_ERROR_DC_RESTORE 150

Model 5300 controller 10, 19, 28

motion control programming: 39, 44, 54, 62, 72, 76

and QuickStep 37

operators 38

motion control:

getting started 31

statements 27

tuning 33, 34, 35

tuning wizard 33, 34, 35

motion sequence blocks (MSBs): 10, 22, 23, 37

and QuickStep 105

background MSBs 26, 27

foreground MSBs 26, 27

sample code 159

variables 105, 107

- P -
positioning mode 37

programmable limit switch (PLS) 12

- Q -
QS4 (QuickStep4): 19, 21, 105

hardware compatibility 7

motion control statements 27

start statement 27

stop statement 27

QuickBuilder 19, 20

QuickMotion 19

QuickMotion commands:

abort 45

asynchronous event handling 46

clrout 54

counter = expression, offset 59

counter read, write, offset 59

delay 40

drive disable 40

drive enable 40

end 45

gear at (ratio) 72

gear at (ratio, counts) 72

gear for (slavecounts, mastercounts) 73

generate alternate mode (alternate/standard pins)
 60

generate output rate (pulse) 57

generate steps on (step/direction) 58

goto 45

host read 137

Index 169

Doc. No. 951-530017-019

QuickMotion commands:

host write 138

if/goto 46

if/then 42

move at (maxvelocity) for (displacement;
trapezoidal) 65

move at (maxvelocity) to (position; trapezoidal)
63

move for (displacement; triangular) 65

move in (time) for (displacement; trapezoidal)
66

move in (time) to (position; trapezoidal) 64

move master at 95

move to (position; triangular) 62

move trap for (displacement; trapezoidal) 66

move trap to (position; trapezoidal) 63

new endposition (position or displacement) 67

offset position 49

offset slave (position) 73

on 46

pls (output) on/off 56

pls (output) using 55

pulse (output) for 55

reset 42

segmove <n> accdec...rate 98

segmove <table> accdec...disp 99

segmove <table> clear 98

segmove <table> slew 99

segmove <table> start relative 100

segmove <table> stop 99

set capture (registration input) 76

set capwin range (start, end) 76

set common bit 52

set common var 53

set feedback position 49

set loopperiod 48

set master source 50

set mode positioning 48

set mode tracking 49

set simulated feedback 49

set target position 49

set timeout 40

setout 54

slew begin 69

slew end 70

slew for (displacement) 70

start 44

statement 44

stop 39

stop table 91

table <n> addpair 84

table <n> addseries 85

table <n> clear 84

table <n> continue 88

table <n> copy 85

table <n> loadoffset 86

table <n> loadseries 86

table <n> precompute 88

table <n> start <imethod> <tscale>... 89

table <n> start <imethod> cam... 90

variable assignment (to expression) 41

wait capture (registration input) 77

wait common bit 53

wait for (transition) of (input) 57

wait for common var 53

wait for in position 67

wait master (counts) 73

wait outside (position range) 74

wait slave (counts) 73

wait until 43

wait within (position range) 74

zero (master/slave) counters 74

zero feedback position 41

zero following error 41

zero target position 41

QuickMotion programming:

gearing statements 72

I/O statements 54

operators 38

position capture and queue statements 76

program flow statements 44

simple motion statements 62

utility statements 39

QuickMotion variables:

_highBW 114

_inertia 114

_wn 114

_zeta 114

acc 111

accVector 134

accX 134

accY 134

accZ 134

activeBG_MSBs 129

activeCAM_row 108

activeFG_MSBs 129

Control Technology Corp.170

QuickMotion Reference Guide

QuickMotion variables:

aff 114

angle 134

angleStart 134

angleSweep 135

antibackup 121

axisnum 108

axisptr 130

axisY 135

axisZ 135

camming_invertend 116

camRequest 108

capArmed 127

capEdge 127

capGate 127

capGateState 128

capInput 128

capLimit 128

capLimitflag 128

capMod 128

capOffset 128

cappos 128

capposc 128

capStatus 128

capTriggered 128

capWait 128

capwaitBranch 128

capwinEnd 128

capwinStart 128

capwinType 128

cmode 111

ctr# 119

debugTable 93, 129, 149

debugTableRow 93, 129, 149

debugTableRows 93, 129, 149

debugTableX 93, 129, 149

debugTableY 93, 129, 149

dec 111

decVector 135

decX 135

decY 135

decZ 135

dim_factor_denom 130

dim_factor_num 130

din# 119

dins 120

dout# 119

douts 120

driveenable 120

dwSlaveID 130

eCAT_driveType 130

eCAT_manufID 131

eCAT_productCode 131

enabled 108

encoder_mode 111

encoderZ 116

encoderZ3 116

fault# 108, 149

faulted 108, 149

fpos 116

fposc 116

global_flag# 120

global_inputs 120

global_outputs 120

global_reg# 120

gratio 116

gtimebase 111

homing_speed1 112

homing_speed2 112

inpos 108

inpos_t 112

inpos_w 112

inposw 116

invel_t 112

invel_w 112

invertcmd 116

invertfeed 116

invertmaster 116

jerk_a 112

jerk_a_req 112

jerk_d 113

jerk_d_req 112

kd 115

kfilt 115

kgain 115

ki 115

kv 115

kvf 115

last_ALStatusCode 129

last_errorCode 129

last_errorRegister 129

last_errorType 129

lastOverall 129

loopperiod 129

looprate 129

magnitude 135

Index 171

Doc. No. 951-530017-019

QuickMotion variables:

master_feedback 121

maxLoopTime 130

maxOverall 130

mcinv 122

mdelta# 122

minLoopTime 130

minOverall 130

mmc 123

move_master_counts 124

move_master_ramp 124

move_master_rate 125

move_master_rate_target 124

mpgai 125

mpgfi 125

mposc 123

mposc# 123

mppr 117

msource 128

neglim 117

newvel 113

nonvolatile 115

overflowFlag 130

overneg 108

overnegin 120

overpos 108

overposin 120

overtrq 108

pdead 115

perr 117

perrlimit 117

pff 115

poslim 117

ppg 115

ppr 117

pstate 108

qs_decel_time 131

QS2_CAP_WINEND_REL 145

QS2_CAP_WINOFFSET 146

QS2_CAP_WINSTART 145

QS2_Cmd 145

QS2_CMD_CNT 146

QS2_FILTER_MODE 146

QS2_Holding 145

QS2_HOLDING_CNT 146

QS2_HOME 146

QS2_LAST_CMD 146

QS2_MSB_STATE 146

QS2_OVERRIDE_CNT 146

QS2_Overrides 145

QS2_PARAM_CNT 146

QS2_Params 145

QS2_REG_STATUS 146

QS2_Status 145

QS2_TMP1 146

QS2_TMP2 146

QS2_TMP3 146

QS2_TMP4 146

QS2_VAR_MTD 146

QS2_VAR_MTN 146

QS2_VAR_NEW_ACC_FEEDFORWARD 146

QS2_VAR_NEW_ACCELERATION 145

QS2_VAR_NEW_DECELERATION 145

QS2_VAR_NEW_DIFFERENTIAL 145

QS2_VAR_NEW_FORCE_CUMULATIVE 145

QS2_VAR_NEW_FORCE_POSITION 145

QS2_VAR_NEW_HOLDING_MODE 145

QS2_VAR_NEW_INTEGRAL 145

QS2_VAR_NEW_MAX_SPEED 145

QS2_VAR_NEW_PROPORTIONAL 145

QS2_VAR_NEW_VEL_FEEDFORWARD 145

radius 135

RFID_address 132

RFID_bytesTotal 133

RFID_bytesTransferred 134

RFID_channel 131

RFID_control 133

RFID_controlActive 133

RFID_count 133

RFID_data_readh 132

RFID_data_readl 132

RFID_data_writeh 133

RFID_data_writel 132

RFID_error 132

RFID_index 132

RFID_lasttagIDh 134

RFID_lasttagIDl 134

RFID_state 131

RFID_status 133

RFID_tagIDh 134

RFID_tagIDl 134

RFID_totalChannels 131

running 121

runv 117

scanning 130

sdc 125

Control Technology Corp.172

QuickMotion Reference Guide

QuickMotion variables:

settling 117

sfmod 117

sfpos 117

sfposc 117

sign 117

smark 125

smarkfall 126

smarkrise 125

smod 125

smodc 125

spgai 125

spgfi 125

sphase 126

sppr 113

stepsout 117

stoprate 113

substep 117

theta 113

time 110, 113

timebase 113

tlim 113

tmax 113

tmc1 126

tmc2 126

tmodc 126

touchProbeStatus 110

tpos 118

tposc 118

tr 118

tracking_pstate 110

tracking_sign 127

tracking_status 127

tracking_tpos 127

tracking_tposc 127

trqc 118

tsc1 126

tsc1fall 126

tsc1rise 126

tsc2 126

tsc2fall 127

tsc2rise 126

units_ratio 118

uud 118

uun 118

vcmd 118

vectorY 135

vectorZ 135

vel 118

vel_accel_time 131

vel_decel_time 131

velVector 136

velX 136

velY 136

velZ 136

verr 119

vff 115

vmax 114

vmdelta 127

vmin 131

wControlWord 130

wStatus 130

zfpos 119

zpulse 110

ZPULSE_NEG 119

ZPULSE_POS 119

ztheta 114

ztpos 119

- R -
registration inputs 15

Resource Manager (RM): 10

- S -
servo drives 8

servo motors 8

servo operating modes:

positioning 37

slewing 37

tracking 37

slew at (velocity, time) 69

slewing mode 37

splines 81

stepper drives 9

stepper motors 9

symbols used in this manual 7

- T -
tracking mode 37

Index 173

Doc. No. 951-530017-019

- V -
Variables, Pre-defined:

Capture Variables 127

Control Variables 111, 112, 113, 114

Diagnostic Variables 93, 129

Fault Variables 149

Feedback Variables 116, 117, 118, 119

IO and Register Variables 119, 120, 121

Quickstep Variables 145, 146

RFID Variables 131, 132, 133, 134

Setup Variables 130, 131

Status Variables 108, 109, 110

Tracking Variables 121, 122, 123, 124, 125,
126, 127

Tuning Variables 114, 115, 116

Vector Variables 134, 135, 136

	QuickMotion Reference Guide
	Chapter 1: Introduction and Overview
	Guide to Symbols
	Brief Overview of Motion Control
	Servo Motor Applications
	Stepper Motor Applications

	Brief Overview of M3-40/41 Motion Module Features
	M3-40 & M3-41/IncentiveECAT Motion Module Features
	Special M3-40 I/O Functions
	Drives & M3-41 IO
	QuickBuilder Motion Control Features
	IO Assignments
	IO Assignments - M3-40A
	IO Assignments - M3-40B
	IO Assignments - M3-40C
	IO Assignments - M3-41A

	Chapter 2: Motion Architecture
	QuickBuilder
	QuickStep
	QuickMotion
	Adding Motion to the 5300/Incentive Application
	The Axis Module
	The Axis Object
	The Motion Sequence Block

	Controlling Motion from QuickStep
	QS4 start Statement
	QS4 stop Statement
	Motion Architecture Summary Diagram

	Chapter 3: QuickMotion Axis Setup
	Axis Properties
	Basic Tuning
	Fine Tuning

	Tuning an axis (5300 M3-40 Only)

	Chapter 4: QuickMotion Programming
	Operating Modes
	Expressions
	Utility Statements
	Program Flow Statements
	Set Statements
	Common bits and variables
	I/O Statements
	Simple Motion
	Gearing
	Position Capture & Registration
	S-Curve
	Linear and Circular Interpolation (Vectors)

	Chapter 5: Camming and Data Tables
	Loading Tables
	Using Tables for Spline/CAM
	Accessing Table Data
	Diagnosing Table Issues

	Microsoft Excel as Table Data
	Virtual Master
	Broadcasting (M3-40 only)

	Segmented Moves and Examples
	Concept
	Commands
	Examples

	Chapter 6: Motion Variables
	QuickMotion User-defined Variables
	QuickMotion Pre-defined Variables
	Host Register Access

	Chapter 7: Quickstep Support
	Registers
	Quickstep Variables
	Input Mapping (M3-40 Only)

	Chapter 8: Fault Codes & MSB Debugging
	Fault Codes
	MSB Status/Control Monitor Fault Processing
	MSB Monitor

	Appendix: Sample Code
	Appendix: Command Hyperlinks

