

CONTROL TECHNOLOGY CORPORATION Model 5300 Communications & Logging Guide

Blank

WARNING: Use of CTC Controllers and software is to be done only by experienced and qualified personnel who are responsible for the application and use of control equipment like the CTC controllers. These individuals must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and/or standards. The information in this document is given as a general guide and all examples are for illustrative purposes only and are not intended for use in the actual application of CTC product. CTC products are not designed, sold, or marketed for use in any particular application or installation; this responsibility resides solely with the user. CTC does not assume any responsibility or liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software described in this document is provided under license agreement and may be used and copied only in accordance with the terms of the license agreement. The information, drawings, and illustrations contained herein are the property of Control Technology Corporation. No part of this manual may be reproduced or distributed by any means, electronic or mechanical, for any purpose other than the purchaser's personal use, without the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware revision levels. Some features may not be supported in earlier revisions. See <u>www.ctc-control.com</u> for the availability of firmware updates or contact CTC Technical Support.

Model Number	Hardware Revision	Firmware Revision
5300	All Revisions	>= 5.00.90R69.44

TABLE OF CONTENTS

[1] Communications Summary	9
[2] Serial Communications	11
Port Settings via Registers	11
Port Settings via WebMON	13
[3] Networking Communications	17
CTNet	
UDP	17
ТСР	17
Configuring a CTNet Node using Registers	18
Configuring IP Addresses using Registers	
Configuring the IP address automatically with DHCP	
Setting the Controller's DNS Name via Telnet	
Communicating to the Controller Using CTNet	
Network Configuration via WebMON	
Ethernet Settings	
[4] ASCII Computer/Terminal Protocol	
ASCII Computer Protocol.	
ASCII Terminal Protocol	
ASCII Protocol Commands	
Initiate computer mode:	
Initiate terminal mode:	
Read a counter/register:	
Write a counter/register:	
Returned Error Messages	
[5] TCP/IP Raw Sockets	
TCP Client	
TCP Server	
Lantronix CoBox/Xpress interface Example	
[6] UDP Peer to Peer Protocol Overview	
Peer-to-Peer Protocol Registers	
Registers 21000-21299	
Initiating a Peer to Peer Session	
[7] Modbus	
Modbus Slave RTU TCP & RTU/ASCII Serial	
Modbus Slave Serial RTU/ASCII	
Modbus Master TCP RTU & Serial RTU/ASCII	
Registers 21000-21299	
Example: Modbus TCP & RTU Serial Master Initialization	
Modbus TCP Master Sample Program	
Modbus RTU Serial Master Sample Program	
Modbus RTU Serial Master Multidrop QuickBuilder Initialization	58
Testing with Win-Tech's ModSim32	

[8] SNTP Simple Network Time Protocol	67
SNTP Register Configuration	67
SNTP WebMON Configuration	68
[9] SMTP	71
Register Access	71
Creating Emails using WebMON	72
Tree View, Local/Controller	72
Creating/Editing New Email Template	73
Deleting Email Template	75
Creating Emails using ASCII Text Editor	75
SMTP Email Diagnostics	
[10] POP3	80
Mail Inbox Server Configuration	80
Email Formatting	82
Section Headers	82
ASCII Text Emails	83
Microsoft Outlook Plain Text, Individual Basis	84
Microsoft Outlook Plain Text, Default for All	
Sample Email and Response	88
Microsoft Exchange 2000 Setup	91
[11] DNS Support	94
DNS and the Model 5300	95
[12] Quickstep & QuickBuilder Symbols	96
Quickstep Symbol Table	
Quickstep HMI Communications	
QuickBuilder Symbol Table	98
QuickBuilder HMI Communications	100
[13] Fault Task Handler	102
Fault Codes	104
Fault Task Handler Example	105
[14] Formatted Messaging	108
Message.ini Extended Formats	109
[15] Network Performance Adjustments	111
[16] Data Logging	
Logging Controller Setup	114
Virtual Directory Creation	114
Logging Record Format and Operation	115
Log.ini Format	117
Log Format Example	118
SNAPSHOT	119
Log File Deletion	119
Log Disk Maintenance	119
[17] FTP Client	123
Setup	123
Commands	135
Telnet Error Codes	137

[18] Advanced Scripting	139
Data Table	140
load datatable [Variant regnum] [filename]	140
save datatable [Variant regnum] [filename]	140
Diagnostics	141
disktest 1 [file size] [block size] [/path/file]	141
disktest 2 [file size] [block size] [/path/file]	141
Quickstep	141
enable quickstep2	141
disable quickstep2	141
File System	142
set close nvariant [Variant #]"	142
set logpath [path]	142
set scriptspath [path]	143
set nvariantpath [path]	143
set emailspath [path]	143
set webpath [path]	143
set firmwarepath [path]	143
set programspath [path]	143
set datatablespath [path]	143
copy [source path/file] [destination path/file]	144
Monitor	144
mon tfs init	144
mon tfs rm	144
mon tfs ls	144
mon reboot	144
Miscellaneous	144
get vproperties [Variant #]	144
printf [format string]	
clear startup project	145
get project	145
get project info [project file]	145
get startup project	145
run project [opt. project file]	
set startup project [opt. project file]	145
Advanced Commands	145
Inc <register></register>	145
Dec <register></register>	145
If <resource> <logic> <resource> goto <label></label></resource></logic></resource>	146
: <label></label>	146
Onerror <optional error="" mask=""> goto <label></label></optional>	146
Goto <label></label>	146
End	146
Delay <register constant="" milliseconds="" or="" –=""></register>	
Alarm <time=hh:mm:ss> <optional day="" dow="Mon" of="" week,=""></optional></time=hh:mm:ss>	147
ERRORCODE	

Script Example	
[19] CTNet Binary Protocol (Server Interface)	151
Binary Protocol	152
Protocol Framing	152
Binary Protocol Error Responses	
Binary Protocol Commands	
Variant Packets	
Register and Flag Access Command/Response definitions	158
Variant Structures	
Variant Access Commands	
Get Properties - Command 91	
Read a Variant - Command 93	
Change a Variant - Command 95	
Read a Variant Array Block - Command 109	
Write a Variant Array Block - Command 111	
Read a Block of Variants Randomly - Command 113	
Register and Flag Access Commands	173
Reading a Numeric Register - Command 9	173
Reading a Bank of 16 Registers - Command 77	
Reading a Bank of 50 Registers - Command 75	
Request Random Registers from List - Command 87	
Changing a Register Value - Command 11	
Reading a Flag's State - Command 17	
Changing a Flag's State - Command 19	
Digital Input/Output Access Commands	
Reading a Bank of 8 Inputs - Command 15	
Reading a Bank of 128 Inputs - Command 79	
Reading a Bank of 8 Outputs - Command 21	
Reading a Bank of 128 Outputs - Command 81	
Selectively Changing the First 128 Outputs - Command 25	
Analog Input and Output Access Commands	
Reading an Analog Input - Command 29	
Reading an Analog Output - Command 31	
Changing an Analog Output - Command 33	
Change Multiple Analog Outputs - Command 85	
Servo Access Commands	
Reading a Servo's Position - Command 23	
Reading a Servo's Error - Command 47	
Reading a Servo's Dedicated Inputs - Command 27	
Data Table Access Commands	
Reading a Data Table's Dimensions - Command 49	
Changing a Data Table's Dimensions - Command 51	
Reading a Data Table Value - Command 53	
Changing a Data Table Value - Command 55	
Reading a Data Table Row - Command 57	
Changing a Data Table Row - Command 59	

System and Controller Status Access Commands	190
Reading a Controller's Current Status - Command 61	190
Changing a Controller's Status - Command 63	190
Reading a Controller's System Configuration - Command 65	191
Changing a Controller's System Configuration - Command 67	191
Listing Counts of Inputs, Outputs, Motion - Command 13	192
Listing Counts of Miscellaneous I/O - Command 69	193
Reading Controller Step Status - Command 35	193
IP Encapsulation	195
[A] BulletProof FTP Server	198
Installation	198
Operation	
[B] Network Port Usage	
Port Numbers	

CHAPTER

[1] Communications Summary

With the release of the Model 5300 firmware revision 5.00.90R69.20 and above, numerous features are available. Many of these features are in the area of communications, while a number of significant ones allow for greater programming flexibility. This manual's focus is on those features relevant to the area of communications, some of which are listed below:

- (4) Serial ports that support the CTNet Binary protocol, CTC ASCII Protocol, User Defined, Modbus RTU/ASCII Master and Slave protocols
- COM1 to COM4 are independently configurable; including baud rates to 115Kb, stop bits, data bits, parity, and communication protocols
- Serial communications settings saved and restored at power up
- Telnet Server for remote administration interface
- FTP Client and Server, reference *Document No. 951-530001: Remote* Administration Guide.
- HTTP 1.0 Web server for WebMON (*Document No. 951-530012: WebMON 2.0 User's Guide*) diagnostics.
- Modbus/TCP RTU Master and Slave
- UDP Peer to Peer
- TCP client/server raw socket interface, bidirectional (up to 20)
- CTNet Binary protocol
- SMTP support for sending emails
- POP3 inbox support for receiving emails and processing embedded script messages
- Up to 9 serial ports, including 4 local and 5 virtual TCP to terminal servers or host applications
- Configurable connection throttling to enhance overall system performance
- String formatted output messages with embedded register values from within Quickstep (printf format).
- SNTP Time Server synchronization for real time clock.
- DHCP support
- DNS name registration via DHCP
- 'C' Programming for custom protocols along with support for UDP Datagrams.

• Configuration of most parameters via the Java WebMON Administration Interface applet.

CHAPTER

[2] Serial Communications

The controller contains four RS-232 serial ports. Optionally, COM3 can be ordered with RS-485 in which case COM4 is not available. RS-485 operation is transparent to software, with automatic line turnaround and timing controlled by hardware. These ports support numerous communications protocols, many of which are detailed elsewhere within this document. This section is meant as a general overview.

Port Settings via Registers

Serial port parameters may be modified directly via registers, such as when programming via Quickstep. The factory default communication settings for the two serial ports are:

Baud Rate - 19200 Data Bits - 8 Parity - None Stop Bits - 1

All parameters may be changed using available registers. Use register 12000 to select either port by storing a 1 or 2. Set the following registers based on the configuration desired:

Set register 12301 to select the baud rate as follows:

2 - 1,200 **3** - 2,400 **4** - 4,800 **5** - 9,600 **6** - 19,200 (default) **7** - 38,400 **8** - 57,600 **9** - 115,400

Set register 12308 to select the parity as follows:

0 - None (default)

- **1 -** Odd
- **2** Even

Set register 12309 to select the stop bits as follows:

- **1** Stop bit on transmit (default)
- 2 Stop bits on transmit

Set register 12310 to select the data bits as follows (not including parity):

- 7 Data bits
- 8 Data bits (default)

For example, the following Quickstep instructions will change the baud rate on port 1 to 9600 Baud:

store 1 to Reg_12000 store 5 to Reg 12301

Serial port settings are non-volatile and may be saved to serial E^2 memory. Saving these and other parameters is done by writing a 1 to register 20096.

12000	Select Controller Communications Port: W access, 1 = COM1, 2 = COM2, 3 = COM3, 4 = COM4, 6 - 25 = TCP raw virtual socket connections (see 22XX0 register descriptions).
12000	Message Transmission Status for Controllers: R access, 0 = not busy, 1 = busy.
12001	Transmit Message from Data Table: W only, Store row number to transmit.
12001-12255	Controller Receive Buffer Access, Read only, 1 character per location.
12300	Protocol Variation : R/W, Controls RS-232 terminal protocol modes. 0 = computer, 1 = terminal (default)
12301	Serial Baud Rate Selection: R/W, 2 = 1200, 3=2400, 4 = 4800, 5 = 9600, 6 = 19.2K (default), 7 = 38.4K, 8 = 57.6K, 9 = 115.2K.
12302	Serial Input Buffer Counter: (R) number of characters available. (W) any value to clear buffer and zero count.
12303	Disable Automatic Parsing : R/W, 0 = inhibits response, 1 = resumes normal response to incoming messages. Use 0 for custom, raw data processing.
12304	Extract Number from RS-232 Receive Buffer: R only, Automatically assembles ASCII strings into a numeric value. The result is a signed 32-bit number. Automatically assembles strings of ASCII characters containing numeric information into a numeric value. Number multiplied by 10,000, allowing decimal points to 4 places.
12305	Communications Priority : R/W, when running multiple tasks. 0 = normal, 1 = priority. Not used on Model 5300, communications runs as background thread.
12308	Serial Parity: R/W, 0=None (default), 1=Odd, 2= Even
12309	Serial Stop Bits: R/W, 1 (default) or 2
12310	Serial Data Bits: R/W, 7 or 8 (default)
12316	Message String Transfer Register: R/W, write records number of message.ini file to send out serial port selected in 12000 register, read returns status with 0 = success. See the Model 5200 Script Configuration Guide.

In summary the following are relevant serial port control registers:

12320	Serial Active Protocol Selection: R/W; by default the protocol is set to CTC (0). Write to this port last after setting up any relevant parameters in other register, since this register enables the selected protocol immediately.
	CTC Binary & ASCII – 0
	Modbus Master RTU – 1 (max of 120 16 bit Modbus Registers/block read; do not set manually, as it will be set when configuring the Modbus Master Register Control Block. Up to 256 may be read using automatic de-blocking feature of the Control Block)
	Modbus Master ASCII – 2 (max of 56 16 bit Modbus Registers/block read; do not set manually, as it will be set when configuring the Modbus Master Register Control Block. Up to 256 may be read using automatic de-blocking feature of the Control Block)
	Modbus Slave RTU – 3 (max of 120 16 bit Modbus Registers or 60 32 bit registers)
	Modbus Slave ASCII – 4 (max of 56 16 bit Modbus Registers or 28 32 bit registers)
	Diagnostic Terminal – 7 (telnet admin screen active, ^A ESC ESC to activate)
12321	Serial Active Address: R/W, address to be used by the controller, based upon the enabled protocol. By default the Global Serial Address is used unless overridden by writing a different one for the enabled port (12000 register) to this register. Currently on Modbus Slave protocols use this address. Modbus Master uses the Modbus Master Register Control Block, 21000 – 21299.
12322	Global Serial Address : R/W, Address to be used as the power up default for Modbus Slave Serial Protocols unless overridden by a write to register 12321. To save this value permanently a 1 must be written to register 20096.
12323	Modbus Endian Swap – R/W, if set to 1 (0, default) any time a 32 bit even boundary register is read via Modbus the 16 bits is swapped (H/L). 40001/3/5, is even boundary in Modbus.
12337	Modbus Bank1 Select – R/W, used to read variant registers since Modbus does not allow reading great than 32K register and variants start at 36001. Value of 0, disables, else view window 9XXX has this value added to it to reference the actual register. Example if write 27000 here then when read/write 9101 will really be 36101.
12338	Modbus Bank2 Select – R/W, used to read variant registers since Modbus does not allow reading great than 32K register and variants start at 36001. Value of 0, disables, else view window 10XXX has this value added to it to reference the actual register. Example if write 26000 here then when read/write 10101 will really be 36101.
12339	Modbus Bank3 Select – R/W, used to read variant registers since Modbus does not allow reading great than 32K register and variants start at 36001. Value of 0, disables, else view window 11XXX has this value added to it to reference the actual register. Example if write 25000 here then when read/write 11101 will really be 36101.

Only baud rate, stop bits, data bits, parity, protocol, and port specific address are saved to non-volatile memory.

Port Settings via WebMON

Alternatively to directly modifying registers, serial port parameters may be modified using the WebMON utility. Refer to *Document No. 951-520012: WebMON User's Guide*, as a review, and note that the Serial tab allows immediate configuration of the local COMM1 and COMM2 serial ports, within the controller. All changes take effect immediately and are placed in permanent storage, thereby surviving power cycling. Once parameters are updated an immediate read is done of all parameters, providing visual verification of your changes.

The COMM configuration provides a table of two rows, one for each serial port. It consists of a number of data entry fields, each with their own special functionality:

Run Pi	roqrams 📗 R	TC Setun	Email Notifica	tion .	Authentication	Security	Threads
	Ethernet		Serial		Summary	ſ	Disks
	Serial Port Setti	ngs:					
COMM	Baud Rate	Data Bits	Parity	Stop Bits	Protocol		Address
1	19200	8	None	1	CTC Binary		4
2	19200	8	None	1	CTC Binary		8

- COMM
- Baud Rate
- Data Bits
- Parity
- Stop Bits
- Protocol
- Address

СОММ

This is not an editable field. It is used to reference either COMM1 (row 1) or COMM2 (row 2).

Baud Rate

A pull down list box is available to select the desired baud rate. Baud rates from 1200 to 115,200 are available. Note that using baud rates above 19,200 can cause system degradation, depending upon the protocol and data flow of the system.

Data Bits

A pull down list box is available to select either "7" or "8" data bits.

Parity

A pull down list box is available to select "None", "Odd", or "Even" parity.

Stop Bits

A pull down list box is available to select either "1" or "2" stop bits.

Protocol

A pull down list box is available to select the individual protocols to be active on each port. Details for each are provided in <u>Chapter [3]</u> Networking Communications and <u>Chapter [7]</u> Modbus. Available selections are:

- CTC Binary (Default, compatible with CTCMON and ctccom32.dll)
- Modbus Master RTU controller polls the device.
- Modbus Master ASCII controller polls the device.
- Modbus Slave RTU controller polled by external device
- Modbus Slave ASCII controller polled by external device

Address

This is the address to be used when Modbus protocols are selected. When in Master mode only a single device may be polled. To poll multiple devices the Address register must be changed by the Quickstep program, dynamically. An address from 1 to 255 is valid.

Blank

CHAPTER

[3] Networking Communications

The 5300 series controllers can be configured to communicate over Ethernet using one of several transport protocols: CTNet, UDP, and TCP. This section discusses the how to set up and configure the controller for network communications.

CTNet

CTNet is a proprietary, non-routable protocol typically used for legacy communications to the Model 2700 controller products. It tends to be faster than UDP or TCP/IP due to the lack of processing overhead, but like UDP, it lacks acknowledgement of each packet.

Note that the Binary Message subset of the CTNet protocol can optionally be sent using UDP and TCP via IP Encapsulation. Refer to the <u>IP Encapsulation</u> section for further details. TCP encapsulation is limited to 32 simultaneous connections.

UDP

User Datagram Protocol is used to send packets across an IP Network in an unreliable manner, with no packet acknowledgement. The protocol is fully routable across the network, unlike CTNet. It is the preferred interface for many products when performance is required and the application itself can perform error recovery. The Model 5300 supports UDP packet transport for peer to peer communications, CTCMon, and CTServer products.

TCP

Transmission Control Protocol is used to establish connection-oriented, sequenced, and error free sessions over an IP Network. The protocol is fully routable across the network, unlike CTNet, and each data packet is acknowledged when received correctly by the receiver. Retransmission of lost packets is built into the protocol. Typical retry timers of 250 milliseconds limit the uses of TCP in a real-time controller. The Model 5300

supports TCP packet transport for FTP, Telnet, Modbus TCP Master/Slave, RAW client/server connections, CTCMon, and CTServer products.

When using any of these protocols it is important to note that whenever the Model 5300 is placed on a network, it should be connected to a switch, not a hub. A switch will isolate traffic to broadcasts that are specific to the controller, whereas a hub will cause the Model 5300 to receive all traffic on its link. The 5300 is limited to 128 socket connections. Of those 128 a maximum of 32 simultaneous TCP Binary protocol and 32 Modbus TCP Slave.

Configuring a CTNet Node using Registers

Details of the CTNet protocol can be found within the *Guide to CTC Serial Data Communications* and *Document No. MAN-1030-A: CTC Monitor User Guide*, both of which are posted on Control Technology's website (http://www.ctc-control.com/). To use CTNet, a valid CTNet node number between 1 and 32767 must be set. To use UDP protocol, the controller must be set up with a TCP/IP address, subnet mask, and optional gateway.

The CTNet node number of the controller is stored in register 20000. Simply write the node number to register 20000, write a 1 to register 20096, and then cycle power on the controller for the change to be accepted.

Store 21 to Reg_20000 Store 1 to Reg 20096

Configuring IP Addresses using Registers

If you are not using DHCP to automatically obtain your IP address, then the TCP/IP address is configured statically as follows:

Sample IP Address - 168.254.132.34 (random example) Sample Subnet Mask - 255.255.255.0 (typical) Sample Gateway - 168.254.132.88 (random example)

The actual values to use will depend on the network that the controller is connected to. Contact your IT department to determine acceptable addresses for your network.

Registers 20048 to 20051 are the 4 parts of the IP address:

store 168 to Reg_20048 store 254 to Reg_20049 store 132 to Reg_20050 store 34 to Reg_20051

Registers 20064 to 20067 are the 4 parts of the Subnet Mask:

store 255 to Reg_20064 store 255 to Reg_20065

store 255 to Reg_20066 store 0 to Reg_20067

Registers 20080 to 20083 are the 4 parts of the Gateway Address (optional):

store 168 to Reg_20080 store 254 to Reg_20081 store 132 to Reg_20082 store 88 to Reg_20083

A gateway is only required if the controller needs to communicate over a Wide-Area Network (WAN). If not using a gateway, then set these registers to 0 (default). The controller can talk to devices on a Local Area Network without using a gateway, but not over the Internet or outside its subnet. The following command saves the IP address and all other modified IP address parameters to non-volatile memory:

store 1 to Reg_20096

Finally, cycle power to the controller to activate the new IP information.

The IP address can be set up through a Quickstep program or with CTC Monitor. Note that if you set the IP address registers to 0, then write 1 to Reg_20096 and cycle power, the controller will use DHCP to obtain its network information automatically. You will be aware that the controller is attempting to connect to a DHCP server when the S3 LED flashes repeatedly, at a high rate (100ms/second). The S3 LED will stop flashing once the Model 5300 has obtained an IP address from a DHCP server. While searching for a valid DHCP address, serial port CTC Monitor access will be available to a limited number of registers, typically 20000 and above, but Quickstep and Ethernet communications will be disabled. Once an IP address is available the 5300 will continue to boot, initializing the network and starting Quickstep application software.

Configuring the IP address automatically with DHCP

The controller is capable of retrieving its IP information automatically, from a DHCP server, RFC 2131. The Dynamic Host Configuration Protocol (DHCP) is a communication protocol that lets network administrators automate assigning of IP addresses within a network.

Every device (computers, controllers, etc.) that resides on a TCP/IP network must have an IP address assigned. Without DHCP, the IP address must be entered manually at each device, as detailed in the previous section. If devices move to another location in another part of the network, a new IP address must be entered. DHCP allows a network administrator to supervise and distribute IP addresses from a central point and automatically assigns a new IP address when a computer is plugged into a different location on the network. DHCP also provides other services beyond assigning IP addresses. It provides features including Domain Name Service (DNS) server addresses, gateway information, and Simple Network Time Protocol (SNTP, section 6.0) servers, thus allowing for fully automatic configuration of the controller IP parameters.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer. The lease time can vary depending upon how long a user is likely to require the network connection at a particular location. DHCP also supports static addresses for devices that need a permanent IP address.

DHCP is enabled by default in the controller. At power up, the controller will request to use whatever IP address is set in the 20048 block (except 0.0.0.0, which enables DHCP), and the DHCP server will either allow it or supply a new IP address. This final address will be temporarily written to the 20048 block, but not permanently. Although not stored permanently, it is still the active IP address for the system. Only the user or Quickstep can make this IP address permanent, by storing a 1 to register 20096. If you do not want to use DHCP, it can only be disabled by setting an actual IP address and subnet mask.

Setting the Controller's DNS Name via Telnet

When the controller communicates with a DHCP server, it also requires a unique system name that is typically used for DNS resolution (assuming the server is using dynamic DNS). Presently this name is derived from the controller's serial number, placing "CTC_BF_" before the number. For example, if the serial number is 100-52801, then the DNS name entry for the controller is CTC_BF_10052801. User-definable names are also possible and may be set using the *"set systemname <name>"* command within the Telnet administration screen, followed by writing a 1 to register 20096 (to save the change), and rebooting the controller.

Note that many software packages and other devices with CTC communications drivers can identify controllers only by IP address and not by name.. Depending on how your network is configured, DHCP may change the IP address of the controller without warning, causing devices and software to lose connection or connect to the wrong controller. In this case, it is better to manually assign a static IP address to the controller. The network administrator should be contacted prior to assigning any IP address, to avoid conflicts.

Communicating to the Controller Using CTNet

CTNet is a lightweight non-routable Ethernet protocol used by legacy CTC controllers. It is recommended that UDP be used, instead, whenever possible, since it is routable.

In order to communicate with the controller from a PC using CTNet protocol, the WinPCap driver must be installed on the PC and an updated ctccom32v2.dll file must be installed in the Windows system32 directory.

The latest version of the WinPCap driver may be downloaded from the customer care section of CTC's website <u>www.ctc-control.com</u>. Compatibility information will be included with the download. Currently Windows 95, 98, ME, NT4, 2000, and XP are supported.

To install the driver:

- 1. First, uninstall any previously installed CTNet drivers, including CTC Transport and CTC Packet Driver. If you have not previously installed these drivers, this step can be skipped. DO NOT INSTALL WinPCap OVER AN EXISTING CTNet DRIVER.
- 2. Double click the WinPCap.exe file and run through the installation program.
- 3. In your Windows system32 directory (typically Windows\system for Windows 95, 98, and ME and WINNT\system32 for Windows NT/2000/XP) replace the existing ctccom32v2.dll file with the file included with the WinPCap download.
- 4. Restart the PC.

Once the driver is installed, CTC Monitor 2.8 or later can be used to communicate to the controller. Every controller on the network must have a unique node number, and each PC based connection must use a unique Host node number.

Note that WinPCap only needs to be installed when using the non-routable binary protocol version of CTNet, that used in legacy Model 2700 products using the 2217 Ethernet Controller. Operating CTNet over UDP and TCP can be done using IP Encapsulation and does not required WinPCap. The Model 2700 does require the 2717 controller for backward compatibility.

Network Configuration via WebMON

Instead of directly modifying registers, network parameters may be modified using the WebMON utility. The Ethernet tab in WebMON is used to set various network parameters. Refer to *Document No. 951-520012: WebMON 2.0 User's Guide* for details. Settable parameters include general network IP information, SNTP Time server interface and POP3 email. SNTP, SMTP, and POP3 network configuration can be found in their respective sections.

Ethernet Settings

The Ethernet Settings consists of a number of data entry fields, each with their own special functionality:

Current Ether	net Settings: (C	urrent Mode - 10	00/FULL)				
DNS Name	IP Address	Subnet Mask	Gateway IP	Modbus	CTCNode	Mode	DHCP Enab
CTC_BF_Weav	12.40.53.149	255.255.255.0	12.40.53.204	2	0	AUTO	✓
Update Ne	etwork						
• DNS	Name						
 IP Ad 	dress						

- Subnet Mask
- Gateway IP

- Modbus
- CTCNode
- Mode
- DHCP Enabled

DHCP Enabled (check box to enable)

The controller is capable of retrieving its IP information automatically (IP Address, Subnet Mask, and Gateway IP), from a DHCP server, RFC 2131. The Dynamic Host Configuration Protocol (DHCP) is a communication protocol that lets network administrators automate assigning of IP addresses within a network.

All devices (computers, controllers, etc.) that reside on a TCP/IP network must have an IP address assigned. Without DHCP, the IP address must be entered manually at each device. If devices move to another location in another part of the network, a new IP address must be entered. DHCP allows a network administrator to supervise and distribute IP addresses from a central point and automatically assigns a new IP address when a computer is plugged into a different location on the network. DHCP also provides other services beyond that of just an IP address. It provides Domain Name Service (DNS) server addresses, gateway information, Simple Network Time Protocol servers, etc., thus allowing for fully automatic configuration of the controller IP parameters.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer. The lease time can vary depending upon how long a user is likely to require the network connection at a particular location. DHCP also supports static addresses for devices that need a permanent IP address.

Checking the check box on the Setup Screen enables DHCP. At power up, the controller will request to use whatever IP address is currently set (except 0.0.0.0, which enables DHCP), and the DHCP server will either allow it or supply a new IP address. This final address will temporarily be written to the 20048 register block of the controller, but not permanently, and will appear in the IP Address data entry field. Once complete with all changes, simply press the Update Network button to notify the controller of changes. Values are immediately read back from the controller, allowing for visual confirmation.

DNS Name

When the controller communicates with a DHCP server it also requires a unique system name that is typically used for DNS resolution (assuming the server is using dynamic DNS). Presently this name is derived from the controller's serial number, placing "CTC_BF_", before the number. For example, if the serial number was 100-52801, then the DNS name entry for the controller would become CTC_BF_10052801. User-settable names are also possible by simply double-clicking the data entry field and entering a unique name. **Up to 20 characters are allowed** in the Controllers DNS Name. When the **Update Network** button is

selected the controller will immediately notify the DHCP server of a name change, if DHCP is enabled. If dynamic DNS is enabled, on your host, the name change will become available immediately on your network.

Many software packages, and other devices with CTC communications drivers, do not have the capability to identify controllers by name, only by IP Address. Depending on how your network is configured, DHCP may change the IP address of the controller without warning, causing devices and software to lose connection or connect to the wrong controller. In this case, it is better to manually assign a static IP address to the controller. The network administrator should be contacted prior to assigning any IP address, to avoid conflicts.

IP Address

If you are not using DHCP to automatically obtain your IP Address information, then the TCP/IP IP address is configured statically. It must be entered using a 'dot' notation as follows:

Example IP Address: 168.254.132.34 (example)

The actual values to use will depend on the network that the controller is connected to. Contact your IT department to determine acceptable addresses for your network.

Subnet Mask

If you are not using DHCP to automatically obtain your IP Address information, then the TCP/IP subnet mask address is configured statically. It must be entered using a 'dot' notation as follows:

Example Subnet Mask: 255.255.255.0 (typical)

The actual values to use will depend on the network that the controller is connected to. Contact your IT department to determine acceptable addresses for your network.

Gateway IP

If you are not using DHCP to automatically obtain your IP Address then the TCP/IP Gateway address is configured statically. It must be entered using a 'dot' notation as follows:

Example Gateway 168.254.132.88 (example)

The actual values to use will depend on the network that the controller is connected to. Contact your IT department to determine acceptable addresses for your network. A value of 0.0.0.0 will disable the use of a gateway. A Gateway is the address to which requests will be forwarded if they are outside the range of your IP domain, as tested against the assigned subnet mask. Typically a gateway is used to forward requests to another network and/or the Internet.

Modbus

The Modbus address is used to set the address that will be used by the Modbus/TCP communications protocol. It is typically referred to as the Device ID. It may be set from 1 to 255.

CTCNode

The CTC Node number is used by the CTNet protocol. This is a lightweight nonroutable Ethernet protocol used by legacy CTC controllers. It is recommended that UDP be used, instead, whenever possible, since it is routable. Setting this node number to 0 disables its use in the controller. Be careful setting this node number since no two controllers can have the same address. Valid numbers are from 1 to 32767. Some very old CTC controllers only communicate on nodes 1 to 254.

Mode

Mode is used to set the Ethernet connection method, speed and duplex, and typically is not used. By default it is set to Auto. Auto means auto-negotiate, or let the controller and external router/switch negotiate connection speed and duplex. The fastest possible will generally be negotiated, 100 Megabits/Full Duplex. Sometimes, where old wiring may exist or noisy environments, it is best to reduce the speed of the Ethernet interface. Also if Ethernet speed is not important, the slower speed will reduce the load on the controller and generally allow increased performance by other aspects of the controller during peak Ethernet traffic.

A pull-down box is provided to override the default. Available are 100 full/half duplex, 10 full/half duplex, and auto. Note that the current negotiated speed is shown in the text area above the data entry fields. The screen capture below shows the current speed is negotiated to 100 full duplex:

Run Programs	RTC Setu	p Email N	otification
Ethernet		Serial	
Current Etherne	et Settings: (Cu	urrent Mode - 10	
	P Address	Subnet Mask	Gateway 5
Diag rading 1	Hadrooo	Construct models	o acontraj in

CHAPTER

[4] ASCII Computer/Terminal Protocol

The Model 5300 supports a number of serial port communication protocols. The default, along with the CTC Binary Protocol, is a simple ASCII protocol. Both run at the same time and are automatically detected based on the serial data stream. The ASCII Protocol is a simple way to send commands to the controller. The commands are in the form of simple ASCII messages. Most computer languages provide a method

for sending ASCII messages to a serial communications port.

ASCII Computer Protocol

Controllers are initialized to the CTC ASCII terminal protocol upon power-up. To change the terminal protocol, you must send a command to the controller's serial port establishing a new protocol. In the following example, the P sets the protocol and C establishes the CTC ASCII computer protocol. All commands are followed by a carriage return <CR>, ASCII 13, which signals the controller that the command is complete. Most versions of BASIC automatically add the required carriage return at the end of the transmission.

To set the CTC ASCII computer protocol:

1. Enter the following command:

2. To acknowledge the change to the computer protocol, the controller responds with:

PCØ<CR>

Ending the response with a carriage return is consistent with the computer protocol.

Once you have opened the serial port and set the computer protocol, you can begin sending commands to the controller. The following example forces the number 1200 into register 10, the command is R10=1200. The command must end with the code for a

carriage return command, ASCII 13. The following statement, in BASIC, accomplishes this transmission:

PRINT #1, "R10=1200"

Computers and versions of BASIC vary. Refer to manufacturer's published data. By sending this command, we assume that the serial port 1 is already opened and defined as port No. 1. Most versions of BASIC automatically add the required carriage return at the end of the transmission. Check with your version of BASIC to see if it automatically adds the carriage return command.

When operating in the CTC ASCII computer protocol, the controller responds with a carriage return command, acknowledging message reception. Your BASIC program should receive and test this message. If a transmission error occurs, the controller instead responds with an error message. You can program the message test as follows:

LINE INPUT #1, R\$ IF R\$<>"" THEN GOTO 100

The statement LINE INPUT #1, R\$ tells the computer to receive the controller's response and to assign the response to character string R\$. In most versions of BASIC, a response consisting of only a carriage return is received as a null string or an empty message. The statement IF R\$<>"" THEN GOTO 100 has the computer test the response. If the controller's response is not equal to a null string, a transmission error occurred. At this point, the program jumps to line 100.

The controller's response must be taken in by the computer. If it is not, the response remains in the computer's communication buffer, and affects the computer's ability to receive future messages.

ASCII Terminal Protocol

At times you may want to use a dumb terminal or a computer running a terminal emulation program to communicate with a controller. You can use a lap top computer configured as a dumb terminal for diagnostic or debugging purposes, forcing outputs on or off, reading register values, or forcing a value to be stored into a register. The CTC ASCII computer protocol is not suited to this task, since it has been optimized for use in communicating with a running computer program. It addition, you must terminate each response with a carriage return, signaling the completion of the message.

When you use a dumb terminal to directly view the response of the controller, the carriage return places the terminal's cursor to the beginning of the same line, and the next message overwrites the previous message and responses. The CTC ASCII terminal protocol solves this problem by responding to commands from a terminal or computer

with an instantaneous line feed, <LF> ASCII 10, moving the terminal to the next line on its screen. The controller transmits its response, if any, with a carriage return and a line feed. Any messages sent to or from the controller are recorded on successive lines. Except for the use of line feeds, the terminal protocol is identical to the computer protocol.

Controllers are initialized to the CTC ASCII terminal protocol upon power-up. If you have changed it, you must reset the protocol. In the following example, the P sets the protocol and T establishes the CTC ASCII terminal protocol. All commands are followed by a carriage return. To set the CTC ASCII terminal protocol:

1. Enter the following command:

P T <CR>

2. To acknowledge the change to the computer protocol, the controller responds with:

<LF> P T <CR> <LF>

The controller immediately responded with a line feed and the response ended with both a carriage return and a line feed. This creates a readable display on the terminal. This response is also consistent with the terminal protocol.

ASCII Protocol Commands

Using either the computer or terminal protocols you can access any of the controller's registers. The example commands use <CR> to stand for a carriage return (ASCII 13) and <LF> for a line feed (ASCII 10):

Initiate computer mode:

Send - PC<CR> Response - PC0<CR>

Initiate terminal mode:

Send - PT<CR>

Response - <LF>PT<CR><LF>

Read a counter/register:

Send - R<counter/register number><CR>

Response:

Computer mode - < counter/register number ><CR>
Terminal mode - <LF>< counter/register number ><CR><LF>

Note: Register read/write commands can be chained together using a ';' as a separator. Each command will be responded to uniquely. Example: R1000=5;R1005;R1006<CR>

Write a counter/register:

Send - R<counter/register number>=<new value><CR>

Response:

Computer mode - <CR>

Terminal mode - <LF>

Note: Register read/write commands can be chained together using a ';' as a separator. Each command will be responded to uniquely.

Example: R1000=5;R1005;R1006<CR>

Returned Error Messages

Number too small – If a register is specified as zero, then the controller sends the following error message:

```
Computer mode - <less than sign, < > <bell, 07H><CR>
Terminal mode - <LF><less than sign, < ><bell, 07H><CR><LF>
```

Number too large – If a register is specified that is greater than the number supported, then the controller sends the following error message:

```
Computer mode - <greater than sign,> > <bell,
07H><CR>
Terminal mode - <LF><greater than sign,> >
<bell, 07H><CR><LF>
```

Protocol error – If a "P" command (protocol) is not in the correct format then the controller will send the following error message:

Computer mode - P<bell, 07H><CR>

Terminal mode - <LF>P<bell, 07H><CR><LF>

Syntax error – If the controller cannot make any sense of the command, then it sends the following message:

```
Computer mode - ?<bell, 07H><CR>
Terminal mode - <LF>?<bell, 07H><CR><LF>
```

CHAPTER

[5] TCP/IP Raw Sockets

Up to 20 TCP Client/Server RAW Socket sessions are supported by the Model 5300 controller. These socket sessions provide a virtual pipe, with no formatting of data. To the controller they merely appear as another serial port, even though the connected device can reside virtually anywhere on a network connection. This interface is extremely useful for connection to external programs, such as Visual Basic or

Ethernet based terminal servers such as the Newport or Lantronix devices. Lantronix is described within this section, Newport is similar.

TCP Client

A TCP Client RAW Socket session is when the host computer runs a TCP Server and the controller connects to it. Typically a well-known IP address and public TCP port number is available for this connection. Once the connection is made, any data sent to the actively selected serial port (12000 register) is sent to the host and anything sent by the host to the controller is placed in its receive buffer, exactly like an actual serial port. To initiate a connection, a number of registers must be configured.

The RAW Socket session register blocks begin at a base of 22000 and extend to 22049, one repeating block pattern (10 registers locations per block) for each serial port supported. The actual block used has nothing to do with the serial port itself when referenced from Quickstep since the serial port assignment is a configurable parameter. Blue Fusion Controllers have 4 physical serial ports (COM1=1, COM2=2, COM3=3, COM4=4, 0 not used) within the controller. They can also access virtual serial ports 6 to 25, which may be assigned as desired. Remember that server connections will use the next available port when allowing connections from a host client. Therefore, it is important to reserve your port first prior to enabling a Server register block.

Registers are defined based on their offset from their base, repeating after each 10. Therefore, beginning at register 22000:

22000-22199	TCP Raw Socket Session Parameters: R/W, starts at 22000 and repeated every 10 blocks (max of 20 RAW sockets) as follows:
	22XXO – Serial port ID register, offset 0, range 6 – 25.
	22XX1 – Client/Server register, offset 1, to initiate connection set to a 0, if controller is a server set to a 1.
	22XX2 – Most significant octet of IP Address to connect to if client mode, IPA, offset 2. If server mode this is the default protocol to run as a server, uses same codes as register 12320 (default 0, Modbus Master not supported).
	22XX3 – IP Address octet, IPB if client mode, offset 3. If server mode this is the SET/CLR parsing control (similar to register 12303), typically set to 0 for custom, else 1 for normal.
	22XX4 – IP Address octet, IPC if client mode, offset 4. If server mode this is the server address to use, typically for Modbus applications, reference register 12321.
	22XX5 – Least significant octet of IP Address to connect to, IPD if client mode, offset 5. If server mode write a 0 to this location.
	22XX6 – Port to connect to (client) or listen on (server), offset 6
	22XX7 – Connection status register, offset 7, on read, -1 = not initialized, 0 = offline, 1 = online, write a 1 to initiate connection or start server thread.
	22XX8 – Index register to offset to data, offset 8. Recommend using serial port buffer, not this interface but available to mimic the peer to peer interface.
	22XX9 – Data array, offset 9. Recommend using serial port buffer commands, not this interface but available to mimic the peer to peer interface.

XX represents a multiplier of 10, which is the size of a block (00, 01, 02...).

An example for a script program to initialize a connection to a host at IP address 12.40.53.185 and TCP port 3001 is shown below. Note the controller Serial Port ID Register, number 22000, must be set up first:

```
22000 = 6  # set up this client connection as controller port 6
22001 = 0  # set that we are the client, initiating connection
22002 = 12  # most significant octet of IP address 12.40.53.185
22003 = 40
22004 = 53
22005 = 185  # least significant octet of IP address 12.40.53.185
22006 = 3001  # TCP port to attempt connection to
22007 = 1  # To initiate a connection write a 1 to the status
    #register then read it until it is a 1
    # which means connected. 0 is offline, -1
    #is not initialized.
```

Once register 22007 is read as a 1, then port 6 will appear as a standard serial port to a Quickstep application. As with any serial port, the port must be selected first by writing the port number to register 12000 prior to transferring data or initiating commands. The port is available for reading and writing upon connection to the host, i.e. when register 22007 = 1. Should a connection ever be lost, 22007 will contain a 0 and a read of 12000 (Message status register) will return a 1, indicating transmitter busy, or in this case, offline. With TCP the transmitter will never be busy unless offline. The controller will periodically retry the client connection.

Í

TCP Server

A TCP Server RAW Socket session is when the host computer is the client, connecting to the controller on a public TCP port number. Once the connection is made, any data sent to the actively selected serial port is sent to the host and anything sent by the host is placed in the receive buffer, exactly like a controller serial port. In order to allow a server to be active the same registers as detailed in Client must be configured; except a 1 is placed in register 22XX1 and our port number to listen on is stored in 22XX6. Registers are defined based on their offset from their base, repeating after each 10. Therefore beginning at register 22000:

22000-22199	TCP Raw Socket Session Parameters: R/W, starts at 22000 and repeated every 10 blocks (max of 20 RAW sockets) as follows:
	22XX0 – Serial port ID register, offset 0, range 6 – 15.
	22XX1 – Client/Server register, offset 1, to initiate connection set to a 0, if controller is a server set to a 1.
	22XX2 – Most significant octet of IP Address to connect to if client mode, IPA, offset 2. If server mode this is the default protocol to run as a server, uses same codes as register 12320 (default 0, Modbus Master not supported).
	22XX3 – IP Address octet, IPB if client mode, offset 3. If server mode this is the SET/CLR parsing control (similar to register 12303), typically set to 0 for custom, else 1 for normal.
	22XX4 – IP Address octet, IPC if client mode, offset 4. If server mode this is the server address to use, typically for Modbus applications, reference register 12321.
	22XX5 – Least significant octet of IP Address to connect to, IPD if client mode, offset 5. If server mode write a 0 to this location.
	22XX6 – Port to connect to (client) or listen on (server), offset 6
	22XX7 – Connection status register, offset 7, on read, $-1 = not$ initialized, $0 = offline$, $1 = online$, write a 1 to initiate connection or start server thread.
	22XX8 – Index register to offset to data, offset 8. Recommend using serial port buffer, not this interface but available to mimic the peer to peer interface.
	22XX9 – Data array, offset 9. Recommend using serial port buffer commands, not this interface but available to mimic the peer to peer interface.

A server thread will be launched as soon as a 1 is written to the status register. Note that only one connection is allowed at a time since all information is directed to and from a controller virtual serial port. If more than one connection attempt is made to the same port number defined in the configuration block, it will be initially accepted and then rejected.

Lantronix CoBox/Xpress interface Example

The Lantronix CoBox-DR1-IAP or Xpress-DR-IAP Device Server (<u>www.lantronix.com</u>) is one of several serial to Ethernet converter devices which will work with the controller using the TCP RAW Client socket protocol. To the controller, this device is communicated to over TCP port 3001 and becomes a simple virtual serial port to Quickstep. It operates exactly as a resident local port, supporting the same communication protocols. Communication is tunneled over the network to the device. Even a serial port version of CTC Mon or a CTC 4010 User Interface can be connected and run over this interface, allowing for easy port expansion. Modbus is also supported.

By encapsulating serial data and transporting it over Ethernet, devices such as these allow virtual serial links to be established over Ethernet and distributed virtually anywhere within a plant or global enterprise.

Lantronix CoBox Serial to Ethernet Converters

CHAPTER

[6] UDP Peer to Peer Protocol Overview

Peer to Peer communications allow a controller to monitor another controller's registers from across a network. In essence, the designated registers become public and a copy of their contents is periodically transmitted across the network, to the requesting controller, thereby making them appear as though they are local. The update scan time is configurable and the registers may be read from or

written to in a manner similar to normal registers.

Peer-to-Peer Protocol Registers

The controller can only perform peer-to-peer operations with other 5100/5200/5300 modules. Model 5300 controllers can also communicate with Model 2700 controllers via the 2717 communications module, but not via the 2217 module. The 5300's peer-to-peer registers let it communicate directly with other Model 5300 modules without requiring a dedicated server. It can also gather register information locally for different network protocols.

Registers 21000-21299 are read/write registers that are reserved for peer-to-peer networks. Each block of 10 sequential registers is assigned to a designated peer node and defines the peer environment for that connection. You can retrieve data from and automatically update up to 100 sequential registers with a single request. Also note that this register block can be used for many other functions, besides peer to peer, such as Modbus, interfacing in a similar manner. Reference that section for further details.

Registers 21000-21299

21000-21299	TCP Peer to Peer and Modbus Master Parameters: R/W, starts at 21000 and repeated every 10 blocks as follows:
	21XX0 – First Octet IP Address Register (Most Significant) – R/W
	This is the first octet of the IP address (XXX.000.000.000) to connect to.
	21XX1 – Second Octet IP Address Register – R/W
	This is the second octet of the IP address (000.XXX.000.000) to connect to.
	21XX2 – Third Octet IP Address Register – R/W
	This is the third octet of the IP address (000.000.XXX.000) to connect to.
	21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W
	This is the fourth octet of the IP address (000.000.000.XXX) to connect to.
	21XX4 – Start Register – R/W
	This register stores the starting register address that is to be read from the remote device.
	21XX5 – Sequential Number Register – R/W
	This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All register reads from remote devices will be the same block size. For Modbus Master this register is the default; see 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available.
	21XX6 – Poll Timer Register – R/W
	Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value allowed is 50 ms for Peer to Peer and 10 ms for Modbus. You can write to this register at any time.
	21XX7 – Status Flag Register – R
	This register reflects the current status of the data registers. Its value is based on any requested operations. Typically, you initiate an operation and then wait for a status of 1. Possible values are:
	0 - Offline; no connection is present.
	1 – Last request is successful and completed. Data is available in the data registers if requested. Read or Write may now be done.
	 -1 – Requested operation has failed; typically a Modbus Exception error
	-2 - Busy; connecting to the desired host.
	-3 - Busy; reading data.
	-4 - Busy; writing data.
	-5 – Timed out; poll timeout on a device by Modbus Master.
	-10 - Aborted operation; out of local memory or resources.

21000-21299	21XX8 – Index Offset Register – R/W
Cont'd	This register lets you access each of the requested sequential data registers. It works in conjunction with Register 21XX9 and acts as its array pointer. You can store the number of a general or special purpose register in 21XX8 and 21XX9 can then access the resource contained in the pointer. By default 0, this register points to the very first data element read from the remote device. This would be equivalent to what you set the Start Register to begin with (21XX4). Incrementing this register allows you to access other data elements, like an array. Register 21XX9 can then be read or written accordingly. The index register also has a few special features when you set it to 1000 or above.
	1000 – Peer Request Time-Out Register – (R/W) The timer starts when a peer node request is initiated and stops (times out) if no response is received within the time specified by this register. Retries only occur if automatic updates are active (Register 21XX6 is set to a value other than 0). Defaults are 500 ms for single register reads and time-out value*2.5 for automatically updated register read transactions.
	1001 – Peer Request Failed Index Register –(R) This register indicates when a peer transaction fails and an error occurs. The Status Flag Register (21XX7) is set to a value other than 1. Any data that was read or written when the error occurred has an offset value that is stored in 1001. If you read the data register, it returns the offset failure value. Data written before this offset value is valid. For example, if your process continuously updates 50 registers and the register returns a value of 25, it means the process failed while trying to write the 25^{th} element of data. All data written before this element was written correctly.
	1002 – Peer Request Retry Counter Index Register – (R/W) This debugging register points the data register to the retry counter. Quickstep can set this register to any value. The register is incremented by 1 when a time-out occurs because of waiting for data from a peer node.
	1003 – Protocol Index Register – (R/W) This register tells the data register what protocol to use for setting the peer block registers. You must set this register before setting the Start Register (21XX4). Default mode is 0 for UDP Peer-to-Peer protocol. 2 is used for Modbus TCP Master mode, 3 for Modbus Master RTU Serial on COM1 (TBD), 8 is CTC Binary Master UDP (port 3000), 9 is CTC Binary Master TCP (port 6000). Note the Binary Master protocol allows connection to 2700 series controllers.
	1004 – TCP Client Port Index Register – (R/W) This register points the data register to the destination TCP Port address for your connection. You must set this register before setting the Start Register (21XX4). 1004 is currently used for Modbus TCP and serial Master mode with a default port number of 502 for TCP and 1 for serial (COM1). Not used for the CTC Binary Master protocol. For that protocol it is fixed to 3000 for UDP and 6000 for TCP.

21000-21299	
Cont'd	1005 – Modbus Master Unit ID Index Register – (R/W) This register points the data register to the Device/Unit ID field value used in the Modbus Master request packet. The default ID is '1' but you can set it to any desired value. This ID affects all subsequent transmissions and allows multiplexed devices to be addressed in a Modbus environment.
	1006 – Modbus Master Exception Index Register – (R) This register allows you to interrogate the last Modbus Exception error code received from the data register (21XX9). Referencing this register
	helps to interpret failure types. Typically you would reference this register if a '-1' appears as the current status in register 21XX7.
	1007 – Register Remapping Start Index Register – (R/W) This option allows remote registers to be mapped into the 23000 to 24999 consecutive memory space. Previously an index register at 21XX8 needed to be set then data read from 21XX9. This can result in slow operation if a lot of data needs to be transferred. Setting 21XX8 to 1007 and then writing the register value from 23000 to 24999 will allow all data to be remapped to that register block area, consecutively, based upon the block size (21XX5). A write to the
	remapped area will result in a remote write. By default re-mapping is not active.
	1008 – Modbus Master MAX Retries Register – (R/W) This register allows you to change the maximum number of retry attempts on a Unit ID before giving up. Default is 2.
	1009 – Modbus Master Retry Counter Register – (R/W) This register allows you to observe and change the current number of message retries to the current Unit ID.
	1010 – Modbus Master Timeout Register – (R/W) This register allows you to change the default Unit ID timeout from 50 milliseconds to that desired, in milliseconds.
	1011 – Modbus Master Block Size Register – (R/W) This register sets the number of Holding Registers to be accessed. Must be the same or smaller than the Sequential Number Register, defaults to the same. Used to access Unit ID's with varying block sizes when manually changing the Unit ID under program control.
	1012 – Random Index Register – (R/W) CTC Binary Master protocol only1 default, with 1013 of -1 means normal peer to peer automatic sequential registers. If 1013 is not -1 then this register may be used to offset to the 1014 register window. All values appear in 21XX9. Writing a -1 to this register clears the registers set by writes to the Random Register Window and restores sequential mode. Typically this register is not accessed. After setting random registers (1014) it can be used to view what has been set. In other words setting this to a 2 would cause the third (0 based) register to be selected in the Random Register Window when that index is set.
	1013 – Number of Random Registers Initialized – (R Only) CTC Binary Master protocol only. Number of random registers initialized, up to 21XX5 max1 means none, default (sequential mode). All values appear in 21XX9. Note that this is only if random access mode is being used, else -1 means sequential, reference offset 1014 for further information.

Initiating a Peer to Peer Session

In general, the initializing of the peer-to-peer mechanism works as follows:

- Write the desired number of registers to 21XX5 register.
- Write the slave's IP address to 21XX0 21XX3 register
- Write the register to begin reading from the slave device to 21XX4
- Write a 1007 to register 21XX8 to select the re-mapping area.
- Write where in the 23000-24999 register range you want it to appear to register 21XX9.

- Write a 0 to the index register 21XX8 to default it back to viewing the first data item.
- $\circ~$ Write the scan time, typically 100ms to register 21XX6, to initiate the connection and begin peer to peer.

Monitor status register 21XX7 for a 1 prior to reading/writing to either the 21XX9 data area or the re-mapped area in the 23000-24999 block.

Blank

CHAPTER

[7] Modbus

The Modbus Protocol is a messaging structure developed by Modicon in 1979. It is used for master-slave/client-server communications between intelligent devices and has become an industry standard. Details of the protocol may be found at the web site <u>www.modbus.org</u>. This protocol allows a master to periodically poll the controller to collect the desired information. Modbus supports two major flavors of data representation:

RTU and ASCII. RTU is a more compact protocol, consisting of binary characters, while ASCII represents each binary nibble as a separate character, hence doubling the length of transmissions. RTU is also more secure in that it includes a CRC-16 at the end of the message while ASCII only has a single LRC. The CTC Model 5300 controllers support Modbus Master/Slave TCP RTU, Modbus Master Serial RTU/ASCII, and Modbus Slave Serial RTU/ASCII.

Tools used to test the protocol are available from a number of sources. The Model 5300 controller was tested using those available from <u>www.win-tech.com</u>, namely their ModScan32 for RTU/ASCII Slave testing and ModSim32 for Master.

Modbus Slave RTU TCP & RTU/ASCII Serial

A polling master can drive a slave controller using the Modbus protocol. The Model 5300 controller supports slave mode both over an Ethernet TCP connection and/or a serial connection. Modbus allows for interfaces to such things as coils, analog, register, etc. Since the Model 5300 controller is able to access all of its resources via its register interface, typically only the Holding Register commands are used: Write Single Register (function code 0x06), Write Multiple Registers (function code 0x10), and Read Holding Registers (0x03). Alternatively, the "Read Input Discrete" (maps to digital in modules), "Read coils", and "Write Single Coil" (maps to digital output modules) are supported.

	Function co	odes	
	Code	Sub code	(hex)
Read input discrete	02		02
Read coils	01		01
Write single coil	05		05
Write multiple coils	15		0F
Read input register	04		04
Read multiple	03		03
registers			
Write Single register	06		06
Write multiple	16		10
registers			
Read/write multiple	23		17
registers			
Mask write register	22		16
Read file record	20	6	14
Write file record	21	6	15
Read device	43	14	2B
identification			

Figure 7.1: Modbus Function codes from Modbus.org (highlighted blue are supported by Model 5300)

You should also note that Modbus Holding registers are 16 bits in width and those of the Model 5300 controller are 32 bits, since Modbus is Big Endean. This means when reading register 1 in the 5300 controller, the high 16 bits equates to Modbus register 1 and the low 16 bits to Modbus register 2. Modbus register 3 would be the high 16 bits of register #2, and so on. The number of registers that can be read by a polling master at one time is limited:

Modbus RTU TCP – 120 Modbus 16 bit registers (60 5300 registers). Modbus RTU Serial - 120 Modbus 16 bit registers (60 5300 registers). Modbus ASCII Serial - 56 Modbus 16 bit registers (28 5300 registers).

This maximum is a limitation imposed by the Modbus TCP specification (which limits receive buffers to 255 bytes), not by the controller.

Modbus TCP Slave is always enabled and available for requests on TCP port 502 (standard). Either a Quickstep program or other means must manually enable Modbus RTU/ASCII Serial. This is done simply by writing a 3 to the "Serial Active Protocol Selection" Register, 12320, for RTU, or a 4 for ASCII. Prior to enabling it is recommended that the Model 5300 controller Modbus Unit/Device address also be set, using register 12321. Should a non-volatile controller wide default Modbus address be desired, set register 12322 with the address followed by a write to register 20096. Differences between TCP and serial implementations are detailed in the Modbus Slave Serial RTU/ASCII section.

As a demonstration of the functionality of the Modbus RTU TCP/Slave interface, this section details the interface of Win-Tech's ModScan32 software and how it applies with regards to the Model 5300 controller. As mentioned before, CTC only supports the Holding Register interface. Upon installation of ModScan32, a screen such as Figure 7.3 will appear. Note that the Address field is set to 1, but the display screen starts at 40001. This is Modbus nomenclature. Address of 1 is the same as the upper 16 bits of the controller register 1. Note Length is set to 50 (120 max), and Device ID is ignored since TCP is point to point (Device ID is ignored only when in TCP slave mode, not when the controller operates as a Master or serial slave).

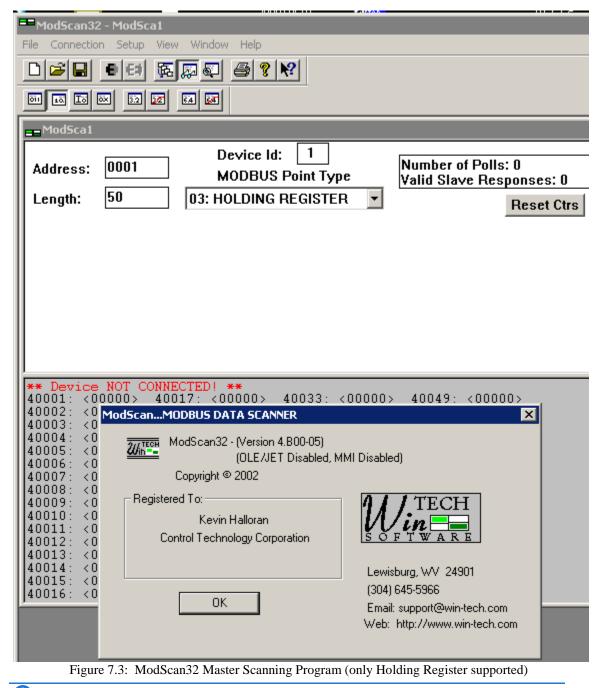


Figure 7.4 shows the setup for an interface to a controller with a TCP address of 12.40.53.199 and the Modbus Slave running a server on the standard port of 502:

ModScan32 - File Connection	Setup View V			
Address: Length:	onnection Deta Connect Us			× _
** Device 40001:<0 /0002::00	Configuration Baud Rate: Word Length: Parity: Stop Bits:	19200 🔽 8 🔽 NONE 🔽 1	Hardware Flow Control Wait for DSR from slave Delay 0 ms after RTS before transmitting first character Wait for CTS from slave Delay 0 ms after last character before releasing RTS	
Transmission STA C ASCII	n Mode NDARD	DANIEL/ENRON C ASCII		
Forc (To		0 (msecs) Is 9 (msecs) nd 15 and 16 for single-po where the slave does not ions 05 and 06.)		

Figure 7.4: ModScan32 Master Scanning Program TCP Connection Setup

In order to do a single register write to a Modbus 16-bit register, double click that register. Figure 7.5 shows changing Modbus register 40002 (Address 2) to a value of 5,

which would translate to the lower 16 bits of Quickstep register 1. Remember Modbus Address 1 is the upper 16 bits.

💭 ModSim1			
		Device Id	1: 1
Address:	0001	MODBUS	Point Type
	50	03: HOLDING	REGISTER 🗾
Length:	50		
40001: <00	000> 4	10026: <00000>	Write Register 🛛 🗙
40002: <00	עעט 4 ע	10027: <00000> 10028: <00000>	
40004: <00		10029: <00000>	Address: 2
40005: <00		10030: <00000> 10031: <00000>	Value: 5
40007: <00		10032: <00000>	
40008: <00		10033: <00000> 10034: <00000>	Update Cancel
40010: <00		10035: <00000>	Auto Simulation
40011: <00		10036: <00000>	

Figure 7.5: Single register write, value 5 to 40002

Changing a number of registers all at once is known as a Write Multiple Register access. This can be done using the Extended Access option:

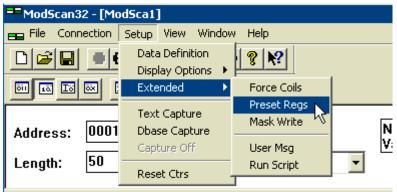


Figure 7.6: Write Multiple register (Preset Regs) selection

The Preset Multiple Registers pop-up will appear. Note that in TCP, the Model 5300 controller ignores any slave or node identifiers since it is a single device and not acting as a gateway. Set the Modbus register you wish to start changes with and the number of registers to change, up to a maximum of the number that you are viewing:

16: PRESET MULTIPLE F	REGISTERS
Slave Device:	1
Address:	1
Number of Points:	50
ОК	Cancel

Figure 7.7: Preset Multiple register dialog

In this case we will change Addresses 1 to 10 to sequential numbers 1 to 10:

16: PRESET MULTIPLE	REGISTERS
Slave Device:	1
Address:	1
Number of Points:	10
ОК	Cancel

Figure 7.8: Select number of multiple writes to do

As shown below, the current register values are displayed in the dialog box.

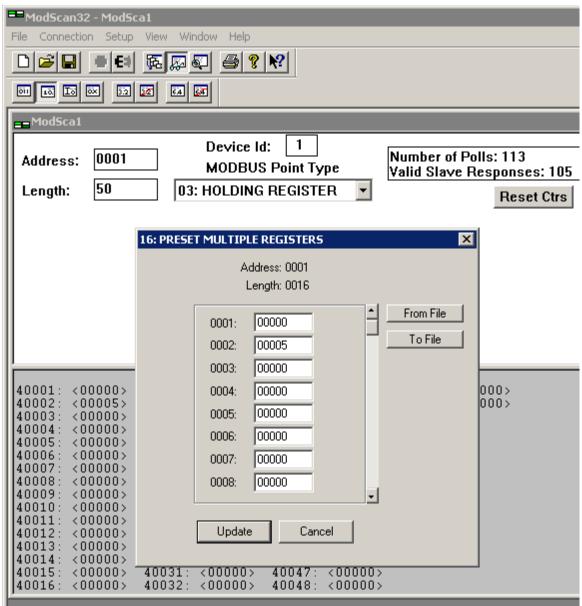


Figure 7.9: Preset Multiple register dialog viewing existing values

Note below, Figure 7.10, that each register value has been changed. Also, we scrolled down so we could get to register 10. Click Update and note the changed register values from the previous display; 40002 is no longer 5 but now 2, Figure 7.11.

16: PRESE	r Multip	LE REGISTERS	×
		ddress: 0001 Length: 0016	
	0003: 0004: 0005: 0006: 0007: 0008: 0009: 0010:	00003 00004 00005 00006 00007 00008 00009 00009	From File To File

Figure 7.10: Preset Multiple new values entered

Upon clicking the Update key, the new values are written to the controller registers and new values read back using the Read Multiple Register command.

<mark></mark> ModSca1 Address: 0001 Length: 50	Device Id: 1 MODBUS Point Type 03: HOLDING REGISTER Reset Ctrs
40001: <00001> 40002: <00002> 40003: <00003> 40004: <00004> 40005: <00005> 40006: <00006> 40007: <00007> 40008: <00008> 40009: <00009> 40010: <00010> 40011: <00000> 40012: <00000> 40013: <00000> 40014: <00000> 40015: <00000>	40017: <00000> 40033: <00000> 40049: <00000> 40018: <00000> 40034: <00000> 40050: <00000> 40019: <00000> 40035: <00000> 40050: <00000> 40020: <00000> 40037: <00000> 40022: <00000> 40038: <00000> 40023: <00000> 40049: <00000> 40025: <00000> 40049: <00000> 40023: <00000> 40040: <00000> <td< th=""></td<>

Figure 7.11: New values written and read back, Quickstep registers 1 to 5, Modbus 1 to 10

If any errors occur, a Modbus exception will occur. One such common error is attempting to read too many registers or illegal registers. Below is what is returned if > 120 Modbus registers are attempted:

ModScan32 - [ModS		
😑 File Connection Se	etup View Window Help	
	\$6	
01 10 IS 0x 52		
Address: 0001	Device Id: 1 MODBUS Point Type	Number of Polls: 400
105		Valid Slave Responses: 294
Length: 125	03: HOLDING REGISTER	Reset Ctrs
	ion Response from Slave Device	
	40038: <0000H> 40075: <0000H 40039: <0000H> 40076: <0000H	
40003: <0003H>	40040: <0000H> 40077: <0000H	> 40114: <0000H>
	40041: <0000H> 40078: <0000H 40042: <0000H> 40079: <0000H	
40006: <0006H>	40043: <0000H> 40080: <0000H	> 40117: <0000H>
	40044: <0000H> 40081: <0000H 40045: <0000H> 40082: <0000H	
40009: <0009H>	40046: <0000H> 40083: <0000H	> 40120: <0000H>
	40047: <0000H> 40084: <0000H 40048: <0000H> 40085: <0000H	
40012: <0000H>	40049: <0000H> 40086: <0000H	> 40123: <0000H>
	40050: <0000H> 40087: <0000H 40051: <0000H> 40088: <0000H	

Figure 7.12: Modbus Exception Example > 120 registers

Editing the 125 appropriately will update the error. Below is an example of displaying registers in the 13002 block of the Model 5300 controller. 13002 is the system millisecond tic counter. Real time clock/date values can also be seen incrementing in other registers dynamically. Note that 26003 is the high 16 bits of 13002 and 26004 (13002 * 2) is the base lower 16 bits.

Address: 26003 Length: 50	Device Id: 1 MODBUS Point Type 03: HOLDING REGISTER 💌	Number of Polls: 532 Valid Slave Responses: Reset (
426003: <00091> 426004: <02022> 426005: <00000> 426006: <40512> 426007: <00000> 426008: <00001> 426019: <00000> 426011: <00000> 426011: <00000> 426012: <00000> 426013: <00153> 426014: <27378> 426015: <00000> 426015: <00000> 426016: <00015> 426017: <00000> 426018: <00001>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	000> 426051: <00000> 001> 426052: <00000> 000> 158> 000> 000> 000> 000> 000> 000> 000> 0

Figure 7.13: Display of controller system tic, dynamically updating, 426003/4

A maximum of 32 simultaneous Modbus TCP Slave connections are allowed at one time. Idle connections will timeout in about 1 minute.

Modbus Slave Serial RTU/ASCII

The Modbus Slave Serial RTU and ASCII protocol functions exactly like that of Modbus TCP Slave with regards to how to access information and ModScan32 operation (see figure 7.14 for serial port setup versus TCP). There are some key differences since an RS232 connection is used versus a network connection.

<mark>==</mark> ModSca1			
Address: 0001	Device Id: 2 MODBUS Point Type	Number of Poll Valid Slave Re	
Length: 50	03: HOLDING REGISTER	•	Reset Ctrs
Connection Details			×
Connect Using:			
Direct Co	nnection to COM1	T	
- Configuration	IP Address: 12.40.53.200 Service Port: 502		_
Baud Rate: 19200 Word Length: 8 Parity: NONE Stop Bits: 1	▼ Hardware Flow Cont ▼ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	from slave ms after RTS before transmitting first character	
	Modbus Protoco	Selections	×
40016: <00000> 40	Protoc OK OK OS2: <00000>		EL/ENRON/OMNI ASCII O RTU
,	_ Slave _ Dela _ Force m	y Between Polls	
		oint write functions 05 and 06	

Figure 7.14: ModScan32 Master Scanning Program Serial Connection Setup, select RTU or ASCII Transmission Mode.

They are as follows:

- 1. The virtual TCP communication ports may also be used except for point to point operations with a single address present. In other words, the communications traffic of other Modbus nodes should not be present on the virtual port, although they can be on COM1/2. This is necessary because Modbus specifies a 3.5 character quiet time between packets and a maximum of a 1.5 inter-character delay during the continuous transmission of a packet data stream in RTU mode (1 second for ASCII mode). The virtual ports cannot guarantee these timing constraints, although from a high level protocol viewpoint, the ports do comply.
- 2. By default, the Modbus protocol is disabled on the serial and virtual ports. To enable the port, it must be the active port in the 12000 register and the proper Modbus protocol must be written to register 12320. Note that by default the slave port address is 2 and that any value written as the Modbus slave address will be that used on all serial ports, system wide. Note that writing a value of 0 to register 12320 will disable Modbus and return the port to normal CTC protocol operation.

When Modbus is enabled on a serial port using CTC MON, no further communications will be available on that port except with Modbus. In other words, you will lose your CTC MON link if talking on the same port that is selected as active in register 12000.

Modbus Master TCP RTU & Serial RTU/ASCII

The Modbus Master protocol allows the controller to poll a Modbus TCP or Serial slave device, periodically requesting the registers for a particular device ID. The Model 5300 controller is capable of polling the Holding Registers (R/W, 4XXXX Modbus registers), Input Registers (read only by Modbus definition, 3XXXX Modbus registers), Input Status Registers (read only by Modbus definition, 1XXXX), and Coil Status Registers (R/W, 0XXXX Modbus registers) of a remote device. Write Single Holding Register (function code 0x06), Write Multiple Holding Registers (function code 0x10), Read Holding Registers (0x03), Read Coil Status (function code 0x01), Force Single Coil (function code 0x05), Read Input Status Registers (function code 0x02), and Read Input Registers (0x04) commands are supported. Multidrop mode is supported for serial ports although the exact timings of the Modbus specification may not apply, confirmation with the specific device is required. This typically is not a problem since the 5300 is less strict with character timeouts than the actual specification.

With firmware prior to R44 the Serial Modbus Master did not support multidrop or Coil/Input Registers, and the 5300 only polled a single device ID. The active device ID register also had to be changed in order to begin polling a different device. Those who required slow scanning of multiple devices changed the device ID within the Modbus Master Register Control Block (21000-21299, shared with the UDP Peer to Peer register block) by the use of a Quickstep/QuickBuilder program. This caused all subsequent polls to use that device ID and hence allow the reading/writing of multiple devices. With release R44 and later this is now automatic by simply defining multiple 21XXX blocks referencing the same serial port as the COM port. The Device ID should not be changed, after initially set. Each 21XXX block can now specify a unique device ID to be polled.

A maximum of 256 sequential Modbus registers (16 bit) can be polled, each optionally mapped to a corresponding controller register (32 bit, 21XX8, index 1007). You may also adjust the active start register by changing register 21XX4, described in 3.2.1, dynamically. The controller will read a maximum of 120 RTU (56 ASCII) registers per packet request. This means if the number of registers desired is 50, then 50 will be read with each poll. If the number of registers is greater than 120, then multiple requests are made. If 256 registers are requested in RTU mode, for example, the first 120 are read, then the next 120, then the remaining 16, all transparently to the user/programmer. When using the remapping register option, all registers will appear sequential within the 23000-24999 register blocks. Simply read and write as desired.

Registers 21000-21299

The Model 5300 controller can run numerous Modbus TCP Master connections and a RTU/ASCII Serial connections at the same time, to differing devices, limited only by the performance desired. Each is configured using the Modbus Master Register Control Block (MMRCB). This same block serves multiple purposes and is shared with the UDP Peer to Peer Protocol register block detailed in the Registers 21000-21299 section.

reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 – Poll Timer Register – R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value	21000- 21299	TCP Peer to Peer and Modbus Master Parameters: R/W, starts at 21000 and repeated every 10 blocks as follows:
This is the first octet of the IP address (XXX.000.000.000) to connect to. 21XX1 - Second Octet IP Address Register - R/W This is the second octet of the IP address (000.XXX.000.000) to connect to. 21XX2 - Third Octet IP Address Register - R/W This is the third octet of the IP address (000.000.XXX.000) to connect to. 21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W This is the fourth octet of the IP address (000.000.000.000.XXX) to connect to. 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		21XX0 – First Octet IP Address Register (Most Significant) – R/W
 21XX1 - Second Octet IP Address Register - R/W This is the second octet of the IP address (000.XXX.000.000) to connect to. 21XX2 - Third Octet IP Address Register - R/W This is the third octet of the IP address (000.000.XXX.000) to connect to. 21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W This is the fourth octet of the IP address (000.000.XXX) to connect to. 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W 		
This is the second octet of the IP address (000.XXX.000.000) to connect to. 21XX2 - Third Octet IP Address Register - R/W This is the third octet of the IP address (000.000.XXX.000) to connect to. 21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W This is the fourth octet of the IP address (000.000.000.XXX) to connect to. 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		, , ,
 This is the third octet of the IP address (000.000.XXX.000) to connect to. 21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W This is the fourth octet of the IP address (000.000.000.XXX) to connect to. 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value 		
 21XX3 - Fourth Octet IP Address Register (Least Significant) - R/W This is the fourth octet of the IP address (000.000.000.XXX) to connect to. 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value 		21XX2 – Third Octet IP Address Register – R/W
This is the fourth octet of the IP address (000.000.000.XXX) to connect to. 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		This is the third octet of the IP address (000.000.XXX.000) to connect to.
 21XX4 - Start Register - R/W This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; see 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value 		21XX3 – Fourth Octet IP Address Register (Least Significant) – R/W
This register stores the starting register address that is to be read from the remote device. 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		This is the fourth octet of the IP address (000.000.000.XXX) to connect to.
 21XX5 - Sequential Number Register - R/W This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 - Poll Timer Register - R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value 		21XX4 – Start Register – R/W
This register stores the number of sequential registers (starting with Register 21XX4) you want to read during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 – Poll Timer Register – R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		This register stores the starting register address that is to be read from the remote device.
during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All regist reads from remote devices will be the same block size. For Modbus Master this register is the default; se 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active connection write a -1 to this port and wait for a -1 to be read back before specifying new parameters. 21XX6 – Poll Timer Register – R/W Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		21XX5 – Sequential Number Register – R/W
Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value		during a polling session. The value 1 represents a single register and the maximum number of registers allowed is 100 for Peer to Peer, 256 for Modbus and CTC Binary Master. Configure this register before setting up any other registers. Do not change this value during a transaction or all data will be lost and new values will have to be entered. If you modify this register, it lets you reset the connection. All register reads from remote devices will be the same block size. For Modbus Master this register is the default; see 21XXX8, 1011 to change when polling differing devices. This register must be written first to define the required storage size; upon initialization all other registers will become available. To disable an active
		21XX6 – Poll Timer Register – R/W
anowed is of his for reer and to his for modous. For ear write to this register at any time.		Set this register to 0 for a single read request else set the scan rate in milliseconds. The minimum value allowed is 50 ms for Peer to Peer and 10 ms for Modbus. You can write to this register at any time.
21XX7 – Status Flag Register – R		21XX7 – Status Flag Register – R
This register reflects the current status of the data registers. Its value is based on any requested operations. Typically, you initiate an operation and then wait for a status of 1. Possible values are:		
0 - Offline; no connection is present.		0 - Offline; no connection is present.
1 – Last request is successful and completed. Data is available in the data registers if requested Read or Write may now be done.		1 – Last request is successful and completed. Data is available in the data registers if requested. Read or Write may now be done.

	 -1 - Requested operation has failed; typically a Modbus Exception error 2 - Representation to the decised heat
	 -2 – Busy; connecting to the desired host. -3 – Busy; reading data.
	-3 - Busy, reading data. -4 - Busy; writing data.
	-5 – Timed out; poll timeout on a device by Modbus Master.
	-10 – Aborted operation; out of local memory or resources.
21000-	21XX8 – Index Offset Register – R/W
21299 Cont'd	This register lets you access each of the requested sequential data registers. It works in conjunction with Register 21XX9 and acts as its array pointer. You can store the number of a general or special purpose register in 21XX8 and 21XX9 can then access the resource contained in the pointer. By default 0, this register points to the very first data element read from the remote device. This would be equivalent to what you set the Start Register to begin with (21XX4). Incrementing this register allows you to access other data elements, like an array. Register 21XX9 can then be read or written accordingly. The index register also has a few special features when you set it to 1000 or above.
	1000 – Peer Request Time-Out Register – (R/W) The timer starts when a peer node request is initiated and stops (times out) if no response is received within the time specified by this register. Retries only occur if automatic updates are active (Register 21XX6 is set to a value other than 0). Defaults are 500 ms for single register reads and time-out value*2.5 for automatically updated register read transactions.
	1001 – Peer Request Failed Index Register –(R) This register indicates when a peer transaction fails and an error occurs. The Status Flag Register (21XX7) is set to a value other than 1. Any data that was read or written when the error occurred has an offset value that is stored in 1001. If you read the data register, it returns the offset failure value. Data written before this offset value is valid. For example, if your process continuously updates 50 registers and the register returns a value of 25, it means the process failed while trying to write the 25 th element of data. All data written before this element was written correctly.
	1002 – Peer Request Retry Counter Index Register – (R/W) This debugging register points the data register to the retry counter. Quickstep can set this register to any value. The register is incremented by 1 when a time-out occurs because of waiting for data from a peer node.
	1003 – Protocol Index Register – (R/W) This register tells the data register what protocol to use for setting the peer block registers. You must set this register before setting the Start Register (21XX4). Default mode is 0 for UDP Peer-to-Peer protocol. 2 is used for Modbus TCP Master mode, 3 for Modbus Master RTU Serial on COM1 (TBD), 8 is CTC Binary Master UDP (port 3000), 9 is CTC Binary Master TCP (port 6000). Note the Binary Master protocol allows connection to 2700 series controllers.
	1004 – TCP Client Port Index Register – (R/W) This register points the data register to the destination TCP Port address for your connection. You must set this register before setting the Start Register (21XX4). 1004 is currently used for Modbus TCP and serial Master mode with a default port number of 502 for TCP and 1 for serial (COM1). Not used for the CTC Binary Master protocol. For that protocol it is fixed to 3000 for UDP and 6000 for TCP.
21000- 21299 Cont'd	1005 – Modbus Master Unit ID Index Register – (R/W) This register points the data register to the Device/Unit ID field value used in the Modbus Master request packet. The default ID is '1' but you can set it to any desired value. This ID affects all subsequent transmissions and allows multiplexed devices to be addressed in a Modbus environment. 1006 – Modbus Master Exception Index Register – (R) This register allows you to interrogate
	the last Modbus Exception error code received from the data register (21XX9). Referencing this register helps to interpret failure types. Typically you would reference this register if a '-1' appears as
	the current status in register 21XX7.
	1007 – Register Remapping Start Index Register – (R/W) This option allows remote registers to be mapped into the 23000 to 24999 consecutive memory space. Previously an index register at 21XX8 needed to be set then data read from 21XX9. This can result in slow operation if a lot of data needs to be transferred. Setting 21XX8 to 1007 and then writing the register value from

23000 to 24999 will allow all data to be remapped to that register block area, consecutively, based upon the block size (21XX5). A write to the remapped area will result in a remote write. By default re-mapping is not active. 1008 - Modbus Master MAX Retries Register - (R/W) This register allows you to change the maximum number of retry attempts on a Unit ID before giving up. Default is 2. 1009 - Modbus Master Retry Counter Register - (R/W) This register allows you to observe and change the current number of message retries to the current Unit ID. 1010 - Modbus Master Timeout Register - (R/W) This register allows you to change the default Unit ID timeout from 50 milliseconds to that desired, in milliseconds. 1011 - Modbus Master Block Size Register - (R/W) This register sets the number of Holding Registers to be accessed. Must be the same or smaller than the Sequential Number Register, defaults to the same. Used to access Unit ID's with varying block sizes when manually changing the Unit ID under program control. 1012 – Random Index Register – (R/W) CTC Binary Master protocol only. -1 default, with 1013 of -1 means normal peer to peer automatic sequential registers. If 1013 is not -1 then this register may be used to offset to the 1014 register window. All values appear in 21XX9. Writing a -1 to this register clears the registers set by writes to the Random Register Window and restores sequential mode. Typically this register is not accessed. After setting random registers (1014) it can be used to view what has been set. In other words setting this to a 2 would cause the third (0 based) register to be selected in the Random Register Window when that index is set. 1013 - Number of Random Registers Initialized - (R Only) CTC Binary Master protocol only. Number of random registers initialized, up to 21XX5 max. -1 means none, default (sequential mode). All values appear in 21XX9. Note that this is only if random access mode is being used, else -1 means sequential, reference offset 1014 for further information. 1014 - Random Register Window - (R/W) CTC Binary Master protocol only. During initialization write the desired sequence to 21XX9 with 21XX8 set to 1014 and that will be the registers scanned, up to 256. If you do nothing sequential mode is use and accessed registers begin with that specified in 21XX4. Each write automatically increments the index. If a 0 is set, or not all the registers are set to a value, the default will be sequential for the remaining registers. For example if 5 registers are to be scanned and only write 4 times to this register, the first 4 accessed will be what was written, since the last register was not set the sequential mode will be used for that and since this is offset 4, the starting register 21XX4 is referenced, if 21XX4 was 1, 1 + 4 (0 based), register 5 would be accessed for that slot. Once initialized offset 1012 may be modified to change a register, base 0 (first). Writing a -1 to 1012 will clear the stored registers and put it back to sequential mode. Do not do this while connected. 1015 - Multidrop Indicator Register - (R Only) Used in Modbus Master Serial mode to indicate that the serial port being used has more than one poll definition for it and is currently in multidrop mode. 0 = normal single poll address, 1 = multidrop.1016 - Modus Access Register - (R/W) By default Modbus Master polls the 4XXXX block of Modbus registers known as Holding Registers. To access an alternate register block set register as follows: 0 - (0XXXX) Coils, each coil represents a 32 bit value, 1 or 0, r/w. 1 – (1XXXX) Input Status (read only), each input represents a 32 bit value, 1 or 0. 3 – (3XXXX) Input Registers (read only), 16 bit value stored in 32 bit register. 4 – (4XXXX) Holding Registers, r/w, default, 16 bit value stored in 32 bit register. 1017 - Multidrop Offline Loop Count Register - (R/W) Used in Modbus Master Serial mode to define the number of online poll cycles to complete before attempting an offline node. By default this is 10 polls of online nodes to every one of an offline node. After each cycle a different offline node will be attempted. Modbus Write Multiple 1996 - Block offset. By default 0, number of words to offset in data buffer array when initiating a block write operation. This can be thought of as the index into the array that would

be placed in 21XX8 for 21XX9 to access the data. **1997 – Block Write length.** Must be <= 21XX5. This is the number of 16 bit words to write starting at the Block Offset in the data array (21XX9). **1998 – Block Write Control.** Must set to 0 in order to load the data array. 1 will cause a Modbus write multiple to occur with the set Block Write length. After processing this will be set to 0 whereupon it can be reloaded and a 1 set again for the next transmission. Monitor 21XX7 for successful completion status. In order to begin receiving again and modify Start Register 21XX4 the Block Write Control must be unlocked by writing a 2 to it, whereupon a 1 will be read back.

Example: Modbus TCP & RTU Serial Master Initialization

An example of Quickstep initialization code is shown below to set up a connection to the following remote device:

Modbus TCP Master Sample Program

IP address - 12.40.53.168 Device ID - 1 Number of sequential registers to read - 160 Scan time - 100 ms. (set last to initiate) Starting Register - 1 Re-map registers to consecutive block beginning at registers 23000. This is the first setup so use 21000, next would be 21010... 21020, etc...

```
[1] Initialize ModbusMaster
```

```
;;; This program is used to initialize the TCP port
;;; for Modbus TCP Master operation. A single
;;; device is polled using device ID 1 and 160 registers
;;; are read and mapped into the 23000 block. Therefore
;;; registers 23000 - 23159 are used, with 23000 referencing
;;; Modbus Register #1. Make sure your Modbus device has
;;; at least 160 consecutive registers starting at '1'
;;; otherwise Modbus Exceptions will occur.
;;; Begin by doing the following:
;;; 21005 = Maximum number of registers to read (160)
;;; 21000 - 21003 = Set this to be the IP address to
;;;
                   connect to. In this example we
                   will use 12.40.53.168
;;;;
;;; 21004 = Modbus start register (1)
;;; 21008 = 1003 = Set index to point to protocol register
;;; 21009 = 2 = Set protocol to Modbus TCP Master
;;; 21008 = 1004 = Set TCP port to connect to, default is 502
;;; 21009 = 502 = For demo set port to 502 even though
                  default
;;;
;;; 21008 = 1007 = Set index to point to where to view data
;;; 21009 = 23000 = Start remapped area at 23000 for 160 regs.
;;; 21008 = 0 = Always set the index back to 0 before
                  begin
;;;
;;; 21006 = 100 = Set scan poll time to 100 ms./block read,
```

min is 50ms. This also initiates polling. ;;; _____ <NO CHANGE IN DIGITAL OUTPUTS> _____ store 160 to reg 21005 store 12 to reg 21000 store 40 to reg 21001 store 53 to reg 21002 store 168 to reg 21003 store 1 to reg 21004 store 1003 to reg 21008 store 2 to reg 21009 store 1004 to reg 21008 store 502 to reg 21009 store 1007 to reg 21008 store 23000 to reg 21009 store 0 to reg 21008 store 100 to reg 21006 goto Next [2] Wait For Online ;;; Once Modbus Master starts to poll we must wait until ;;; it is online before proceeding. _____ <NO CHANGE IN DIGITAL OUTPUTS> _____ if reg 21007=1 goto Modbus Online delay 500 ms goto Wait For Online [3] Modbus Online ;;; It is OK to read and process data now since Modbus ;;; is online to the device. If you wish to monitor another ;;; device other than Unit ID 1, then change the index ;;; register 21008 to 1005 and write the desired Unit ID to ;;; register 21009, then set 21008 back to 0 and monitor 21007 ;;; for a 1 for online state, once again. Results will appear ;;; in the 23000 block. _____ <NO CHANGE IN DIGITAL OUTPUTS> _____ delay 1000 ms goto Modbus Online

When Reg_21007 is equal to a 1, then the connection is active and you may interact with the remote device. If a 3 had been written to 1003, then Modbus Master RTU Serial on COM1 would be used.

Modbus RTU Serial Master Sample Program

IP address - 12.40.53.168 (can be set to any value other than -1) Device ID - 1 Number of sequential registers to read - 160 Scan time - 100 ms. (set last to initiate) Starting Register - 1

```
Serial Port - COM1
```

Remap registers to consecutive block beginning at registers 23000. This is the first setup so use 21000, next would be 21010... 21020, etc...

```
[1] Initialize ModbusMaster
```

```
;;; This program is used to initialize the COM1 port
  ;;; for Modbus RTU Serial Master operation. A single
  ;;; device is polled using device ID 1 and 160 registers
  ;;; are read and mapped into the 23000 block. Therefore
  ;;; registers 23000 - 23159 are used, with 23000 referencing
  ;;; Modbus Register #1. Make sure your Modbus device has
  ;;; at least 160 consecutive registers starting at '1'
  ;;; otherwise Modbus Exceptions will occur.
  ;;; Begin by doing the following:
  ;;; 21005 = Maximum number of registers to read (160)
  ;;; 21000 - 21003 = Any value, required to unlock register
                    group, on Modbus TCP this is the IP
  ;;;
  ;;;
                    address for a connection.
  ;;; 21004 = Modbus start register (1)
  ;;; 21008 = 1003 = Set index to point to protocol register
  ;;; 21009 = 3 = Set protocol to Modbus RTU Serial (4 for
                  ASCII Serial)
  ;;;
  ;;; 21008 = 1004 = Set serial port to use, default is 1
  ;;; 21009 = 1 = For demo set port to 1 even though default
                    if define more than one 21XXX block with
  ;;;
                    same serial port will become multidrop
  ;;;
  ;;; 21008 = 1007 = Set index to point to where to view data
  ;;; 21009 = 23000 = Start remapped area at 23000 for 160 regs.
  ;;; 21008 = 0 = Always set the index back to 0 before
                    begin
  ;;;
  ;;; 21006 = 100 = Set scan poll time to 100 ms./block read,
             min is 10ms. This also initiates polling.
  ;;;
        -----
   <NO CHANGE IN DIGITAL OUTPUTS>
   _____
   store 160 to reg 21005
   store 10 to reg 21000
   store 10 to reg 21001
   store 10 to reg 21002
   store 10 to reg 21003
   store 1 to reg 21004
   store 1003 to reg 21008
   store 3 to reg 21009
   store 1004 to reg 21008
   store 1 to reg 21009
   store 1007 to reg 21008
   store 23000 to reg 21009
   store 0 to reg 21008
   store 100 to reg 21006
   goto Next
[2] Wait For Online
  ;;; Once Modbus Master starts to poll we must wait until
  ;;; it is online before proceeding.
```

```
_____
  <NO CHANGE IN DIGITAL OUTPUTS>
  _____
  if reg 21007=1 goto Modbus Online
  delay 500 ms goto Wait For Online
[3] Modbus Online
  ;;; It is OK to read and process data now since Modbus
  ;;; is online to the device. If you wish to monitor another
  ;;; device other than Unit ID 1, then change the index
  ;;; register 21008 to 1005 and write the desired Unit ID to
  ;;; register 21009, then set 21008 back to 0 and monitor 21007
  ;;; for a 1 for online state, once again. Results will appear
  ;;; in the 23000 block.
   _____
  <NO CHANGE IN DIGITAL OUTPUTS>
  _____
  delay 1000 ms goto Modbus Online
```

Modbus RTU Serial Master Multidrop QuickBuilder Initialization

IP address – 172.16.2.26 (can be set to any value other than –1)
Device ID – 1, 2, 3
Number of registers to read – 10 from each with Input Registers from node 3 instead of Holding Registers.
Scan time - 150 ms. (set last to initiate polling)
Starting Register - 3
Serial Port – COM3 (note that the 5300 can be supplied with RS485 COM3).
Remap registers to consecutive block beginning at registers 23001, 23011, 23021.

```
ip1 = 2;
ip2 = 26;
polltime = 150; // Time between polls, this is about the fastest for USB to serial
                // converters
CTC Binary Protocol UDP:
      protocol - 8
       commport - 3000
CTC Binary Protocol TCP:
      protocol - 9
       commport - 6000
Modbus RTU Serial:
      protocol - 3
       commport - 1 for COM1, 2 for COM2, 3 for COM3, 4 for COM4
Modbus ASCIT Serial:
      protocol - 4
       commport - 1 for COM1, 2 for COM2, 3 for COM3, 4 for COM4
Modbus RTU TCP:
      protocol - 2
      commport - 502
*/
commport = 3;
protocol = 3;
              // RTU
timeout = 250; // Amount of milliseconds to wait till receive response.
```

```
// This must be TX packet + RX packet time since timer starts at
                             // beginning of transmission while awaiting full receive response.
                             //\ {\rm Thus}\ {\rm more}\ {\rm registers}\ {\rm read}\ {\rm the}\ {\rm larger}\ {\rm this}\ {\rm value}\ {\rm needs}\ {\rm to}\ {\rm be}.
// Number of multidrop nodes on this commport
 numNodes = 3;
 // Number of poll loops until check an offline node, default is 10, if all offline
 // then every poll.
offlineLoops = 5;
 // Must reset the connection on each node and wait until it is shutdown in case
// this is a restart
baseReg = 21005; // Number of Ports definition register
for i = 0 to numNodes repeat {
              // Clear connections for each node defined
              if ($REGISTERS[baseReg + (i*10)] != -1) then
               {
                             $REGISTERS[baseReg + (i*10)] = -1; // Set Number of registers to read
                                                                                                   // to -1 to clear old connection
                             while ($REGISTERS[baseReg + (i*10)] != -1) repeat { };
               }
 };
basereg = 21000;
$REGISTERS[basereg+5] = 10;
[basereg] = 172;
                                                                   //Number of registers to read
                                                                   // IP Address, if serial set to anything
$REGISTERS[basereg] = 172; // IP Address, if serial set to anything
$REGISTERS[basereg+1] = 16; // IP Address
$REGISTERS[basereg+2] = ip1; // IP Address
$REGISTERS[basereg+3] = ip2; // IP Address
$REGISTERS[basereg+4] = 1; // Modbus start register 0000H
$REGISTERS[basereg+8] = 1003; // Set index to point to protocol register
$REGISTERS[basereg+9] = protocol; // Set protocol to that defined
$REGISTERS[basereg+8] = 1004; // Set index to point definition
$REGISTERS[basereg+8] = 1004; // Set index to port definition
$REGISTERS[basereg+9] = commport; // Port to that defined
$REGISTERS[basereg+9] = Commport; // Port to that defined
$REGISTERS[basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter
$REGISTERS[basereg+9] = 1; // Set Slave ID to poll
$REGISTERS[basereg+8] = 1007; // Set index to Remap register definition
$REGISTERS[basereg+9] = 23001; // Set register to remap Modbus access to
$REGISTERS[basereg+8] = 1010; // Set index to packet timeout
$REGISTERS[basereg+9] = timeout; // Set packet timeout value in milliseconds.
$REGISTERS[basereg+8] = 1017; // Set index to offline loop counter
 $REGISTERS[basereg+9] = offlineLoops;// Set number of poll cycles before attempt an
                                                                   // offline node.
$REGISTERS[basereg+8] = 0;
                                                                    // Set index to 0 when done
                                                                  // Set Poll Rate in mS for this node (delay from
 $REGISTERS[basereg+6] = polltime;
                                                                      // last packet sent to any node).
                                                                      // This will start everything
basereg = 21010;
basereg = 21010;

$REGISTERS[basereg+5] = 10; //Number of registers to read

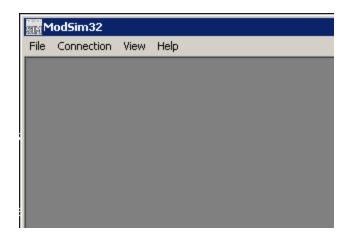
$REGISTERS[basereg] = 172; // IP Address, if serial set to anything

$REGISTERS[basereg+1] = 16; // IP Address

$REGISTERS[basereg+2] = ip1; // IP Address

$REGISTERS[basereg+3] = ip2; // IP Address

$REGISTERS[basereg+4] = 11; // Modbus start register 0000H


$REGISTERS[basereg+4] = 1003; // Set index to point to protocol register

$REGISTERS[basereg+4] = 1003; // Set index to point to protocol register

$REGISTERS[basereg+4] = 1003; // Set index to point to protocol register
$REGISTERS[basereg+9] = protocol; // Set protocol to that defined
$REGISTERS[basereg+8] = 1004;
                                                                      // Set index to port definition
 $REGISTERS[basereg+9] = commport; // Port to that defined
$REGISTERS[basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter
$REGISTERS[basereg+9] = 2;  // Set index to Modulds Slave ID to poll paran
$REGISTERS[basereg+8] = 1007;  // Set Slave ID to poll
$REGISTERS[basereg+8] = 23011;  // Set index to Remap register definition
$REGISTERS[basereg+9] = 23011;  // Set register to remap Modbus access to
$REGISTERS[basereg+8] = 1010;  // Set index to packet timeout
$REGISTERS[basereg+8] = timeout;  // Set packet timeout value in milliseconds.
$REGISTERS[basereg+8] = 1017; // Set index to offline loop counter
```

Testing with Win-Tech's ModSim32

As a demonstration of the functionality of the controller Modbus Master interface, this section details the interface of Win-Tech's ModSim32 software and how it applies with regard to our product. It is assumed that the controller Modbus TCP Master or Serial is set up to point to the PC and is attempting a connection. As mentioned before, we only support the Holding Register interface. Upon invoking ModSim32 the screen below will appear.

In order to activate the Modbus slave, you must select the Connection menu item and the method of the connection, Modbus/TCP Svr for network or the appropriate Port # for a serial port.

	lodSim32			lodSim32	
File	Connection View	Help	File	Connection View	Help
	Connect 🕨	Port 1		Connect 🕨	Port 1
	Disconnect 🕨	Port 2		Disconnect 🕨	Port 2 🕏
		Port 3			Port 3
		Port 4			Port 4
		Port 5			Port 5
		Port 6			Port 6
		Port 7			Port 7
		Port 8			Port 8
		Port 9			Port 9
		Modbus/TCP Svr			Modbus/TCP Svr

If Serial, select RTU or ASCII and set the baud rate, stop bits, and parity appropriately. Default for the Model 5300 is 19.2K baud, 8 data bits, 1 stop bit, no parity. However, this is not the default for ModSim and must be changed as shown below:

Setup	o Comm Port 1	×
	Protocol © RTU © ASCII	
	Daniel/ENRON protocol	
	Baud Rate: 19200 💌	
	Data Bits: 8	
	Stop Bits:	
	Parity: NONE 💌	
	Hardware Flow Control	
	🔲 Wait for DTR from Master	
	Delay 0 ms after RTS before	
	transmitting first character Wait for CTS from Master	
	Delay 0 ms after last character before releasing RTS	
	OK Cancel	

Next, devices must be created to listen to the requests. This is done using menu selection: File-> New:

M	ModSim32				
File	File Connection View Help				
N	ew 🔪	Ctrl+N			
0	pen K	(Itrl+0		
R	Restore Test Config				

ModSim32 - ModSim	ModSim32 - ModSim1				
File Connection Display	Window Help				
ModSim1					
	Device Id:	1			
Address: 0100	MODBUS P				
	🛒 03: HOLDING RI	EGISTER 🔻			
Length: 100	·				
40100: <00000>	40125: <00000>	40150: <00000>	40175: <00000>		
40101: <00000>	40126: <00000>	40151: <00000>	40176: <00000>		
40102: <00000>	40127: <00000>	40152: <00000>	40177: <00000>		
40103: <00000>	40128: <00000>	40153: <00000>	40178: <00000>		
40104: <00000>	40129: <00000>	40154: <00000>	40179: <00000>		
40105: <00000>	40130: <00000>	40155: <00000>	40180: <00000>		
40106: <00000>	40131: <00000>	40156: <00000>	40181: <00000>		
40107: <00000>	40132: <00000>	40157: <00000>	40182: <00000>		
40108: <00000>	40133: <00000>	40158: <00000>	40183: <00000>		
40109: <00000>	40134: <00000>	40159: <00000>	40184: <00000>		
40110: <00000>	40135: <00000>	40160: <00000>	40185: <00000>		
40111: <00000>	40136: <00000>	40161: <00000>	40186: <00000>		
40112: <00000>	40137: <00000>	40162: <00000>	40187: <00000>		
40113: <00000>	40138: <00000>	40163: <00000>	40188: <00000>		
40114: <00000>	40139: <00000>	40164: <00000>	40189: <00000>		
40115: <00000>	40140: <00000>	40165: <00000>	40190: <00000>		
40116: <00000> 40117: <00000>	40141: <00000> 40142: <00000>	40166: <00000> 40167: <00000>	40191: <00000> 40192: <00000>		
40118: <00000>	40142. <000007	40168: <00000>	40192. <000002		
40119: <00000>	40144: <00000>	40169: <00000>	40194: <00000>		
40120: <00000>	40145: <00000>	40170: <00000>	40195: <00000>		
40121: <00000>	40146: <00000>	40171: <00000>	40196: <00000>		
40122: <00000>	40147: <00000>	40172: <00000>	40197: <00000>		
40123: <00000>	40148: <00000>	40173: <00000>	40198: <00000>		
40124: <00000>	40149: <00000>	40174: <00000>	40199: <00000>		
1					

In order to access this device, the controller must have its Device ID set to 1 (the default) and the Starting Address set to 100. If not set correctly, an exception status will be

returned upon connection and 21XX7 register will contain a -1. To set the Device ID to a 3, as in our example, modify as below:

ModSim32 - ModSim	ModSim32 - ModSim1			
File Connection Display	Window Help			
ModSim1				
	Device Id:	3		
Address: 0100	MODBUS P	oint Type		
		EGISTER		
Length: 100				
40100: <00000>	40125: <00000>	40150: <00000>	40175: <00000>	
40101: <00000>	40126: <00000>	40151: <00000>	40176: <00000>	
40102: <00000>	40127: <00000>	40152: <00000>	40177: <00000>	
40103: <00000> 40104: <00000>	40128: <00000> 40129: <00000>	40153: <00000> 40154: <00000>	40178: <00000> 40179: <00000>	
40105: <00000>	40123. <000007	40155: <00000>	40175. <000007	
40106: <00000>	40130: <000000>	40156: <00000>	40181: <00000>	
40107: <00000>	40132: <00000>	40157: <00000>	40182: <00000>	
40108: <00000>	40133: <00000>	40158: <00000>	40183: <00000>	
40109: <00000>	40134: <00000>	40159: <00000>	40184: <00000>	
40110: <00000>	40135: <00000>	40160: <00000>	40185: <00000>	
40111: <00000>	40136: <00000>	40161: <00000>	40186: <00000>	
40112: <00000>	40137: <00000>	40162: <00000>	40187: <00000>	
40113: <00000>	40138: <00000>	40163: <00000>	40188: <00000>	
40114: <00000>	40139: <00000>	40164: <00000>	40189: <00000>	
40115: <00000>	40140: <00000>	40165: <00000>	40190: <00000>	
40116: <00000> 40117: <00000>	40141: <00000> 40142: <00000>	40166: <00000> 40167: <00000>	40191: <00000> 40192: <00000>	
40118: <00000>	40142. <000007	40168: <00000>	40192. <000002	
40119: <00000>	40144: <00000>	40169: <00000>	40194: <00000>	
40120: <00000>	40145: <00000>	40170: <00000>	40195: <00000>	
40121: <00000>	40146: <00000>	40171: <00000>	40196: <00000>	
40122: <00000>	40147: <00000>	40172: <00000>	40197: <00000>	
40123: <00000>	40148: <00000>	40173: <00000>	40198: <00000>	
40124: <00000>	40149: <00000>	40174: <00000>	40199: <00000>	

Note that the Address field is set to 100, but the display screen starts at 40100. This is Modbus nomenclature. To modify a device Holding Register contents, simply double click on the address and enter the new value in the dialog that appears:

ក្រុម ស្រុកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុកស្រុក			
File Connection Display	Window Help		
ModSim1	٢		
	Device Id:	3	
Address: 0100	MODBUS Poi	int Type	
0100		GISTER 🔻	
Length: 100			
40100: <00009>	40125: <00000>	40150: <00000>	40175: <00000>
40101: <00000	40126: <00000>	40151: <00000>	40176: <00000>
40102: <00000>	40127: <00000>	40152: <00000>	40177: <00000>
40103: <00000>	40128: <00000>	40153: <00000>	40178: <00000>
40104: <00000>	40129: <00000>	40154: <00000>	40179: <00000>
40105: <00000>	40130: <00000>	40155: <00000>	40180: <00000>
40106: <00000>	40131: <00000>	40156: <00000>	40181: <00000>
40107: <00000>	40132: <00000>	40157: <00000>	40182: <00000>
40108: <00000>	A0133 Z000005	A0158: <00000>	40183: <00000>
40109: <00000>	Write Register	× 9: <00000>	40184: <00000>
40110: <00000>		D: <00000>	40185: <00000>
40111: <00000> 40112: <00000>	Address: 100	- 1: <00000> 2: <00000>	40186: <00000> 40187: <00000>
40112: <00000>	,	- B: <00000>	40187: <00000>
40114: <00000>	Value:	4: <00000>	40189: <00000>
40115: <00000>	value. ja	5: <00000>	40190: <00000>
40116: <00000>	Update Cance		40191: <00000>
40117: <00000>		7: <00000>	40192: <00000>
40118: <00000>	Auto Simulation	B: <00000>	40193: <00000>
40119: <00000>			40194: <00000>
40120: <00000>	40145: <00000>	40170: <00000>	40195: <00000>
40121: <00000>	40146: <00000>	40171: <00000>	40196: <00000>
40122: <00000>	40147: <00000>	40172: <00000>	40197: <00000>
40123: <00000>	40148: <00000>	40173: <00000>	40198: <00000>
40124: <00000>	40149: <00000>	40174: <00000>	40199: <00000>

The screen capture above shows the modification of address 100. Additional devices can also be created by once again selecting File->New. This allows for the testing of multiple Modbus Slave devices at the same time:

2000	- ModSim2	1		
File Connecti	on Display Win	dow Help		
💭 ModSim 1				
Mode	im2			
A		Device Id:	1	
Addre	ss: 0100	MODBUS P	oint Type	
L	0100	03: HOLDING RE	GISTER 🔻	
Lengt	h: 100			
	L			
40				
40 40100.	<00000>	40125: <00000>	40150: <00000>	40175: <00000>
40 40101	<00000>	40126: <00000>	40151: <00000>	40176: <00000>
40 40102	<00000>	40127: <00000>	40152: <00000>	40177: <00000>
	<00000>	40128: <00000>	40153: <00000>	40178: <00000>
40104:	<00000>	40129: <00000>	40154: <00000>	40179: <00000>
40105:	<00000>	40130: <00000>	40155: <00000>	40180: <00000>
40106:	<00000>	40131: <00000>	40156: <00000>	40181: <00000>
401073	<00000> <00000>	40132: <00000> 40133: <00000>	40157: <00000> 40158: <00000>	40182: <00000> 40183: <00000>
40 40109	<00000>	40134: <00000>	40158: <000002	40184: <00000>
40 40110	<00000>	40135: <00000>	40160: <00000>	40185: <00000>
40 40111	<00000>	40136: <00000>	40161: <00000>	40186: <00000>
	<00000>	40137: <00000>	40162: <00000>	40187: <00000>
40113:	<00000>	40138: <00000>	40163: <00000>	40188: <00000>
40114:	<00000>	40139: <00000>	40164: <00000>	40189: <00000>
	<00000> <00000>	40140: <00000> 40141: <00000>	40165: <00000> 40166: <00000>	40190: <00000> 40191: <00000>
40 40117	<00000>	40142: <00000>	40168. <000007	40192: <00000>
40 40118	<00000>	40143: <00000>	40168: <00000>	40193: <00000>
40 40119	<00000>	40144: <00000>	40169: <00000>	40194: <00000>
	<00000>	40145: <00000>	40170: <00000>	40195: <00000>
40121:	<00000>	40146: <00000>	40171: <00000>	40196: <00000>
40122:	<00000>	40147: <00000>	40172: <00000>	40197: <00000>
40123:	<00000> <00000>	40148: <00000> 40149: <00000>	40173: <00000> 40174: <00000>	40198: <00000> 40199: <00000>
40124.	(00000)	40149: (00000)	40174: <000002	40199. (00000)

Above shows multiple devices enabled. If there are further questions about the use of ModSim32, simply select the Help menu item and a manual will appear.

Blank

CHAPTER

[8] SNTP Simple Network Time Protocol

The Model 5300 controller supports the Simple Network Time Protocol (SNTP) as a client connecting to a server. This protocol provides a means to synchronize a computer system clock to that of the world clock, via the Internet. Government agencies provide this service for computers to query the current atomic clock time and adjust their clocks appropriately. For more detailed information reference www.time.gov

and www.boulder.nist.gov/timefreq/service/its.htm.

The time returned is based on Coordinated Universal Time (UTC), which is Greenwich Mean Time (GMT). As such, there is no adjustment for daylight savings time or time zones, which must be done locally. To avoid daylight savings time problems it is recommended that you base the controller time on GMT (default) and then use the provisions in the RTC Setup tab to automatically set the clock based on the time zone you are in, using an offset from GMT. Refer to *Document No. 951-520012: WebMON 2.0 User's Guide* for further details on the RTC Setup tab.

Use of SNTP is not a requirement but typically real time clocks can be expected to drift up to 30 seconds per week. The controller may drift up to 12 seconds per week, depending on the tolerance of crystals, components, etc. Synchronization allows its real time clock to be automatically set with regards to date, year, day of week, and time.

SNTP Register Configuration

SNTP may be configured using either a direct register interface or by individual registers. By default the controller will use the IP address of 192.43.244.18, port 123. The default update frequency is once/day and the default time zone used for clock reset is GMT. These may be changed by modifying the following registers:

20025-20028	SNTP Server IP Address: R/W, with 20025 being the first Octet, X.0.0.0, 20026 the second, 0.X.0.0, 20027 is the third, 0.0.X.0, and 20028 is the fourth, 0.0.0.X. Default is 192.43.244.18 (standard).
20041	SNTP Server Port: R/W, default is 123.

20042	SNTP Update Time : R/W; this register contains the number of seconds before the next synchronization request with the SNTP server. For example 3600 would be an hour, 86400 would be 24 hours. Default is 86400. When a change in time is made to this value it typically takes about 1 minute before the new value will take effect. Power cycling of the controller is not required.
20043	SNTP Offset from GMT: R/W, number of seconds to add or subtract from GMT, default is 0.

A 1 must be written to register 20096 whenever the above changes are made in order to store those changes to non-volatile storage. Also, to disable SNTP, simply set the IP address of the SNTP Host to 0.0.0.

SNTP WebMON Configuration

WebMON provides a more direct method of updating the SNTP configuration. As with registers, the SNTP Time Server Settings consist of a number of data entry fields, each with their own special functionality:

SNTP Time Server	Settings:			
Server IP	Port	Refresh Rate	Offset GMT	SNTP Enabled
192.43.244.18	123	86400	-18000	\checkmark
Update SNTP				

- Server IP
- Port
- Refresh Rate
- Offset GMT
- SNTP Enabled

By default the controller will use the IP address of 192.43.244.18, port 123. Updates will be performed once/day and the clock is set to GMT.

Server IP

The Server IP address designates the host that will provide the time service for the controller. By default the address is 192.43.244.18. Data is entered using the "dot" notation. Entering an IP address of 0.0.0 will disable SNTP requests.

Port

The Port is the TCP/IP port that the Time Server will be listening on for time requests. Typically this is port 123, which is the factory default.

Refresh Rate

The Refresh Rate is the number of seconds before the next synchronization request with the SNTP server. For example 3600 would be an hour, 86400 would be 24 hours (default). When a change in time is made to this value it typically takes about 1

minute before the new value will take effect. Power cycling of the controller is not required.

Offset GMT

Offset GMT contains the number of seconds to add or subtract from GMT once the time is received from the server. The default is 0, which means to set the clock to GMT. -18000 (-5 hours) would be the value used for Eastern Standard Time during daylight savings time, -14400 (4 hours) when not. Note that the value is both positive and negative.

SNTP Enabled

If the SNTP Enabled check box is checked, SNTP requests will be enabled and done in the background based upon the above parameters. When deselected the IP address will be forced to 0.0.0.0. If the time service is not being used it is best to ensure this box is not checked, thereby conserving CPU resources.

Blank

CHAPTER

[9] SMTP

Simple Mail Transfer Protocol (SMTP), documented in <u>RFC 821</u>, is the Internet's standard host-to-host mail transport protocol which typically operates over TCP port 25. The controller is capable of sending formatted email, using SMTP, under the control of a Quickstep program or by remote communications accessing a data register. Messages may be created either within an ASCII text editor

or using WebMON 2.0. Refer to *Document 951-520012: WebMON 2.0 User's Guide* for additional information on creating messages with WebMON.

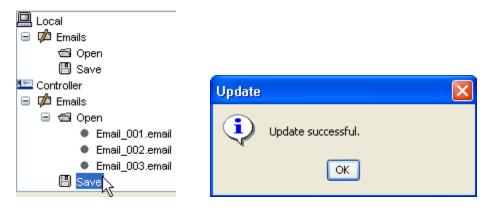
For email to operate properly the controller must have an email account on the email server. This will consist of a user account and password. The same account can be shared by multiple controllers.

Register Access

Text files created in a specific format and naming convention are stored on the flash disk /_system/Emails subdirectory. Files are stored with a name of "Email_###.email" where '###' references the value which would be written to the SMTP Send Register (12317), to request transmission. For example, a file name of "Email_001.email" would be sent if a '1' was written to the SMTP Send Register. Register 12318 is the SMTP Status Register. The status contents are defined as follows, after a write to the SMTP Send Register:

STATUS	DESCRIPTION
0	Processing
-1	Undefined
0x80000100	General Error, out of memory
0x80000900	Error, parameter error, aborted
0x80001400	Requested operation has failed.
0x80002100	Error, cannot connect to host.

Creating Emails using WebMON


The Email Notification tab in WebMON can be used to automatically create, edit, and delete email files.

System Ethernet Serial Summary Disks Run Programs RTC Setup Email Notification Authentication Security System Local Coloration Controller Controller Controller Controller Email_001 email Email_002 email Email_002 email Email_002 email Email_003 (Enter Script Number) SMTP IP Address Port Source Host (HELO) 12.40.53.10 25 (Optional) From (Originator) To (Destination) CC (Copy to) Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-control.com Subject: This is a 5200 Controller Alert!! Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like and is limited to 4K message size.	GSetup - ONLINE (ctc_bf_weave1)				
Run Programs RTC Setup Email Notification Authentication Security System Image: Controller Image: Controller<	System				
Imails Open Imails Open Imails New Imails Delete Imails Doen Imails Doen Imails Doen Imails Doen Imails Doen Imails Emails Imails Port Source Host (HELO) 12.40.53.10 Imails Z5 Imails Copy to a source Host (HELO) Imails Emails Imails Emails Imails Emails Imails Emails Imails Emails Imails Emails)(0	
SMTP IP Address Port Source Host (HELO) 12.40.53.10 25 (Optional) From (Originator) To (Destination) CC (Copy to) Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-control.com Subject: This is a 5200 Controller Alert!!! Message This email is being sent to you from a CTC 5200 controller. This email can contain as many register references as you like	 			Delete Dbl-Click	
12.40.53.10 25 (Optional) From (Originator) To (Destination) CC (Copy to) Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-control.com Subject: This is a 5200 Controller Alert!!! Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like	Email_ 003 (Enter Script Number)				
From (Originator) To (Destination) CC (Copy to) Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-control.com Subject: This is a 5200 Controller Alert!!! Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like	SMTP IP Address Port Source Host (HEL				
Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-control.com Subject: This is a 5200 Controller Alert!!! Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like	12.40.53.10	25	(Optional)		
Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-control.com Subject: This is a 5200 Controller Alert!!! Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like					
Subject: This is a 5200 Controller Alert!!! Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like	From (Originator) To (Destination) CC (Copy to)		CC (Copy to)	1	
Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like	Test5200Email@ctc-control.com kevin.halloran@ctc-control.com richards@ctc-contro		.com		
Message This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like					
This email is being sent to you from a CTC 5200 controller. The current register value is %dR13002 at this moment. This email can contain as many register references as you like	Subject: This is a 5200 Controller Alert!!!				
The current register value is %dR13002 at this moment. This email can contain as many register references as you like	Message				
This email can contain as many register references as you like	This email is being sent to you from a CTC 5200 controller. 🔥 🔥				
	The current register value is %dR13002 at this moment.				
and is limited to 4K message size.	This email can contain as many register references as you like				
	and is limited to 4K mes	sage size.			
				~	

Tree View, Local/Controller

At the top of the Email Notification tab is a tree list. This list is used to access formatted email files either locally or stored on a controller disk. Local->Emails references the local disk drive of the computer running WebMON. Selecting Local->Emails->Open will cause a dialog box to open and the selection of any email file for editing purposes. Selecting Local->Emails->Save will cause a dialog box to open and an email that is within the form at the bottom will be saved to the computer's hard disk.

Files that exist within the controller's disk may be individually viewed and selected from the Controller->Emails->Open tree node. Each file represents an individual node. To save a file that is created using the email template (form below the tree view), simply double click the Controller->Emails->Save node. The file will be saved and named using the Script Number defined within the email template, Email###.email.

Creating/Editing New Email Template

To create a new email, simply select the New button to the right of the Email Notification Tree view. This will cause all existing information to be removed from the template form and defaults to be entered. Alternatively an existing email could be loaded and modified as desired, then saved.

A number of data entry fields are available to define the email to be sent by the controller. The top most field, immediately below the tree view, allows the entry of a numeric from 1 to 999. This will become the file sequence number used within the email file name, Email###. Leading 0's will automatically be provided.

Email_	(Enter Script Number)
--------	-----------------------

The next set of data entry fields is a table whose row defines the SMTP server that is to be used for sending email. Each email may use the same and/or different SMTP servers. Make sure you are authorized for using the server and you are not attempting to relay. Relaying is restricted and occurs when you try to copy an email to someone that is not authorized, outside your domain. For example if the domain was ctc-control.com, you would not be able to send a copy of the email to hotmail.com, using POP3. Mail Servers can be configured to allow for exceptions, if desired. A typical way around this would be to use a distribution list within your mail server that in turn sends outside the domain.

Available data entry parameters for the first table are:

SMTP IP Address	Port	Source Host (HELO)
12.40.53.10	25	(Optional)

SMTP IP Address (SMTP Server)

This is the server IP address of the server handling your email account. It is typically within the same domain as your 'From:' email address. The "dot" notation format is used.

Port

The standard SMTP port used is 25; but it may be changed here if desired. This is the port the SMTP server will be listening on for connection requests.

Source Host (HELO)

This is an optional field which can be used to report your domain within the email. It is required by some hosts. For example the domain of <u>www.ctc-control.com</u> would be ctc-control.com.

The second table is used to define who the email is from [FROM(Originator)], who it is to be sent to [TO(Destination)], and who it is to be copied to [CC(Copy to)]. Only one address is supported per entry. If larger distributions are required it is suggested that a Distribution List be created on the Email server.

The required format of each email address is <u>person@domain.com</u>. Enter each as needed. Note the CC (Copy to) field is optional:

n (Originator)	To (Destination)	CC (Copy to)	
5200Email@ctc-control.com	kevin.halloran@ctc-control.com	richards@ctc-control.com	

Subject

The Subject line will appear as the summary in an email message. Enter any desired text:

Subject: This is a 5200 Controller Alert!!!

Message

The Message area can contain up to 4K bytes of data. Messages may be any mix of normal text characters and references to Controller registers. Registers are references using "C" style printf directives. For example, to reference the 13002 register and have its contents placed in a message a %dR13002 would be used, optionally %05dR13002 would force at least 5 characters wide with leading 0's as filler. In printf notation %d is decimal, %x is lower case hex, and %X is upper case HEX. These are the only acceptable printf syntaxes currently supported in email messages. Below shows an example of a message which would include the current value of the 13002 register, when sent:

Message	
This email is being sent to you from a CTC 5200 controller.	^
The current register value is %dR13002 at this moment.	
It is now %dR13002 and incrementing every millisecond.	
This email can contain as many register references as you like and is limi	
Regards,	*

Deleting Email Template

Deleting an email is only supported from a controller disk. To delete a file use the Controller->Emails->Open tree view to list the available files. Highlight the one desired and select the Delete button. The file will be deleted and the tree updated.

G Setup - ONLINE (ctc_bf_we	eave1)		
System			
Ethernet Run Programs RTC Setup		Summary Authentication Security	Disks System
 Local Imails Gpen Bave Enails 			New Delete
 ☐ ☐ Open € Email_001.email € Email_002.email € Email_003.email E Save 	Delete the select from the controll	ed SMTP Email Messa ler's disk	ge Script,

Creating Emails using ASCII Text Editor

The text used to create emails, to be sent by a Model 5300 controller, requires a specific format. That format includes various 'section headers', used to define the necessary parameters. It is recommended that WebMON be used for the creation of all emails although this section is included for those who desire a further understanding of the format.

There are two section headers. The first, known as [SMTP], must appear in the beginning of the file and is used to define all the specific details of the email message, such as destination, mail server, etc. No spaces are allowed except within the email message itself, designated by the [SMTP_MESSAGE] section header. It is best to use a sample email as an example:

This is a comment [SMTP] IP=12.40.53.10

PORT=25 HELO= TO=kevin@ctc-control.com FROM=Test5300@ctc-control.com CC= BCC= SUBJECT=Test email message [SMTP_MESSAGE] Enter Email Message to send, %05dR13002 references register...

- The Pound sign may appear as the first character in any line. All following text on that line will be ignored. It is used to place comments within your email definition document.

[SMTP] – Section header. Required to be on the first line of the file.

IP= This is the SMTP Server name, it may be a DNS resolvable name or an IP address of the server handling your email account. It is typically within the same domain as the From: email address. The "dot" notation format is used. No spaces are allowed before or after the '=' sign.

PORT= The standard SMTP port used is 25; it may be changed here if desired. This is the port the SMTP server will be listening on for connection requests.

HELO= Optional field that can be used to report your domain within the email. It is required by some hosts. For example the domain of <u>www.ctc-control.com</u> would be ctc-control.com.

TO= Required field, defining the destination. Only one addressee may be listed per TO entry, although multiple TO fields are allowed.

FROM= Required field, the email address that represents the controller and that can be replied to. This account should exist on the SMTP server. Otherwise, relaying must be enabled.

CC= Optional field, defining the destination to copy the email to. Only one addressee may be listed per CC although multiple CC fields are allowed.

BCC= Optional field, defining the destination to copy the email to. Only one addressee may be listed per BCC although multiple BCC fields are allowed. Typically BCC fields are hidden and will not be displayed when the email is received by other addressees.

SUBJECT= Required field, specifies the email subject, generally a short summary. Spaces are allowed within the text.

[SMTP_MESSAGE] – Section header. Required prior to the start of the email text message. All following text is assumed to be part of the email. Refer to the <u>Creating</u> <u>Emails using WebMON</u> section for details on the Message area.

Ensure that the <Enter> key is entered on the last item in the message, returning the cursor to the far left-hand side of the message.

[SMTP] - New to the 5300 firmware release R69.20 is the support of the AUTH LOGIN sequence used by a number of public email sites. One in particular is <u>www.gmx.com</u>. This web site can be used for both POP3 and SMTP email. Unlike sites like gmail and hotmail it does not require SSL/TLS encryption. To enable the AUTH LOGIN feature simply specify a USER and PASSWORD definition within the [SMTP] section:

USER= User account name, limited to 80 characters. For GMX mail server this is your email address.

PASSWORD= Email account password, limited to 80 characters.

GMX email account sample reference:

```
[SMTP]
IP=smtp.gmx.com
PORT=25
HELO=
TO=somename@gmail.com
FROM=bluefusion@gmx.com
CC=
SUBJECT=test GMX Email
USER=bluefusion@gmx.com
PASSWORD=BlueFusion
[SMTP_MESSAGE]
Testing GMX email, %dR13002 references register...
```

Below is an Email message sent and received when the sample email file was stored to Email_001.email within the /_system/Emails sub-directory, and a 1 was written to the SMTP Send Register 12317:

After communications the SMTP Send Register displays the email message number sent along with the results in the SMTP Status Register, 12318. 12318 changed to 0 after the initial write of a 1 to 12317, ending with a 1 after successful transmission:

🔤 Registers		
Display		
reg 12317 reg 12318 reg 12319	1 1 ×	12317 • 12318 12319

Monitored with CTCMON

Notice that the %05dR13002 was replaced by the actual register value in the controller (10940) at the time the email was composed for transmission.

SMTP Email Diagnostics

Trying to resolve SMTP problems can be difficult without network tracing capability. To help in this matter the 'test esmtp' and 'test smtp' commands can be executed via the telnet administrator interface. These commands allow you to send a sample email and monitor what is being sent and received, typically yielding better diagnostic information:

test smtp <host> <from> <to> (no login is used, internal email server)

test esmtp <host> <from> <to> <username> <password> (uses the AUTH LOGIN sequence)

Example of Diagnostic Trace:

BlueFusion/>test esmtp smtp.gmx.com bluefusion@gmx.com someone@gmail.com bluefusion@gmx.com BlueFusion 220 mail.gmx.com GMX Mailservices ESMTP {mp-us002} helo 250 mail.gmx.com GMX Mailservices {mp-us002} AUTH LOGIN 334 VXNlcm5hbWU6 Ymx1ZWZ1c2lvbkBnbXguY29t 334 UGFzc3dvcmO6 Qmx1ZUZ1c2lvbg== 235 2.7.0 Go ahead {mp-us002} mail from:<bluefusion@gmx.com> 250 2.1.0 ok {mp-us002} rcpt to:<someone@gmail.com> 250 2.1.5 ok {mp-us002} data 354 mail.gmx.com Go ahead {mp-us002} Date: 10/14/2010 20:24:29 From: bluefusion@gmx.com To: someone@gmail.com CC:

BCC: Subject: 5300 Email Test This is the first line. This is the second. This is register 13002 = 0625 . 250 2.6.0 Message accepted {mp-us002}

quit 221 2.0.0 GMX Mailservices {mp-us002} SUCCESS

[10] **POP**3

Post Office Protocol, Version 3 is a set of standardized rules (protocol) by which a client machine can retrieve electronic mail from a mail server (POP server). The server holds the email until the user can retrieve it. POP3 only provides for receiving email, not sending it. SMTP is used for transmission.

For proper operation controllers should be assigned their own email account. You may not share an email account with a controller since each controller will read and delete each email, as it is read and processed.

Mail Inbox Server Configuration

The POP3 Email Server configuration can only be set up using WebMON via the Ethernet Setup tab. It consists of a number of data entry fields, each with their own special functionality:

POP3 Mail Ir	nbox Serve	er Set	tings:				
Pop3 Server	Port		Poll Rate	Host Timeout	User Account	Password	POP3 Enabled
12.40.53.10		110	10000	2000	Test5200	vetx123	 Image: A start of the start of
Update I	POP3						

- POP3 Server
- Port
- Poll Rate
- Host Timeout
- User Account
- Password
- POP3 Enabled

POP3 Server

The POP3 Server IP address designates the host that will provide the POP3 mailbox account for the controller. This must be the server's IP address, entered in "dot" notation.

Port

The Port is the TCP/IP port that the POP3 Server will be listening on for mail requests. Typically this is port 110, which is the factory default.

Poll Rate

The Poll Rate is the time, in milliseconds, that the controller will wait until it checks for available email, within its mailbox. All available email will be read and deleted as processed, in a sequential order. After processing this time delay will occur until the next processing sequence. 10000 milliseconds (10 seconds) is the default interval.

Host Timeout

The Host Timeout is the time, in milliseconds, that the controller will try to contact its POP3 server and wait for responses for mail requests. It is considered the error timeout. After this period of time the controller will stop trying to contact the server and wait the next poll rate interval before trying again. The default timeout period is 2000 milliseconds (2 seconds).

User Account

The User Account is the name needed to log into the mailbox. This is typically the mailbox name but could be set differently by the POP3 server. It is limited to 30 characters.

Password

The **Password** is the password required, along with the User Account, to log into the mailbox being supplied by the POP3 server. It is limited to 30 characters.

POP3 Enabled

A check box is available to enable the POP3 functionality. When checked POP3 is active. Once all changes have been made to the above parameters select the Update POP3 button to make the changes current in the controller.

A Hardware reset must be generated whenever the POP3 parameters are changed for them to become active.

To verify that the controller is monitoring a POP3 account, the WebMON Setup System tab can be viewed and the execution thread verified:

GSetup - ONLINE (12.40.53.158) System Ethernet Serial Summary Disks Run Programs System RTC Setup Authentication Email Notification Security Memory Heap Used: 91652 Restore Factory Defaults Hardware Reset Active Threads Summary: 06219d5c TCP Binary Server Suspended ~ 0621ae3c SNTP Client Waiting on Delay 0621bflc CTServer Broadcast RX Waiting on TCP/IP 0621d694 FTP Server Suspended 0621e774 TELNET Server Suspended 0621ffc0 Web Thread Suspended 0622560c Email Pop3 Thread Waiting on Delay 0622ab20 Telnet erver Session Ready to run Controller program threads currently executing and their state.

Model 5300 Communications & Logging Guide

Email Formatting

Once the Model 5300 controller email server is configured, enabled, and system restarted, the controller will continually poll the email server for mail. As each mail message is found it will be downloaded, processed, and deleted from the inbox. Processing consists of scanning the email whose messages contain special Section Header character strings and script commands for execution.

Section Headers

The Section Headers that exist within the message body of an email are defined as follows:

[CTC_EMAIL_START] – Script commands follow as defined within *Document No.* 951-530003: *Model 5300 Script Language Guide*. This section header may begin and end as often as required as long as there is a matching [CTC_EMAIL_END] for each. Note that a # sign at the beginning of a line represents a comment.

[CTC_EMAIL_START_ATTACH_ORIGINAL] – Exactly the same as [CTC_EMAIL_START] except that a copy of the original email is appended to the end of the reply email.

[CTC_EMAIL_END] – Script commands end and any text following should be ignored.

Example Email message text:

```
This line is ignored and can be any information desired in the
email.
The next line will signify the start of script processing.
[CTC EMAIL START ATTACH ORIGINAL]
# This is a comment.
# Request a copy of this email be attached to the original, not
# needed but useful to know what we sent. Regardless a copy of
# each of these commands and the reply is always sent back as a
# reply. [CTC EMAIL START] will not cause original to be
attached.
# Let's assume we received an alarm condition via pager or email
# so lets clear it. Possibly register 1 is used as a flag by the
# program. Also keep these lines less than 72 characters when
# using Microsoft Exchange as it typically auto-line wraps and
# you will end up with a bad command.
1 = 0
# Now lets get all the version information just to make sure
# things are OK.
get versions
# Restart the controller given to clear the alarm
set restart
# We are all done now so return to normal email text
[CTC EMAIL END]
This is just normal email text. We could issue another command
block if desired following this text.
```

Emails must be sent as ASCII Plain Text messages, not HTML formatted. Also only Quoted-Printable data encoding is supported within the message body, reference RFC1341.

Mail Messages should be limited to 4096 bytes, a 9K buffer is available assuming a reply with the original message attached.

Ensure that the enter key is entered on the last item in the message, returning the cursor to the far left hand side of the message.

ASCII Text Emails

All emails sent to the controller <u>MUST</u> be sent as ASCII Plain Text messages, not HTML formatted. Many email programs allow the selection of HTML, Rich Text, and Plain Text. Plain Text is equivalent to ASCII text messages.

There are a number of ways to make this selection. Using Microsoft Outlook 2003 as an example you may set this as the default to always use or select it on an individual email basis.

Microsoft Outlook Plain Text, Individual Basis

On an individual email basis it may be selected after you open a window for composing a New email:

A window will appear to compose the email, note the pull down box and ensure it is selected to Plain Text.

📬 Untitle	d Mes	sage										
Eile Ed	it <u>V</u> i∈	w <u>I</u> n	isert F	= <u>o</u> rmat	<u>T</u> ools	T <u>a</u> ble	<u>W</u> indow	Help				
🖃 <u>S</u> end	0 -		8,/ 🔤	5 ?	↓ ♥	1	🔡 Option:	s 🔻	HTML	-		
🛄 То									HTML Rich Text			
🛄 Cc									Plain Text	-		
Subject:										Ŭ		
: 🛛 🕘 🛛	¥ 9	16	Arial		Ŧ	10 👻	A - B	Ι	<u>u</u> ≣ ≣	=	-	律,

Some email services, such as MSN Hotmail, always send messages in Plain Text format.

Note that there are a couple of things to be aware of, especially in Outlook 2002. First is that text sent may automatically have line wrapping done. For example Outlook 2002 does it at 64 characters, Exchange sets it at 72 characters and Outlook 2003 has a user settable option. The text will appear normal within your Outlook editor but is converted prior to receipt by the controller. Also when receiving a reply, Outlook will remove some of the line feeds making some of your lines appear as one. To remedy this for Plain Text messages there are two option screens under Outlook->Tools->Options, then Email Options button:

Preventing removal of extra line breaks:

Options ?	×
E-mail Options	
Message handling	
After moving or deleting an open item: return to the Inbox 💽	
Close original message on reply or forward	
 Save copies of messages in Sent Items folder Automatically save unsent messages 	
Remove extra line breaks in plain text messages	
Read all standard mail in plain text	
Read all digitally signed mail in plain text	
Advanced E-mail Options Tracking Options	
On replies and forwards	
When replying to a message	
When forwarding a message	
Include original message text	
Prefix each line with:	
Mark my comments with:	
Kevin Halloran	
OK Cancel	

Increase the line length before auto-wrapping text, referencing Outlook->Tools->Options->Mail Format Tab, then Internet Format button:

Options	? ×
Preferences Mail Setup Mail Format Spelling Security Other De	legates
Message format Choose a format for outgoing mail and change advanced setti Internet Format	ings.
 When an HTML message contains pictures located on the Internet, send a copy of the pictures instead of the reference to their location 	nessages ptions colors,
	ker
Signa Plain text options Automatically wrap text at 76 Encode attachments in UUENCODE format when sending a plain text message	r 🗸
Restore Defaults OK Cancel	
OK Cancel	Apply

Some Microsoft Knowledgebase Articles worth referencing are 287816 and 327573:

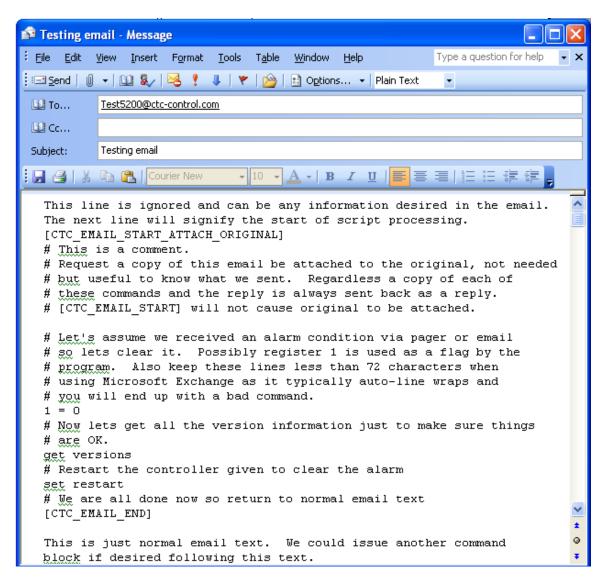
http://support.microsoft.com/default.aspx?scid=kb;EN-US;327573


http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3Bq287816

Microsoft Outlook Plain Text, Default for All

Configuring Microsoft Outlook to always default to Plain Text is done via the Tools menu:

Engineering - Microsoft Outlook							
: <u>File E</u> dit <u>V</u> iew <u>G</u> o	<u>T</u> oo	ls <u>A</u> ctions <u>H</u> elp					
🗄 💁 <u>N</u> ew 👻 🎒 🎽 🗙		Send/Receive					
Mail		Find 🕨					
Favorite Folders		Address <u>B</u> ook Ctrl+Shift+B					
Inbox (11)	*	Organi <u>z</u> e					
🔯 Unread Mail	ŵ	Rules and Alerts					
🔍 For Follow Up 🔄 Sent Items		O <u>u</u> t of Office Assistant					
All Mail Folders	Mailbo <u>x</u> Cleanup						
🖃 🧐 Mailbox - Kevin Hallor	0	Empty "Deleted Items" Folder					
🛯 🗀 \Infected	1	Recover Deleted Items					
Corporate Corporate Corporate		Eorms •					
Drafts		Macro 🕨					
Engineering		 Speech					
Inbox (11) ∃ infected		E-mail Accounts					
🧓 Junk E-mail		-					
ia Networks		Customize					
Sent Items		Options					
STG	E-Mail Scan Properties						
🚞 Velcro		Scan for Viruses					
🚞 Vertey Ontions							


Select the Mail Format tab and set the Compose in this message format pull down to Plain Text.

When finished, click OK. The default for all messages is now Plain Text.

Sample Email and Response

The email below was detailed previously and is now shown ready for sending within an Outlook Message box:

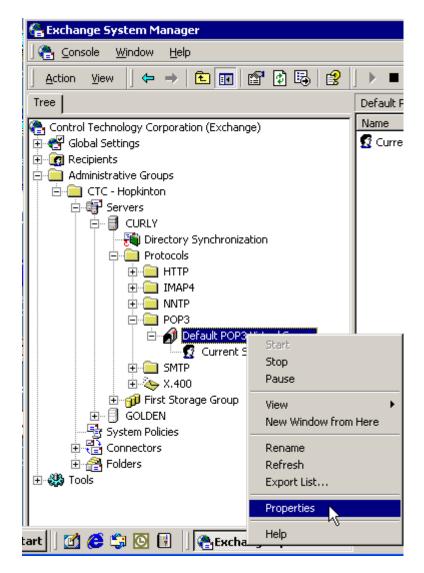
Upon clicking Send the email will be sent to mail server where the 'Test5300' account resides. Based on the poll rate the controller will then read the email, process the commands and return a reply since the [CTC_EMAIL_ATTACH_ORIGINAL] parameter is listed. The response received several seconds later is:

```
BlueFusion> 1 = 0
1 = 0
BlueFusion> get versions
```

```
*Local 5300 Serial Number = 00063255
   DNS Name: 5300Kev DHCP active: YES
  Group Name: Sales.DemoUnits
  IP Address = 12.40.53.158 MAC Address = 00C0CB00F717
   Total: DIN = 4 DOUT = 16 AIN = 8 AOUT = 4 MOTION = 0
  Base Firmware Revisions:
     Quickstep SH2 ApplicationV05.00.11Quickstep SH2 MonitorV15.15 @
   Slot Firmware Revisions:
     01. M1-30A-Analog 2 I/O V01.07
          Ain1: data-32596 offset-32631 spanpos-27218 spanneg-31715
          Ain2: data-32615 offset-32621 spanpos-25649 spanneg-31771
          Aout1: data-00000 offset-32713 spanpos-31183 spanneg-31268
         Aout2: data-00000 offset-32734 spanpos-31176 spanneg-31261
     02. M1-31A-Analog 4 in
                                                         V01.01
          Ain1: data-32809 offset-32708 spanpos-32747 spanneg-32707
          Ain2: data-00000 offset-32707 spanpos-32743 spanneg-32704
         Ain3: data-00000 offset-32706 spanpos-32753 spanneg-32705
         Ain4: data-65535 offset-32702 spanpos-32756 spanneg-32701
      03. M1-30A-Analog 2 I/O
                                              V01.07
         Ain1: data-32710 offset-32719 spanpos-31745 spanneg-31731
         Ain2: data-32707 offset-32715 spanpos-31756 spanneg-31734
         Aout1: data-00000 offset-32700 spanpos-31216 spanneg-31203
         Aout2: data-00000 offset-32709 spanpos-31157 spanneg-31140
                                                          V00.00
     04. Empty
     05. M1-20A-Digital 8 Output
                                                          V00.00
         Dout: 0x99
     06. M1-20A-Digital 8 Output
                                                        V00.00
    Dout:0x9F07. No Expansion ConnectedV00.0008. No Expansion ConnectedV00.0009. No Expansion ConnectedV00.0010. No Expansion ConnectedV00.0011. No Expansion ConnectedV00.0012. No Expansion ConnectedV00.0013. No Expansion ConnectedV00.0014. No Expansion ConnectedV00.0015. No Expansion ConnectedV00.0016. No Expansion ConnectedV00.0017. No Expansion ConnectedV00.0018. No Expansion ConnectedV00.0019. No Expansion ConnectedV00.0020. No Expansion ConnectedV00.0021. No Expansion ConnectedV00.0023. No Expansion ConnectedV00.0024. No Expansion ConnectedV00.00
         Dout: 0x9F

NO Expansion Connected
NO Expansion Connected
20. No Expansion Connected
21. No Expansion Connected
22. No Expansion Connected
23. No Expansion Connected
24. No Expansion Connected

No Thermocouples.tbl file found.
BlueFusion> set restart
SUCCESS: Restart Command completed.
```


```
----Original Message-----
This line is ignored and can be any information desired in the
email.
The next line will signify the start of script processing.
[CTC EMAIL START ATTACH ORIGINAL]
# This is a comment.
# Request a copy of this email be attached to the original, not
# needed but useful to know what we sent. Regardless a copy of
# each of these commands and the reply is always sent back as a
# reply.
# [CTC EMAIL START] will not cause original to be attached.
# Let's assume we received an alarm condition via pager or email
# so lets clear it. Possibly register 1 is used as a flag by the
# program. Also keep these lines less than 72 characters when
# using Microsoft Exchange as it typically auto-line wraps and
# you will end up with a bad command.
1 = 0
# Now lets get all the version information just to make sure
# things are OK.
get versions
# Restart the controller given to clear the alarm
set restart
# We are all done now so return to normal email text
[CTC EMAIL END]
```

This is just normal email text. We could issue another command block if desired following this text.

Microsoft Exchange 2000 Setup

All email servers are different in the way they are configured. As an example the setup of Microsoft Exchange 2000 is shown.

First invoke the Microsoft Exchange System Manager. For your server locate the POP3 protocol under the Administrative Groups, expand the folder and get the properties of the POP3 Virtual Server that you will be using.

The Properties dialog will now appear:

Default POP3 Virtual Server Properties	' X
General Access Message Format Calendaring	_
Default PDP3 Virtual Server	
IP address:	
12.40.53.10 Advanced	
Limit number of connections to:	-
Connection time-out (minutes): 10	1
OK Cancel Apply Help	

Select the Access tab:

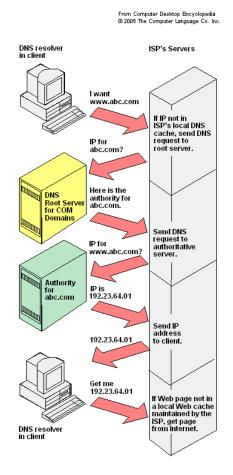
Default P	DP3 Virtual Server Properties		? ×		
General	Access Message Format Calendarin	פו			
Ena	Access control Enable anonymous access and edit the authentication methods for this resource.				
Secure communication View or set the secure communications method used when this virtual server is accessed. Communication					
Gra	ection control nt or deny access to this resouce using ddresses or Internet domain names.	Connection]		

Select the Authentication button and ensure Basic Authentication is selected.

Authentication
Select the authentication method to use for this resource.
Basic authentication
The password will be sent over the network in clear text using standard commands.
Default domain:
✓ Integrated Windows Authentication
The client and server negotiate the Windows Security Support Provider Interface.
OK Cancel Help

When done select OK, then click the Connection button. For security reasons you may only want to allow access from within your domain. Below allows all connections but by selecting the Only the list below radio button you can restrict access.

Connection 🔀				
Select which computers may access this virtual server:				
C Only the list below				
 All except the list below 				
Computers:				
Access IP Address (Mask) / Domain Name				
Add Remove				
·				
OK Cancel Help				


When complete select the OK button on all open dialogs.

[11] DNS Support

(DNS - **D**omain **N**ame **S**ystem) A system for converting host names and domain names into IP addresses on the Internet or on local networks that use the TCP/IP protocol. For example, when a Web site address is given to the DNS either by typing a URL in a browser or behind the scenes from one application to another, DNS servers return the IP address of the server associated with that name.

DNS and the Model 5300

The Model 5300 controller is capable of using DNS to resolve names used in place of IP addresses. The actual DNS IP address used will be that returned by the DHCP server, or when using static IP Addresses, 20128 to 20131 allow the setting of a static DNS server reference.

DNS IP resolution is supported anywhere IP addresses are used within scripts. Both names and IP '.' nomenclature may be intermixed within commands.

Script commands that support DNS:

```
ftpconnect <host name or IP Address>
test esmtp <host> <from> <to> <username> <passwd>
dnslookup <host name>
dnsRlookup
    dnsRlookup <Reg #> <host name>
    dnsRlookup 5 www.ctc-control.com
    Assuming this resolved to 12.40.53.10, this would
    store the following:
        Register 5 = 12
        Register 6 = 40
        Register 7 = 53
        Register 8 = 10
```

CHAPTER

[12] Quickstep & QuickBuilder Symbols

This section discusses the symbol file generated by Quickstep 2 and the QuickBuilder tools. These symbols can be imported into HMI displays and used to symbolically monitor assigned registers. Additionally the recommended CTNet Binary Protocol commands for both legacy and newer controllers are discussed.

Quickstep Symbol Table

Supported Controllers: Models 2700, 5100, 5200, 5300.

The symbol format used by Quickstep 2 consists of an ASCII text file with tab delimited fields, each line representing a record entry. Each record is terminated by a 0x0d 0x0a combination. There are four fields:

TYPE – This field determines the resource type. It consists of a single bit set as follows:

1 - Constant
2 - Analog Input
4 - Analog Output
8 - Counter
16 - Data table column
32 - Display
64 - Flag
128 - Digital Input
256 - Stepper
1024 - Register
2048 - Servo
8192 - Step Name
65536 - Unknown Step name
131072 - Digital Output
524288 - Thumb Wheel

RESOURCE – Assigned resource number for access.

STATE – State references the active state, normally open or closed, only used for digital resources. If 0 then normally open and active state is a 1, if 1 then normally closed and active state is a 0.

NAME – Symbolic name.

Example:

1024	38	0	bZeroBatchCount
1024	39	0	bEditJob
1024	9	0	bTest
128	1	0	reot
128	12	0	buckleSensors
128	13	0	sawVFDStatus
131072	13	0	servoReset
131072	14	0	servoEnable
131072	15	0	runSaw
4	1	0	sawSpeed
4	2	0	cnvyrSpeed

Referencing the symbol sawSpeed, its TYPE is a 4, meaning Analog Output. The RESOURCE is 1, first analog output in the controller. STATE field is ignored since that is only for digital.

For HMI access purposes only the following TYPE fields are typically supported (32 bit integers); the rest can be ignored:

2 - Analog Input (resource 1 to N)
4 - Analog Output (resource 1 to N)
64 - Flag (resource 1 to N)
128 - Digital Input (resource 1 to N)
1024 - Register (resource 1 to N)
131072 - Digital Output (resource 1 to N)

Quickstep HMI Communications

Numerous commands are available within the CTNET Binary Protocol as described in the previous chapter.

Note: 2700, 5100, and 5200 controllers do not support Variants.

To simplify access all resources can be accessed by using registers, adding the resource number to the base value:

Refer to Document No. 951-530006: Model 5300 Quick Reference Register Guide.

Analog Input, base register 8500 Analog Output, base register 8000 Flag, base register 13200 Digital Input, base register 2000 Register, base register 0 Digital Output, base register 1000

For example, if the TYPE is a 2, designating an Analog Input, with a RESOURCE number of 5, reading register 8505 (8500 + 5) will result in the Analog Input value.

Referencing *Document No. 951-530001: Model 5300 Enhancements Overview*, the primary commands of interest are:

Command	Description
9	Read a register
11	Change a register
75	Read a bank of 50 registers (limited from 1 to 1000)
77	Read a bank of 16 registers
87	Request random registers from list (not supported 2701E/2601)

QuickBuilder Symbol Table

Supported Controller: Model 5300

Two symbol table formats available, that described below as well as the Quickstep 2 table format for backward compatibility to tools like CTC MON. Note that the Quickstep 2 format has reduced symbolic information. The symbol file can be found in the project sub-directory with a .sym file extension. Two are created upon translation that, with the base name ending with QS2.sym, is in the Quickstep 2 format.

The symbol format used by QuickBuilder consists of an ASCII text file with fixed field sizes, padded with spaces, each line representing a record entry. Each record is terminated by a 0x0d 0x0a combination. There are eight fields:

SYMBOL – Symbolic name, starting in record position 1.

GROUP – Storage group, starting in record position 51. Available groups are: double – 64 bit double in Microsoft format externally via CTC binary protocol, gcc internally (32 bit words swapped). Quickbuilder will reference this as a float (float in Quickbuilder world is actually 64 bits). boolean – 32 bit integer with 0 or 1 value, false/true.

int - 32 bit integer.
string - array of characters.

TYPE – Resource type, starting in record position 61. Available types are:

axis - Servo or stepper axis.

var - Variable, volatile.

nvar-Variable, non-volatile

din – Digital Input

dout - Digital Output

ain - Analog Input

aout - Analog Output

pid – PID Algorithm, where RESOURCE is input of PID and REGISTER is output of PID.

RESOURCE – Assigned resource number for access, starting in record position 71.

REGISTER – Assigned register number for access, starting in record position 81. Typically used instead of RESOURCE.

STORAGE - Storage type, starting in record position 91. Available types are: scalar - Single item. vector - One dimensional array. table - Two dimensional array. Note: Arrays are allocated dynamically. Thus size can change during runtime.

MODULE – Controller module model number referenced, for informational purposes only, starting in record position 101. All spaces if variable or pid.

SLOT – Controller slot module is expected in, for informational purposes only, starting in record position 111. All spaces if variable or pid.

Example:

buckleSensors	boolean	din	12	2012	scalar	M3-11	1
bZeroBatchCount	boolean	var	0	38	scalar		
cnvyrSpeed	int	aout	2	8002	scalar	M3-34	2
cnvyrSpeed	int	ain	1	8501	scalar	M3-32	3
COFFEE POT	boolean	dout	3	1003	scalar	M3-10	4
conveyorVFDStatus	boolean	din	14	2014	scalar	M3-11	1
cSaw	int	var	0	16	scalar		
HEATER	boolean	dout	2	1002	scalar	M3-10	4
nvar1	double	nvar	0	36701	scalar		
PID PWM	int	pid	8502	5903	scalar		
PID1	int	pid	8501	8001	scalar		
PID2	int	pid	8502	8017	scalar		
PWM1	boolean	dout	1	1001	scalar	M3-10	4
varl	double	var	0	36101	scalar		

QuickBuilder HMI Communications

Numerous commands are available within the CTNET Binary Protocol as described in the previous chapter.

Note: QuickBuilder makes extensive use of Variants, which are only supported in the Model 5300 controller..

To simplify access all resources can be accessed by referencing the assigned REGISTER.

Referencing *Document No. 951-530001: 5300 Enhancements Overview*, the primary commands of interest are:

Legacy Register Con	nmands (scalar integers)	
Command	Description	
9	Read a register (integer only, else converts if a Variant)	
11	Change a register (integer only)	
75	Read a bank of 50 registers (integer only, 1 to 1000)	
77	Read a bank of 16 registers (integer only)	
87	Request random registers from list (integer only, else	
	converts if a Variant)	
Variant Commands	(integers, floats, strings, scalar & arrays)	
Command	Description	
91	Get properties (only needed if dynamic array size needed)	
<i>93</i>	Read a variant	
<i>95</i>	Change a variant	
109	Read a variant array block (consecutive)	
113	Read a block of variants, randomly	

For optimized performance integer access should use the Legacy Register Commands. Variants can be of any type and have a greater overhead.

Blank

CHAPTER

[13] Fault Task Handler

When Quickstep programs encounter problems they fault, removing control from the programmer. A new feature available in Blue Fusion controllers is the Fault Task Handler. The Fault Task Handler is a regular Quickstep task that can be branched to and executed when a soft fault occurs. The Handler is simply a standard Quickstep program. It can be set up as either a separate task that is looping on a delay

instruction awaiting the fault, or a main program that sets the Fault Task Handler step and continues executing. Later branching in the program can go to the step designated to handle the fault.

There can only be one Fault Task Handler active at a time. Any task can be activated as a handler by writing a step number to branch to in register 13038, the TASK_FAULT_STEP_REGISTER. A branch will occur to the designated step when a Fault occurs. You can change which task is the handler or where to branch to at any time, by setting 13038 to a different step, or to 0 to disable the handler. Register 13040, TASK_FAULT_MASK_REGISTER can be set to enable which faults will cause the branch to occur. Each bit is OR'd as required to enable each type of Fault:

FAULT MASK	FAULT TYPE
0x0001 (1)	Fatal Errors
0x0002(2)	Program Errors
0x0004(4)	Motion Errors
0x0008 (8)	Analog Errors
0x0010 (16)	Digital Errors
0x0020 (32)	Communications Errors

When a Handler is executing it will ignore further soft faults and continue executing. The fault state must be cleared for normal operation to continue. This is controlled by register 13041, the TASK_FAULT_CLEAR_REGISTER (Write Only). This register controls the state of program execution:

Program State	Description	
1	RESET – Reset the controller only and then stop	
5	RESTART – Reset the controller and begin running again at step 1.	
6	STOPPED – Stop the controller but do not reset.	
8	RUNNING – Ignore the fault and continue running.	
9	FAULT – Continue to fault as usual.	
10	SHUTDOWN – Reset the controller and shutdown, requires a power cycle to exit.	

Important registers are as follows:

Register	Description
13032	Fault Code $-(R)$ Contains the fault code for
	what caused the fault.
13033	Fault Step $-(R)$ Step in which fault occurred.
13034	Fault Task – (R) Task number, starting at 1,
	which caused the fault
13035	Fault Data – (R) Any relevant error data.
13038	Fault Step Register $-$ (R/W) Step to branch to when fault occurs. Write a 0 to disable.
13039	Fault Task Register $-(R)$ Task number that is the active Fault Handler, 0 means none.
13040	Fault Mask Register – (R/W) Bit OR of types of fault that will invoke the handler, by default all enabled (-1) when the Fault Step Register is written
13041	Fault Clear Register – (W) Used to write the recovery state when done processing the Fault.

Fault Codes

Fault Value	Fault Mask	Description
1	1	Illegal function
2	1	Bad/corrupt program data
3	2	Destination step is empty
4	Not Used	Bad thumbwheel data
5	1	Step one is empty step
6	2	Too many tasks
7	4	No such stepping motor
8	4	Motor not ready
9	4	Motor not profiled
10	4	No such servo exists
11	4	Servo not ready
12	4	Servo Error
13	2	No such register exists
14	2	No such data table column
15	2	No such data table row
16	Not Used	No such prototyping board
17	Not Used	Illegal sample time
18	8	No such analog input
19	8	No such analog output
20	2	No such display exists
21	16	No such input exists
22	16	No such output exists
23	Not Used	No such thumbwheel exists
24	1	Illegal data table value
25	32	Message transmitting busy
26	1	Divide by zero error
27	1	Data out of range
28	1	Watchdog/hardware fault
29	32	Network error fault
30	Not Used	Network access timeout
31	Not Used	Network access busy
32	Not Used	Network request lost
33	Not Used	Network bad response
34	Not Used	Network bad return message
35	2	No such communications port
36	32	Error in request/reply
37	2	Bad flag number selected
38	2	Bad delay timer selected
39	2	Out of soft counters

Below is a table of all possible fault codes in the Model 5300:

40	8	Error in fetching or calculating
		analog In scaling
41	8	Module not calibrated
42	1	Error re-flashing module
43	2	Error trying to open request file, not exist?
44	1	Error trying to read file, fgets?
45	1	Malloc failed
46	8	Analog module not responding
47	8	Error in fetching or calculating
		analog Out scaling
48	1	Illegal build of Atmel board
49	32	Lost connection with virtual controller
50	1	Task error
51	1	Task status error
52	Not Used	Time delay not accepted, shorter delay already set (not an error)
53	2	Error accessing Hardware I/O
54	1	Generic IODRIVER error
55	2	Invalid parameter
56	1	Invalid extend data descriptor
57	4	SPI Overrun
58	4	SPI Timeout

Fault Task Handler Example

Symbols:	
Registers	Symbol Name
10	FaultFlag
13038	FaultStepRegister
13039	FaultTaskRegister
13040	FaultMaskRegister
13041	FaultClearRegister
<pre>[1] init ;;; A Fault Handler is installed in the first ;;; step to monitor for communications failure. The ;;; FaultMaskRegister must be set after the FaultStepRegister, ;;; otherwise the handler will be invoke for all faults ;;; (default).</pre>	
<pre><no change<="" pre=""></no></pre>	IN DIGITAL OUTPUTS>

```
_____
_____
  Store 0 to FaultFlag
  store 8 to FaultStepRegister
  store 32 to FaultMaskRegister
  goto next
[2] v setup
   ..... continue program .......
[8] FaultHandler
   ;;; This step is invoked should a fault occur, such as a
   ;;; network disconnect. The FaultMaskRegister controls
   ;;; under what circumstances the handler is invoked. This
   ;;; example is very simple. It basically shuts all the
   ;;; local outputs off and sets a flag in FaultFlag that
   ;;; has no purpose. Note that no other tasks will be running
   ;;; in the system nor can this task fault when the handler
  ;;; is invoked.
   _____
_____
  <TURN OFF ALL DIGITAL OUTPUTS>
   _____
_____
  store 1 to FaultFlag
  delay 3 sec goto ClearFault
[9] ClearFault
  ;;; Now attempt to recover from the fault by issuing a
RESTART
  ;;; command
   _____
_____
   <NO CHANGE IN DIGITAL OUTPUTS>
   _____
_____
  store 2 to FaultFlag
  store 5 to FaultClearRegister
  goto FaultHandler
```

Blank

[14] Formatted Messaging

The Model 5300 can transmit string-formatted messages, similar to the format supported by the 'C' function 'sprintf'. Each message may consist of just text and/or embedded references to any number of registers, whose values will be substituted just prior to transmission. Message format definitions are stored as records in a file called message.ini which is located in the /_system/Messages

subdirectory of the flash disk. Each line of message.ini is considered a record, from 1 to a maximum of 50 messages.

Messages are written to the default communications port set in register 12000, which is the standard Serial port selection register in Quickstep. Writing to the *Message String Transfer Register* (12316) selects which record to dynamically format and write out the communications port. A read returns the status of the write, with 0 meaning success. The Model 5300 supports up to 7 communication ports, two of which are dedicated to RS232, while the remaining 5 are assigned by the program as bidirectional TCP redirector ports. The redirector ports appear to Quickstep as RS232 ports, but actually either connect to a remote terminal server or host based application program

Typically a message consists of text with a 'sprintf" formatted specification, followed by r####, where ##### is the desired register. Therefore, to read register 8501 to be exactly 5 characters with preceding 0's, 05dr8501 would be inserted in the text string. Note the 05d is the same as a 'printf'/sprintf' and actually uses the exact same function, only enhanced. This means 05Xr8501 would cause hexadecimal values to be generated. Sample strings using the previous example could be entered in the message.ini file as:

```
Analog Value = %05dr8500\r\n
Analog Value = %05dr8501\r\n
```

If the above are the only two entries in the message.ini file, then writing a 2 to the *Message String Transfer Register* would cause the second line to be processed and the following to be written out the RS232 port if a 583 were in register 8501:

Analog Value = 00583<CR><LF>

Message.ini Extended Formats

As described previously, the message.ini file format is similar in structure to that of the 'C' sprintf function, with additional enhancements. References to registers, data table cells and time/date stamp formats are supported using this extended format:

Register (decimal) - %0#dr<register> or %dr<register>

Example: %05dr13002 (fix size with leading 0's to at least 5 places, reg 13002)

```
Register (hexidecimal) - %0#xr<register> or %Xr<register>
```

Example: %05xr13002 (fix size with leading 0's to at least 5 places, reg 13002)

```
Register (ascii) - %cr<register> or %cr<register>, <length> or
%cr<register>, r<register>
```

Example: %cr12001,r12302 (convert the serial port buffer to ASCII characters)

Example: %cr12001,3 (convert the first 3 serial port buffer registers to ASCII)

```
Data Table Cell - %0#dD<row>, <col> or %dD<row>, <col>
```

Example: %05dD1,2 (fix size with leading 0's to at least 5 places, row 1, column 2, from the data table).

Time/Date Stamp - %T!<time/date format>

Example: %T!HH:mm:ss! %T!MM/DD/YYYY!

Where each below are optional:

```
HH = hour (24 hour format)

mm = minute

ss = seconds

MM - month

DD - day

YY - year in 2 decimal format, no century.

YYYY - year in 4 decimal format, including century.

E - Day in week, text - Mon, Tue, Wed, Thu, Fri, Sat, or Sun

Z - Time zone information in 5 digit format - <sign>HH:mm from GMT

Note:

• All other characters are treated as filler text, except ending '!'.
```

• Maximum 48 character Time/Date Stamp string.

the log.ini file in *Document No. 951-530015: Model 5300 Logging and FTP Client Applications Guide* uses the same formats detailed above.

CHAPTER

[15] Network Performance Adjustments

Within a Model 5300 environment many threads run in parallel, each executing when there is work to do, and then sleeping until it is their time to be serviced once again. At the highest general priority is your Quickstep application program. It must yield in order to allow things like the web server to transfer files, telnet to return key strokes, etc. Quickstep instructions tend to poll I/O or registers, at high rates of

speed, until a change of condition occurs, at which point logical branching occurs. At times the interval between each step can be critical, so registers are provided to control the balancing of execution time amongst tasks.

As each Quickstep step is executed a background timer is run; upon timeout, a window is opened allowing other threads to execute, such as the web server. Since there is only one CPU when you service Quickstep you cannot be transferring files, when transferring files you cannot service Quickstep, hence a decision must be made as to what is the worst case acceptable time allowed between Quickstep steps. Register 13036, Performance Adjustment Register (PAR), is the periodic number of milliseconds the Quickstep execution loop will check to see if any network operations need to take place; if none need to be done, Quickstep continues to execute, else it yields control for Register 13037 (Network Service Window, NSW) X 5 milliseconds. Thus PAR controls the network response time for many operations while NSW controls the amount of time the network may run prior to returning control to Quickstep. NSW is the maximum amount of time that typically will occur between Quickstep instructions under heavy network traffic.

By default Quickstep checks to see if the network needs service every 30 milliseconds, allowing the network window to remain open for 30 milliseconds (NSW = 6), which becomes the worst case time between individual steps. This value may be changed at any time. The minimum value for PAR is 10 milliseconds and NSW is 2 (2 X 5=10 milliseconds).

Required settings:

• $10 \le PAR \le 250$ (smaller PAR > Network Performance)

• 2 <= NSW <=14 (larger NSW > Network Performance)

Blank

CHAPTER

[16] Data Logging

Data Logging on a Model 5300 controller consists of the process of periodically recording collected information in a pre-determined file format. Data may consist of any combination of register contents, a data table cell, time/date information, and/or constant string text. Data is logged in a record format derived from a definition file called log.ini. This definition file lists all the logging record formats

required, each individually selectable at run-time.

Logging Controller Setup

Data Logging causes a file to be reopened during each write operation, at which time records are appended to it. The flash drive does not support the appending of records to an existing file therefore only the NVRAM is supported for logging. An NVRAM disk resides at the /RAMDISK directory of the Model 5300. Both / (root) and /_system are FLASH. The NVRAM disk is referenced as a virtual sub-directory called data, residing within the / system/Messages FLASH directory.

Virtual Directory Creation

Log files are expected to exist in a virtual directory linked to the /_system/Messages FLASH directory, called data. This allows you to reference the main flash disk file structure but in actuality be redirected to a NVRAM disk of your choice and size. The mount command is used to create a virtual directory. Reference *Document No. 951-520001: Model 5200 Remote Administration Guide*. In summary, the following example is used:

```
BlueFusion/>mount "/_system/Messages/data" "/RAMDISK"
SUCCESS: mount completed.
BlueFusion/>dir
drw-rw-rw- 0 owner group 000256 MAR 15 15:01 _system
drw-rw-rw- 1 owner group 1024256 JAN 01 00:00 RAMDISK
Volume: Capacity - 3931920 Free - 2919600 Deleted - 0504960.
BlueFusion/>cd /_system/Messages
SUCCESS: cd command successful.
BlueFusion/_system/Messages/>dir
drw-rw-rw- 0 lnked group 000000 JAN 01 00:00 data
Volume: Capacity - 3931920 Free - 2919600 Deleted - 0504960.
BlueFusion/_system/Messages/>
```

All log commands will operate on the data sub-directory, with the full path being /_system/Messages/data. The following section will describe this process in more detail.

Virtual directories are volatile and must be re-created upon every power cycle, typically by the use of a script file (_startup.ini).

Logging Record Format and Operation

A predefined format file must reside within the /_system/Messages directory called log.ini. This file contains individual records defining the desired contents to be written to a log file during a logging sequence.

The content of the log.ini file follows the same format as that of the message.ini file. This string-formatted message is similar to the format supported by the 'C' function sprintf. Each message may consist of either text and/or embedded references to any number of registers, where the values will be substituted just prior to writing to the log file. A maximum completed record size (each line in a log file) of 512 bytes is supported. Message format definitions are stored as records in a file called log.ini which is located in the /_system/Messages subdirectory of the flash disk. Each line of log.ini is considered a record, from 1 to a maximum of 50 pre-defined formats.

The logging of data is controlled by two registers, the *Log Selection Register* (12325) and the *Log String Transfer Register* (12326). The *Log Selection Register* determines the name of the log file to be written, Log###.log, where ### is the register contents at the time of an operation. For example writing a 1 to the register defines the name of the file accessed to be Log001.log, a 2 would be Log002.log, etc. Up to 999 different sequences may be used.

Writing to the *Log String Transfer Register* (12326) causes the actual write operation to occur, selecting which record in the log.ini file to dynamically format and write to the

NVRAM disk file. A read on the *Log String Result Register* (12327) returns the status of the write, as defined below:

- 0 Success
- 43 File error, either log.ini is missing or Log###.ini created an error.
- 44 No such record in the log.ini file
- 53 Write error, check available disk space
- -1 Default value after setting the *Log Selection Register*

Script and Fla	ash Disk Registers		
12311	Script Execution: R/W; writing a numeric to this register will cause the corresponding script to be executed. For example: writing a 4 to this register will cause Script004.ini to be executed. Adding 1000 to the value will cause the script to execute as a background thread. For example 1004 will run Script004.ini except as a background thread. Only scripts 000 to 019 may be run this way, reference 12340/12360/12380 register blocks for result information.		
12312	Script Execution Result: Read only, 0 = busy, 1 = successfully executed, else error code (reference 951-520015).		
12314	Flash Disk Selection : (R/W) , 0 = root, 1 – n = drive mounted in sequence. Determines volume in which Flash Disk Space Register (12315) returns information.		
12315	Flash Disk Space: Read only, contains the approximate free space available on the flash disk.		
12324	Script Line Result: Read only, contains the last error code that caused a foreground script to stop executing (Script #001 to 999).		
12325	Log File Name Selection: R/W, writing a numeric to this register will define the Log/Data table file name to be used: Value Description		
	 0-999 Normal, Log###.log file written using log.ini 1000-1999 Variant array is written to log file, Log###.log, log.ini not referenced 2000-2999 Reserved 3000-3999 Variant array is written to QS2 data table format using name datatable###.tab, log.ini not referenced. 4000-4999 Reserved 5000-5999 Variant array is loaded/read from QS2 data table format using name datatable###.tab 		
12326	Log String Transfer: R/W, write record number of 'log.ini' format file to reference and begin writing formatted record to Log###.log file. If using Variant then this becomes the variant register number.		
12327	Log String Result: R, result of logging operation, $0 = $ success, $-1 = $ busy.		
12328	Log Deletion: R/W, write the numeric value of the Log # # # . log file to delete.		
12329	Snap Execution : R/W, write the numeric value of the Log###.log file to rename to Snap###.log.		
12330	Snap Result : Read only, result of logging operation, 0 = success, 53 = failed, or not exist.		
12331	Snap Deletion: R/W, write the numeric value of the Snap###.log file to delete.		
12340-12359	Script Thread Result: Read only, 0 = busy, 1 = successfully executed, else error code (reference 951–520015).		
12360-12379	Script Line Thread Result: Read only, contains the last error code that caused a foreground script to stop executing.		
12380-12399	Script Line Thread Result: Read only, contains the line specific error code returned upon abort of script, (reference 951-520015).		

Log.ini Format

As described previously, the log.ini file format is similar in structure to that of the 'C' sprintf function, with additional enhancements. References to registers, data table cells and time/date stamp formats are supported using this extended format:

```
Register (decimal) - %0#dr<register> or %dr<register>
```

Example: %05dr13002 (fix size with leading 0's to at least 5 places, reg 13002) **Register** (hexidecimal) - %0#xr<register> or %Xr<register>

Example: %05xr13002 (fix size with leading 0's to at least 5 places, reg 13002)

```
Register (ascii) - %cr<register> or %cr<register>, <length> or
%cr<register>, r<register>
```

Example: %cr12001,r12302 (convert the serial port buffer to ASCII characters)

Example: %cr12001,3 (convert the first 3 serial port buffer registers to ASCII)

```
Data Table Cell - %0#dD<row>, <col> or %dD<row>, <col>
```

Example: %05dD1,2 (fix size with leading 0's to at least 5 places, row 1, column 2, from the data table).

```
Time/Date Stamp - %T!<time/date format>
```

Example:	%T!HH:mm:ss!
	%T!MM/DD/YYYY!

Where each below are optional: HH = hour (24 hour format)

mm = minutess = seconds

MM - month

DD – day

YY – year in 2 decimal format, no century.

YYYY – year in 4 decimal format, including century.

E – Day in week, text – Mon, Tue, Wed, Thu, Fri, Sat, or Sun

Z – Time zone information in 5 digit format - <sign>HH:mm from GMT Note:

- All other characters are treated as filler text, except ending '!'.
- Maximum 48 character Time/Date Stamp string.

Typically a log record consists of text with a sprintf formatted specification, intermixed, as required, with the format detailed above. Therefore, to read register 8501 to be exactly 5 characters with preceding 0's, %05dr8501 would be inserted in the text string. Note the %05d is the same as a printf/sprintf and actually uses the exact

same function, only enhanced. This means %05Xr8501 would cause hexadecimal values to be generated. Sample strings using the previous example could be entered in the log.ini file as:

Analog Value = %05dr8500\r\n Analog Value = %05dr8501\r\n

If the above are the only two entries in the log.ini file, then writing a 2 to the *Log String Transfer Register* will cause the second line to be processed and the following to be written to the disk if a 583 is in register 8501:

Analog Value = 00583<CR><LF>

Log Format Example

Assume a record format of the following is desired:

- Comma delimited format
- Field 1 MM/DD/YYYY
- Field 2 HH:mm
- Field 3 Time tic register 13002
- Field 4 Analog Input 1
- Field 5 Analog Input 5
- Field 6 New line separator <CR> <LF>

The format for this in a log.ini file would be a record inserted with the following format:

%T!MM/DD/YYYY!, %T!HH:mm!, %dR13002, %dR8501, %dR8505\r\n

If desired, constant text could be added or merged around the above data, although in this example it was not needed. Additional records could be added to the log.ini file to represent other formats to be logged. In this example only one is required thus it will be referenced as the first record in the log.ini file.

The sequence of events to write a record to a log file with the name Log001.log would be:

- 1. Set the Log Execution Register (12325) to a 1, which will set the Log String Result Register to a -1: 12325 = 1
- 2. Write a 1, for the first record of the log.ini format file, to the *Log String Transfer Register (12326)* to actually do the write operation: 12326 = 1
- 3. Monitor *Log String Result Register (12327)* for a change from -1 to another value, 0 signifying success. Note that if background threads (Advanced Scripting, chapter 18) are not used the result and write operation occurs immediately upon writing to the Log String Transfer Register and control is returned to the task only after the write is totally complete. This means status is immediately complete and valid:

0 – Success

43 – Could not open the file, either log.ini is missing or Log###.ini created an error.

- 44 No such record in the log.ini file
- 53 Write error, check available disk space
- 4. Loop Back to step 2 to write the next record if the file name desired has not changed.

An example of three records of data would be:

07/06/2010, 13:41, 234567, 800, 1200 07/06/2010, 13:52, 246000, 801, 1198 07/06/2010, 13:58, 250007, 808, 1190

SNAPSHOT

Snapshot capability is available which renames a file while it is actively being appended to, allowing for real time uploads. For example, if Log001.log is being created, and records appended, a single write to the *Snapshot Execution Register* (12329) renames Log001.log to Snap001.log. The host may then upload Snap001.log, which contains all of the logged data to that instant, while in the background records are still being written to a new Log001.log file. This allows for automatic synchronization of recorded data.

The Snapshot Result Register (12330) reflects the results of the operation:

SUCCESS = 0ERROR_IOACCESS = 53 (log file does not exist or there is an existing Snap file of the desired name)

Log File Deletion

Both Log and Snap files may be deleted by writing the file number to a special deletion register:

```
LOG_DELETION_REGISTER - 12328
SNAP DELETION REGISTER - 12331
```

Upon deletion the respective status register will contain either a '0' for success, or a 53 (ERROR_IOACCESS, no file existed).

```
LOG_STRING_RESULT_REGISTER (12327)
SNAP_RESULT_REGISTER (12330)
```

Log Disk Maintenance

The FLASHDISK_SELECTION_REGISTER (register 12314) is used to select the active disk volume whose remaining space is to appear in the FLASHDISK_SPACEAVAIL_REGISTER (12315). By default it is 0, reflecting the root

volume. As each volume is mounted it becomes a new volume and is assigned a number, incrementally. To determine a volume number, simply view a directory at the root level. The second column is the volume number; you will see a 0 in the _system row and a 1 in the mounted ramdisk row. Reading register 12315 will retrieve the actual bytes remaining.

Directory of the root drive gives the free space on that drive:

BlueFusion/>dir
drw-rw-rw- 0 owner group 000256 MAR 11 16:45 _system
drw-rw-rw- 1 owner group 1024256 JAN 01 00:00 RAMDISK
Volume: Capacity - 3931920 Free - 3216960 Deleted - 0000000.
BlueFusion/>_

Changing to the ramdisk drive shows the free space on that drive:

BlueFusion∕ SUCCESS: cd	>cd RAMDISK command successful.
BlueFusion/1	RAMDISK/>dir
drw-rw-rw-	
drw-rw-rw-	0 owner group 000000 FEB 08 22:31 Datatables
-rw-rw-rw-	0 owner group 126688 MAR 09 12:52 CamWith2Axes-con1.gz
-rw-rw-rw-	0 owner group 001464 MAR 09 12:52 CamWith2Axes-con1.sym
drw-rw-rw-	0 owner group 000000 FEB 08 22:13 _nvar
-rw-rw-rw-	0 owner group 069370 MAR 09 17:29 Qs2MSB_TS-Test.gz
-rw-rw-rw-	0 owner group 000244 MAR 09 17:29 Qs2MSB_TS-Test.sym
-rw-rw-rw-	0 owner group 059142 MAR 03 20:52 msbboot-Test.gz
-rw-rw-rw-	0 owner group 000244 MAR 03 20:52 msbboot-Test.sym
-rw-rw-rw-	0 owner group 056908 MAR 10 00:40 Counttst_C-Test.gz
-rw-rw-rw-	0 owner group 000366 MAR 10 00:40 Counttst_C-Test.sym
Volume: Caj	pacity - 1024256 Free - 0687616 Deleted - 0000000.
BlueFusion∕l	RAMDISK/>_

Below, using CTCMON, it is shown that volume 1 is being read, which is represented by the value of '1' in register 12314. Note the value in register 12315, which refers to the size in bytes available in the NVRAM disk labeled 'RAMDISK'. It is the same as what was displayed in the Telnet session, above.

Registers		
Display		
reg_12314	1	12314
reg_12315	687616	12315
reg_12316 reg_12317	0	12316 12317
reg 12317	-1	12318
reg 12319	-1	12319
reg_12320	0	12320
reg_12321	2	12321
reg_12322	2	12322
reg_12323	0	12323
reg 12324	0	12324
reg 12325	-1	12325
reg 12326	-1	12326
reg_12327 reg_12328	-1	<u>12327</u> 12328
reg_12326	-1	12329 -
Dec GoTo: 12314		

Blank

[17] FTP Client

The Model 5300 Controller supports simultaneous FTP Server and/or Client sessions. FTP provides a standard means to transfer files to/from the controller from a host computer. When using the built-in FTP Server, the remote computer is the master, initiating file transfers. This section details the use of the 5300 FTP Client mode, where the controller is capable of initiating its own file transfers to a remote host

FTP Server. Simple files may be uploaded/downloaded, as well as firmware updates and new Quickstep application programs. Additional information with regards to the FTP Server capability may be found in *Document No. 951-520001: Model 5200 Remote Administration Guide*.

When using FTP Client commands within a script it must be executed as a background threaded operation. Background execution of a script would occur by adding 1000 to the base file script number. For example, a 1001 written to the 'Script Execution Register' (12311) results in Script001.ini executing as a background thread. Ftp Client operations should only be run from a command line within telnet or as a background thread, not as part of a Quickstep task (file numbers, 001 – 999).

Setup

An FTP Server may reside on virtually any host or workstation computing environment. Software is available for Windows 2000, XP Pro, 2003 Server, and Unix/Linux environments. Unix/Linux, Windows 2000/2003 Servers, and XP Professional contain the service as part of the installation CD. Windows 2000 must use a third party package such as can be found at the following web links:

http://www.bpftppro.com (reference Appendix A) http://www.serv-u.com/ http://www.candc1.com/ftpservu/index.cfm http://www.abraxis.com/ipswitch/wsftp-server.htm

Specifications of what to use, and how to configure the environment, is beyond the scope of this document. A very good reference for installing the resident FTP Server, and its

use, on a Windows XP Professional computer is available online from PCSTATS. The title of their article is called: "Beginner's Guides: Setting up a FTP Server in WinXP". It is strongly suggest that you read this article if you are not familiar with FTP Servers. The web link is:

http://www.pcstats.com/articleview.cfm?articleID=1491

The article provides not only step by step procedures but also a very good background on ftp itself, as well as security considerations.

A quick summary of the installation steps involved are as follows:

1. While logged in with administrative rights open a Control Panel Window.

2. Double-click Add or Remove Programs.

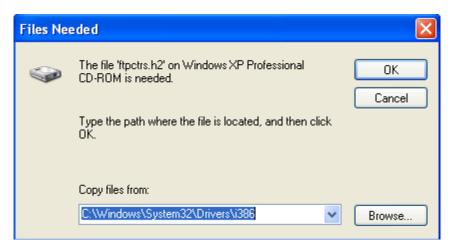
3. At the left side of the window click Add/Remove Windows Components.

4. The Ftp Server option is listed under the IIS component. Select it then the Details button.

Windows Components Wizard	X
Windows Components You can add or remove components of Windows XP.	E
To add or remove a component, click the checkbox. A shaded b part of the component will be installed. To see what's included in Details. Components:	
Plindexing Service	0.0 MB 🔼
🗹 🥭 Internet Explorer	0.0 MB
Internet Information Services (IIS)	13.5 MB
🔲 🚉 Management and Monitoring Tools	2.0 MB
Message Queuing	оомв 💌
Description: Includes Web and FTP support, along with support transactions, Active Server Pages, and database of Total disk space required: 54.3 MB Space available on disk: 9203.4 MB	
< Back	Next > Cancel

5. Make sure the check boxes are as below and then click OK.

Internet Information Services (IIS)		×	
To add or remove a component, click the check box. A shaded box means that only part of the component will be installed. To see what's included in a component, click Details.			
Subcomponents of Internet Information Services (IIS):			
🗹 🔷 Common Files	1.0 MB	~	
🗹 🔕 Documentation	3.5 MB		
🛒 💻 File Transfer Protocol (FTP) Service	0.1 MB		
FrontPage 2000 Server Extensions	4.3 MB		
🗹 📸 Internet Information Services Snap-In	1.3 MB		
☑ ::: SMTP Service	1.1 MB	-	
🗹 🚕 World Wide Web Service	2.3 MB	~	
Description: Provides support to create FTP sites used to upload and download files			
Total disk space required: 54.5 MB	Details.		
Space available on disk: 9203.2 MB	Details.	•	
ОК	Cancel		


6. Click **Next** to proceed.

Windows Components Wizard	X
Windows Components You can add or remove components of Windows XP.	E
To add or remove a component, click the checkbox. A shaded bo part of the component will be installed. To see what's included in a Details. Components:	
🗆 💬 Indexing Service	0.0 MB 🔼
🗹 🥭 Internet Explorer	0.0 MB
🗹 鞼 Internet Information Services (IIS)	13.5 MB
🔲 📇 Management and Monitoring Tools	2.0 MB
🗖 🚾 Message Queuing	0.0 MB 🐸
Description: Includes Web and FTP support, along with support for transactions, Active Server Pages, and database co	
Total disk space required: 54.5 MB	Details
Space available on disk: 9203.2 MB	D'etails
< Back N	lext > Cancel

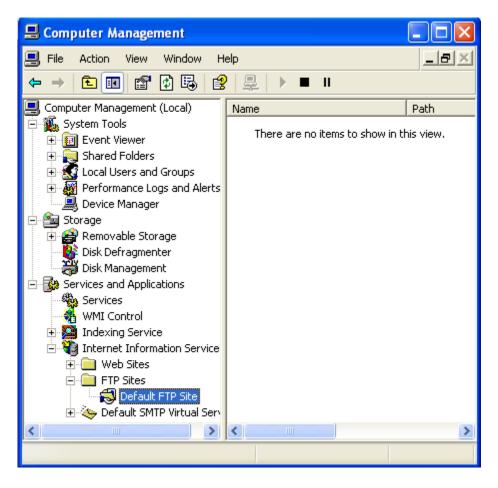
7. IIS components will begin to install.

Windows Components Wizard
Configuring Components Setup is making the configuration changes you requested.
Please wait while Setup configures the components. This may take several minutes, depending on the components selected. Status: Configuring Internet Information Services (IIS)
< Back Next > Cancel

8. The prompt below may appear, requiring the XP Professional install CD.

9. Insert the CD and set the directory as appropriate.

Files Ne	e de d	
	The file 'ftpctrs.h2' on Windows XP Professional CD-ROM is needed.	OK Cancel
	Type the path where the file is located, and then click OK.	
	Copy files from:	
	D:\1386	Browse


10. Click OK when the path is correct and installation will begin.

Windows Components Wizard	\mathbf{X}
Configuring Components Setup is making the configuration changes you requested.	Ì
Please wait while Setup configures the components. This may take several minutes, depending on the components selected.	
Status: Configuring Internet Information Services	
< Back Next >	

11. Once complete click Finish.

12. From Control Panel->Administrative Tools, select Computer Management and expand the Internet Information Service folders until the Default FTP Site appears. This verifies that ftp is installed.

13. Right click the Default FTP Site and select the Properties menu item to view the current settings. Reference the PCSTATS web site, previously discussed, for suggestions on how to adjust security, add user accounts for access, etc. Note that by default only local computer user accounts with Administrative privileges may access files.

Default FTP Site P	operties	? ×	
FTP Site Security A	ccounts Messages Home Directory		
- Identification			
Description:	Default FTP Site		
IP Address:	(All Unassigned)		
TCP Port:	21		
Connection		= 1	
O Unlimited			
 Limited To: 	10 connections		
Connection Times	out: 900 seconds		
Enable Loggin	g	-1	
Active log form			
W3C Extended Log File Format Properties			
Current Sessions			
	Cullent Sessi	0115	
	OK Cancel Apply	Help	

If both upload and download are to be done, Write must be enabled under the Home Directory tab:

FTP Site Security	Accounts Messages Home Directory			
When connecting	to this resource, the content should come from:			
	 a directory located on this computer 			
	a share located on another computer			
FTP Site Directo	FTP Site Directory			
Local Path:	c:\inetpub\ftproot Browse			
	✓ Read			
	Write			
	Cog visits			

14. Windows XP has additional firewall security built into the product. The FTP Server must be specifically enabled to allow incoming connections and bypass the firewall. From the Control Panel select the Windows Firewall icon:

15. Select the Firewall Exceptions Tab:

16. Select Add Port:

😺 Windows Firewall	×
General Exceptions Advanced	_
Windows Firewall is blocking incoming network connections, except for the programs and services selected below. Adding exceptions allows some programs to work better but might increase your security risk.	
Programs and Services:	
Name	
✓ beremote	
☑ File and Printer Sharing	
✓ File Transfer Program	
FTP Voyager, an FTP Client for Windows	
Internet Explorer	
I iTunes	
I javaw	
✓ javaw	
MSN Messenger 6.2	
✓ oc∆numbere Host Service	
Add Program Add Port Edit Delete	

17. Fill out the dialog box as below and click OK:

Add a Port 🔀			
	to open a port through Windows Firewall. To find the port ol, consult the documentation for the program or service you		
Name:	FTP Server		
Port number:	21		
What are the risks of opening a port?			
Change scope	OK Cancel		

18. The FTP Server Name should appear in the list of checked Programs and Services:

Programs and Services:	
Name	^
✓ beremote	
✓ File and Printer Sharing	
✓ File Transfer Program	
FTP Server	
✓ FTP Voyager, an FTP Client for Windows	
☑ Internet Explorer	
✓ iTunes	
🗹 javaw	
🗹 javaw	
MSN Messenger 6.2	_
	×
Add Program Add Port Edit Delete	

19. Click OK at the bottom of the dialog to exit:

🖗 Windows Firewall	X	
General Exceptions Advanced		
Windows Firewall is blocking incoming network connections, except for the programs and services selected below. Adding exceptions allows some program to work better but might increase your security risk.	าร	
Programs and Services:		
Name	^	
✓ beremote		
☑ File and Printer Sharing		
✓ File Transfer Program		
FTP Server		
✓ FTP Voyager, an FTP Client for Windows	-	
✓ Internet Explorer		
iTunes ☑ javaw		
✓ MSN Messenger 6.2		
	~	
Add Program Add Port Edit Delete		
Display a notification when Windows Firewall blocks a program		
What are the risks of allowing exceptions?		
OK DK Cano	el	

Commands

Once a server is available, the Model 5300 controller provides two means to access the external server via its FTP client capabilities. The first is via the command line using Telnet, the second by the use of advanced scripting detailed in <u>Chapter 18</u>: <u>Advanced Scripting</u>. The following demonstrates the FTP commands when using Telnet to interact with a Windows 2003 Server:

Ftpconnect <ip address> <User Name> <Password>

Provides initial connection to the remote host computer running the FTP Server. BlueFusion/>ftpconnect 12.40.53.94 support ControlTech SUCCESS: Connection established. BlueFusion/>

Ftpquit

Closes an FTP session after a successful Ftpconnect.

The following commands require the FTP connection to be active:

Ftpls <optional path>

```
Get the current directory, short format.

BlueFusion/>ftpls

4170PC3.3.2

QP3.7 (Apr04)Whse

Support

Test

testfile.log

Uploads

SUCCESS: 'ls' Command Complete.

BlueFusion/>
```

Ftpdir <optional path>

Get the current directory, long format.

BlueFusio	n/>ftpdir			
11-02-04	10:0ĴAM	<dir></dir>		4170PC3.3.2
11-02-04	10:05AM	<dir></dir>		QP3.7 (Apr04)Whse
11-02-04	10:05AM	<dir></dir>		Support
12-01-04	02:55PM	<dir></dir>		Test
12-02-04	03:56PM		22476	testfile.log
11-30-04	09:52AM	<dir></dir>		Uploads
SUCCESS :	'dir' Command	Complete.		*
BlueFusion/>				

- Ftpsend <source path> <optional destination path/name> Send a file to the remote host. Paths enclosed in quotes (" ") allow the embedding of register contents using the log.ini format.
- Ftpappend <source path> <optional destination path/name>

Send a file to the remote host, if it exists append to it else create a new file. Paths enclosed in quotes (" ") allow the embedding of register contents using the log.ini format.

 Ftpget <source path> <optional destination path/name> Get a file from the remote host. Firmware may be re-flashed or new programs loaded, bypassing flash storage by directing it to the root directory. Only one ftp server or client session can do this at a time since reserved SDRAM storage space is used as a temporary buffer. Example:

ftpget BF5300V05009068.elf /BF5300V05009068elf

Paths enclosed in quotes (" ") allow the embedding of register contents using the log.ini format. Example:

ftpget hostfile.fil "/mydir/Script%03dR1.ini"

where the contents of R1 will be substituted into the filename.

Ftpcd <path>

Change the current directory, on the host, to that specified. Paths enclosed in quotes ("") allow the embedding of register contents using the log.ini format.

```
BlueFusion/>ftpdir

11-02-04 10:05AM (DIR) 4170PC3.3.2

11-02-04 10:05AM (DIR) QP3.7 (Apr04)Whse

11-02-04 10:05AM (DIR) Support

12-01-04 02:55PM (DIR) Test

12-02-04 03:56PM 22476 testfile.log

11-30-04 09:52AM (DIR) Uploads

SUCCESS: 'dir' Command Complete.

BlueFusion/>ftpcd Test

SUCCESS: 'cd' Command Complete.

BlueFusion/>ftpdir

12-08-03 04:44PM 22476 5132Drvr.c

12-01-04 02:55PM 22476 foobar.c

SUCCESS: 'dir' Command Complete.

BlueFusion/>_
```

Ftpmkdir <directory name>

Makes a directory on the host computer in the current directory. Paths enclosed in quotes (" ") allow the embedding of register contents using the log.ini format.

Ftprename <source path/file> <new name>

Renames the specified source file to the new name. Paths enclosed in quotes ("") allow the embedding of register contents using the log.ini format.

Ftprmdir <directory name>

Removes the specified directory on the host computer. Paths enclosed in quotes (" ") allow the embedding of register contents using the log.ini format.

Ftpdelete <source path/file>

Deletes a file on the host computer. Paths enclosed in quotes (" ") allow the embedding of register contents using the log.ini format.

Telnet Error Codes

When executing ftp commands from the telnet command line the returned message will typically begin with SUCCESS: . At times, a failure will occur, causing an error

message to appear. The message will be displayed in the Telnet session on a new line using the following format:

ERROR: <message> <code>

Where <message> is a description of the failure and <code> is detailed below:

FTP_ERROR – 0xD0 Internal ftp error.

FTP_TIMEOUT – 0xD1

Timeout occurred.

FTP_FAILED – 0xD2 General ftp failure.

FTP NOT CONNECTED – 0xD3

Attempted to execute a command but was not connected to the host.

FTP_NOT_DISCONNECTED - 0xD4

Host closed session during command execution.

FTP_NOT_OPEN – 0xD5

FTP failure on opening a file for transfer.

FTP_NOT_CLOSED - 0xD6

Attempted to open a file when a previous was not closed

FTP_LOGIN – 0xD9

Attempt to log onto the host failed, security violation

FTP_NOT_FOUND – 0xDA

Request was not executed (typically 550 FTP return code). Typically returned when a file/directory does not exist, or there is a security access violation blocking access.

FTP_RETURN_CODE - 0xDB

Unknown return code from host ftp server.

CHAPTER

[18] Advanced Scripting

Document #951-520003: Model 5200 Script Language Guide details the operation of scripting within the Model 5200/5300 controller. This section discusses features beyond that of the Model 5200, such as automated file transfers, data table & file operations, and background threaded script execution. A thorough knowledge of scripts is assumed.

Some advanced features available within scripts are:

- Background Execution Scripts may not only be run as part of a step, they may also execute as separate background threads, in parallel to Quickstep execution. Writing a 1 to 999 to the *Script Execution Register* (12311) causes a script to run, within a Step, much like a Do statement. An advanced feature allows a programmer to write a 1001 to 1020, executing Script001 to Script020 as a thread, much like a future Begin Quickstep statement. These scripts fully execute as an independent background thread.
- **Continuous Execution** Scripts may execute continuously until either a fatal error or an end command is executed, terminating the script.
- Script Nesting Scripts may also invoke other Scripts (one call level supported).
- Branching & Conditionals Scripts support branching, program labels, and if conditionals.
- Error Tracking Major file and communication instructions set a status error code, private to each script, which may be referenced from an if conditional or onerror command. The variable is referenced as ERRORCODE and allows for advanced retry and monitor operations.
- **Execution Time Control** The Alarm instruction allows the script to sleep until a specific time, automatically waking at a defined time such as every Friday afternoon at 3PM. Use theDelay instruction for pauses based on millisecond values.

Data Table

load datatable [Variant regnum] [filename]

The load datatable script command can be used to load a variant array from a file. This file is stored in the same format as the QS2. TAB file format except that floats have a decimal point and strings are enclosed in quotes. A current QS2 file would be read in as integers, given that that is a limitation of the QS2 data table. The enhanced table that uses variants for storage is shown below:

```
data table [4][6] =
{
              105115114111
    84
        104
                         32
                               105
             114
   115
        32
                         119
                               32
                   0
              0
    49
         0
                         0
                                0
         0
               0
    0
                     0
                          6.789
                               "string"
}
```

Note that tabs or spaces may be used as a separator, as all whitespace characters < '0' are ignored except LF, which designates the end of a line/row. There is no restriction on the line/row length except as required by each Variant cell (string 223 bytes). The first 2 lines are ignored and the actual table size is set by the data found in the file. A CR LF combination should follow the last '}' to denote the end of the file.

The last two cells show examples of a float, 6.789, and a string format "string". Remember the string may reference other registers using the %d, message.ini, format, but an extra % is needed (i.e., %%d). The first % will be stripped when the string is parsed.

In the above example, 84 would be loaded into array location [0][0], and "string" would be loaded into [3][5].

The load/save datatable commands list the array size as [row][column] for compatibility with QS2.

save datatable [Variant regnum] [filename]

The save datatable script command operates exactly the same as the load datatable command except that the Variant register contents are written to a file. Any unknown cells will contain a "?". Two separate formats are available, QS2 compatibility mode and CSV (comma delimited, similar to a log file).

In QS2 compatibility mode, seven spaces will be placed between cell data and a .tab file extension must be used. Upon writing any existing file will be first deleted. The use of any other file extension will cause the CSV format to be used, where each cell is separated by a command and a single space. End of line is the same as the QS2 format,

CR LF. There is no header information in CSV format thus the first array location will be the first bytes of the file.

The load/save datatable commands list the array size as [row][column] for compatibility with QS2.

Diagnostics

disktest 1 [file size] [block size] [/path/file]

This command is used to perform a test of the file system. A file of the size [file size] will be written using blocks of size [block size] to the file [/path/file]. An incrementing byte pattern is written and verified. The complete write is done first, file closed and then read back and verified. For example, to test a 1MB file with a block size of 512 bytes:

Example: disktest 1 1000000 512 /SDISK/test1.bin

disktest 2 [file size] [block size] [/path/file]

This command is used to perform a test of the file system. A file of the size [file size] will be written using blocks of size [block size] to the file [/path/file]. An incrementing byte pattern is written and verified. The complete write is done first, file closed and then read back and verified. For example, to test a 1MB file with a block size of 512 bytes:

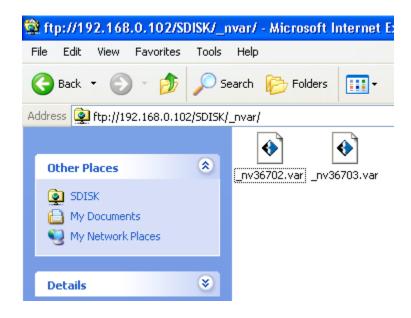
Example: disktest 2 1000000 512 /SDISK/test1.bin

Quickstep

enable quickstep2

This command enables QS2 operation at the next reboot, assuming a 1 is written to register 20096. Quickstep may be enabled and disabled from normal operation in order to conserve CPU cycles.

System default is enabled.


disable quickstep2

This command disables QS2 operation at the next reboot, assuming a 1 is written to register 20096. Quickstep may be enabled and disabled from normal operation in order to conserve CPU cycles.

File System

set close nvariant [Variant #]"

Non-Volatile array variants are stored in files that may be transferred among controllers, deleted, copied, etc. The contents of the non-volatile variant are independent of the actual register number. The file name determines its assignment. Hence _nv36702 will be used for register 36702.

If that file was copied to file $_nv36703$, then the data has now been duplicated and register 36702 and 36703 now have the same data. When replacing a file it is important to close it first. Not closing it means it cannot be deleted. You may copy a non-closed file but make sure no task is writing to it or the data may be changing in the background.

Closing a file is also important if you are replacing non-volatile variants data, since upon access if the file is closed it will re-attempt to open it and in this instance find the new file. Open files cannot be replaced or deleted.

Example: set close nvariant 36702

This would close the file $_nv36702$ should it be open using the default path of /SDISK/ nvar.

To close all open non-volatile specify a -1 as the [Variant #]. Should an error occur the ERROR OO RANGE flag is set.

set logpath [path]

Sets an alternate log file storage path. Power up default is /_system/Messages.

Example: set logpath /SDISK/myLogDir

set scriptspath [path]

Sets an alternate script file storage path. Power up default is /_system/Scripts.

Example: set scriptspath /SDISK/myScriptsDir

set nvariantpath [path]

Sets an alternate nvariant file storage path. Power up default is /SDISK/_nvar which will automatically be created at power up if it does not exist (one level only in directory tree).

Example: set nvariantpath /SDISK/mynvariants

set emailspath [path]

Sets an alternate email file storage path. Power up default is /_system/Emails.

Example: set emailspath /SDISK/myEmailsDir

set webpath [path]

Sets an alternate web file storage path. Power up default is /_system/Web.

Example: set webpath /SDISK/myWebDir

set firmwarepath [path]

Sets an alternate firmware file storage path. Power up default is / system/Firmware.

Example: set firmwarepath /SDISK/myFirmwareDir

set programspath [path]

Sets an alternate program file storage path. Power up default is / system/Programs.

Example: set programspath /SDISK/myProgramsDir

set datatablespath [path]

Sets an alternate data tables file storage path. Power up default is /_system/Datatables.

Example: set datatablespath /SDISK/myDatatablesDir

copy [source path/file] [destination path/file]

This command is used to copy a file from one location to a new location, creating a new file and overwriting any existing.

Example: copy /SDISK/_nvar/_nv36702 /SDISK/_nvar/_nv36750

A new non-volatile Variant, 36750 now exists with the same contents of register 36702. SCRIPT ERRMASK FILE error bit is set if an error occurs.

Monitor

mon tfs init

Initialize and clear the controller monitor file system.

mon tfs rm

Remove a file from the controller monitor file system.

mon tfs Is

List all the files within the controller monitor file system, typically just one, which is the application program to execute.

mon reboot

Exit the controller application and reboot into the monitor, re-loading the entire controller program once again. Basically a full reset where VBIAS will be shut off and execution of application programs immediately terminated without notification.

Miscellaneous

get vproperties [Variant #]

Since there are currently no utilities to view variant information, such as how big it is, array size, floating point precision, etc, this command will display that information:

```
Example: get vproperties 36702
```

```
SUCCESS: Nonvolatile Variant 36702, Size: rows - 50 / columns - 200, precision: 6.
```

printf [format string...]

The printf command allows for a string format to be tested prior to inclusion in a variant cell or message.ini file. The string will be parsed exactly as it would when used in these applications. This command is typically used for testing only as it has no effect other than visual final string presentation.

Example: printf "The contents of register 100 = %dR100"

The " " are required.

clear startup project

This command will clear the current default project that is invoked at reset or power up, thus none will be executed upon power up.

get project

This command will display the currently active project that is running.

get project info [project file]

This command is used to determine the contents of a QuickBuilder project file.

get startup project

This command will display the project set to run at power up or reset.

run project [opt. project file]

This command is used to load and run a QuickBuilder project file. The controller is restarted. If no project is specified the last saved project will be run.

set startup project [opt. project file]

This command is used to save a specific project file name/location upon which to run at power up and reset, as the default. If none is specified then the last executed path/name will be saved.

Advanced Commands

Inc <Register>

Increment the contents of the reference register by 1. Typically used in counter operations such as retrying communications.

Example: inc 200

If the contents of register 200 was 99, it would become 100 after execution.

Dec <Register>

Decrement the contents of the reference register by 1. Typically used in counter operations such as retrying communications.

Example: dec 200

If the contents of register 200 was 99, it would become 98 after execution.

If <Resource> <Logic> <Resource> goto <Label>

<Resource> - Register reference (R####), decimal or hex constant (0x0000000), or ERRORCODE.

<Logic> - >, >=, <, <=, !=, ==, and & resulting in a Boolean result of true or false.

<Label> - Single line within script file containing a preceding colon ':' followed by a unique character string. Example - :myLabel

Example: if R200 >= 55 goto tooBig if ERRORCODE & 0x00200000 goto fileFailure

:<Label>

A label consists of a single, independent line, within a script text file, to which a name is assigned, typically as a destination for a branch operation (if or goto).

Example: :myLabel

Onerror <optional error mask> goto <Label>

Set where to automatically branch should an error occur. Execution of 'Onerror' with no terms clears the branching option. Only file and communication instructions, along with syntax errors specifically set error flags. The 'optional error mask' allows you to activate individual errors. Upon return from and instruction a global ERRORCODE variable has its individual flags set should a problem occur, else ERRORCODE = 0.

Example: onerror (clears any error branching) onerror goto myLabel (if any error occurs branch to myLabel) onerror 0x00200000 goto myLabel (branch if file error)

Goto <Label>

Immediately branch to the desired <Label>.

End

Exit the Script.

Delay <Register or constant – milliseconds>

Delay the designated number of milliseconds. Milliseconds may either be a decimal constant, hexadecimal notation (0x0000000), or reference the contents of a register (R200 for register 200).

Example: delay 2000 (delay 2 seconds or 2000 milliseconds) delay R1 (delay by the number of milliseconds in register 1)

Alarm <TIME=HH:MM:SS> <optional day of week, DOW=Mon...>

Pause execution until the designated time occurs. A 'TIME' and optional day of week, DOW, from 0 (Monday) to 6 (Sunday) is listed. Each parameter may be contained within a register. For example the hour and/or minute could reference register 15 while the minute is a constant: R15:00. When referencing a specific day of the week, enter the following: Mon, Tue, Wed, Thu, Fri, Sat, or Sun, for the desired day, or a number from 0 to 6. Seconds may also be included, yielding a format of <HH:MM:SS>.

Example:	alarm TIME=23:00 DOW=Mon (sleep until 11PM on Monday)
	alarm TIME=23:00 (sleep until 11PM)
	alarm TIME=R1:00 (sleep until hour contents in register 1)
	alarm TIME=23:00:05 DOW=0 (where $0 = Monday$)
	alarm TIME=23:00:05 DOW=R10 (where contents $R10 = 0 - 6$)

ERRORCODE

ERRORCODE is a universal variable, private to each script. Upon execution of script commands status bits are set should problems occur. if conditional and onerror commands can branch accordingly.

SCRIPT_ERRMASK_FATAL - 0x00800000

Fatal error, such as a memory allocation failure. Currently this can only be returned by an ftpconnect command.

SCRIPT_ERRMASK_SYNTAX - 0x00400000

Syntax error, bad parameter passed as part of a command.

SCRIPT_ERRMASK_FILE - 0x00200000

General File failure. For example, rename of file or creation of a new directory (mkdir) failed. Affected commands are:

- mkdir
- rename
- cd
- rmdir
- format flash
- delete
- load symbols
- get symbols

- mount
- umount

SCRIPT_ERRMASK_FTP_CONNECT - 0x00100000

Returned if an ftpconnect attempt fails or there is an attempt to use a command that requires a previous connection and it does not exist.

SCRIPT_ERRMASK_FTP_LOSTCONNECT - 0x00080000

Lost connection while attempting an FTP command. Affected commands are:

- Ftpls
- Ftpdir
- Ftpmkdir
- Ftprmdir
- Ftpcd
- Ftpget
- Ftpsend
- Ftpappend
- Ftpdelete

SCRIPT_ERRMASK_FTP_COMMAND - 0x00040000

Unknown FTP response code returned. Affected commands are:

- Ftpls
- Ftpdir
- Ftpmkdir
- Ftprmdir
- Ftpcd
- Ftpget
- Ftpsend
- Ftpappend
- Ftpdelete

SCRIPT_ERRMASK_FTP_NOTFOUND - 0x00020000

Operation failed, file or directory does not exist on host. Affected commands are:

- Ftpls
- Ftpdir
- Ftpmkdir
- Ftprmdir
- Ftpcd
- Ftpget
- Ftpsend
- Ftpappend
- Ftpdelete

SCRIPT_ERRMASK_FTP_SECURITY - 0x00010000

User name or Password failed. This only applies to ftpconnect.

Script Example

The following sample script, Script001, shows how to connect to an ftp server, send a file called Log001.log and download a file called anyfile.log on the host to a file called newfile.log on the controller. A maximum of 3 retries, with a 5 second interval will be attempted before aborting. Register 2 is used as an arbitrary status register, which can be monitored by Quickstep, and should be set to 0 prior to invoking the script. Its status is as follows:

- 1 = Complete and successful
- -1 = Busy running script
- -2 = General failure
- -3 = File did not exist on the Controller
- -4 = File did not exist on the Host

The execution of the following script would occur by writing a 1001 to the *Script Execution Register* (12311). Adding a 1000 to the script file number causes it to execute as a background thread. Ftp Client operations should only be run from a command line within telnet or as a background thread, not as part of a Quickstep task (001 - 999).

Script001.ini:

```
# This script tests the automated transfer of data from
# the controller to a remote ftp server.
# Register 1 is used as a retry counter
# Register 2 is used to notify Quickstep program of completion
# status
# Writing to the Script Execution Register (12311) will cause
# execution to occur. Script file name is currently
Script001.ini
# thus writing 1001 will cause this file to run as a thread in
the
# background, writing a 1 will cause it to run within a Quickstep
# step.
# Threaded execution (background) is the preferred method
#
:start
# Clear the retry counter
     1 = 0
# Clear our completion flag register
      2 = -1
     goto firstTime
:retry
# Delay for 5 seconds and then try again
```

```
delay 5000
# Bump the retry counter and see if done with retries...
      inc R1
      if R1 > 3 goto abort
:firstTime
# First set up where to branch if an error should occur
      onerror goto errorOccurred
# Lets connect to the remote host
      ftpconnect 12.40.53.94 support ControlTech
# Now lets upload a file and then download a file
# If an error occurs we will exit automatically due to the
# 'onerror' command
# SEND to host from controller
      ftpsend / system/Messages/data/Log001.log
# RECEIVE from host and store to controller under different name
      ftpget anyfile.log / system/Messages/data/newfile.log
# All done so close host session gracefully
      ftpquit
# Set completion flag to 0 indicating we are done and successful
      2 = 1
# If we get here we are all done
      end
# Process error if should occur
:errorOccurred
# Lets see what type of error occurred
# First check to see if initial connection failed
      if ERRORCODE & 0x00100000 goto retry
# Next see if we failed during a transfer
     if ERRORCODE & 0x00080000 goto retry
# Next see if we failed because the file did not exist on the
controller
     if ERRORCODE & 0x00200000 goto nofileController
# Next see if we failed because the file did not exist on the
host
      if ERRORCODE & 0x00020000 goto nofileHost
# Was a fatal failure so give up
:abort
      2 = -2
      end
# File did not exist on the controller
:nofileController
      2 = -3
      end
# File did not exist on the host
:nofileHost
      2 = -4
      end
```

CHAPTER

[19] CTNet Binary Protocol (Server Interface)

This section discusses the CTNet Binary Protocol, at the packet level, as is supported by the controller. The CTNet binary protocol is a highspeed protocol that has checksum and error reporting capabilities. It is used in cases where data integrity, response time, and processing time are the major criteria. Data transmission is fast for the following reasons:

- Both the commands and data are represented in binary form instead of ASCII.
- The information density is higher and fewer characters are transmitted during large data transfers.
- The controller can use the data "as is" and does not have to perform binary to ASCII conversion.

Consequently, use of CTNet results in very short execution times. Note that CTNet used to be non-routable (2700 with 2217 Ethernet controllers). Non-routable protocols do not contain a networking layer (IP stack), so they cannot cross a router and are limited to local subnets or intranets.

Non-routable CTNet uses a node number in place of an IP address. This node number is defined by writing to Register 20000. You can also determine the node number by reading the value in Register 20000. Set this value within the _startup.ini file by defining the CTNET DEVICENODE parameter.

Provisions have been made to extend the CTNet protocol by encapsulating it in a UDP/TCP packet. In this case the IP address becomes the destination and Register 20000 is ignored. Port 3000 is for UDP and port 6000 is for TCP connections. UDP/TCP is fully routable. Refer to the last section of this chapter for how to encapsulate. In short the discussion that follows fully applies to the encapsulated packet. Serial port communications are also supported for all CTNet packets; again, Register 20000 does not apply in that case either since only point to point communications are supported.

A maximum of 32 simultaneous TCP Binary protocol connections are allowed at one time. Idle connections will timeout in about 1 minute.

Binary Protocol

The CTC Binary Protocol may be used to communicate with the Model 5300 controller via serial ports or a network connection. Regardless of the mode used, the basic message layer is the same. On a network the serial port data is simply encapsulated as required. Most users will not require this section and should only refer to the DLL available for use under Windows 2000/XP. This DLL is discussed in detail within *Document No. MAN1080A: CTC 32-bit Communications Functions Reference Guide*, available at www.ctc-control.com for download. The CTC Binary Protocol is somewhat more difficult to use than something like the ASCII Protocol, but it can significantly reduce the time required to transfer large blocks of data between a computer and controller and is useful in more demanding applications. The protocol is more efficient, because:

- Both the commands and data are represented in binary form instead of ASCII. The information density is higher and, for large data transfers, fewer characters need to be transmitted.
- The controller does not have to convert the data from ASCII to binary before using it. This results in shorter execution times. Since the computer does not have to convert the data to ASCII, there also may be a significant time savings in the execution of the computer program (the time savings varies between different computer languages).

Protocol Framing

To select the CTC Binary Protocol, the first character of the command must be a binary 1 (\emptyset 1H). The controller interprets the rest of the command according to the binary protocol. Use of an ASCII character, on the serial port, will result in the ASCII Protocol being used.

The protocol uses the following format to send messages to and from the controller:

<(Ø1H)> Specifies CTC binary protocol.

<length (1 byte)> Specifies packet length to follow. Packet length is defined as n data bytes + 2 (checksum and 0xff).

<data (n bytes)> Consists of function (command) code(s) plus relevant data. For function code and data descriptions, see the section on Binary Protocol Commands.

<checksum> Consists of the complement of the modulo-256 sum of data bytes. This value, when added to the modulo-256 sum of the data packet bytes, equals ØFFH. You can calculate the checksum by adding the data packet bytes and complementing the resulting sum.

```
//
// Generate a checksum for a packet
// Parameters: p - pointer to start of data section
//len - length of data only section (not length, checksum
or
//0xff)
// Returns: <checksum>
unsigned char Packet_Check(unsigned char * p, int len)
{
    unsigned int c = 0;
    int i;
        for( i=0; i<len; i++)
            c = (c + *(p + i)) & 255;
        return( (char)~c);
}</pre>
```

<FFH> Required by binary protocol; last byte of packet must be ØFFH. When the controller receives a binary packet, it counts out the number of bytes specified by the packet length. If the last byte is not ØFFH, it returns an error message.

All communications are in Little Endian format.

í

Return communications from the controller to the computer use the same general format, with one exception. The controller does not transmit a leading (\emptyset 1H) byte, since the original message was transmitted using the CTC binary protocol. If the command sent to the controller does not require data from the controller in the return message, the controller sends an acknowledge message like the one shown below:

<03H)> Specifies packet length to follow. Packet length is defined as n data bytes + 2.

<(64H)> Contains the acknowledge code; equal to decimal 100.

<9BH> Is the value of the checksum of the acknowledge code.

<FFH> Required by binary protocol; last byte of packet must be ØFFH.

When the packet sent to the controller is not correct, it transmits a not acknowledged code. This may happen when the checksum does not calculate correctly or when the last byte of the packet is not ØFFH. A message containing a not acknowledged code is similar to the one shown below:

<03H)> Specifies packet length to follow. Packet length is defined as n data bytes + 2.

<(65H)> Contains the not acknowledged code; equal to decimal 101.

<9AH> Is the value of the checksum of the not acknowledged code.

<FFH> Required by binary protocol; last byte of packet must be ØFFH.

When the format of the message is correct, but the controller cannot execute the command, it sends other error codes. For error code descriptions, see the section on

Binary Protocol Commands. The following example shows how to create a command in correct format for the CTC binary protocol. It sets flag 4 in the controller.

1. Send the following command:

Ø1H,Ø5H,13H,Ø3H,FFH,EAH,FFH

Where:

Ø1H Is the first byte and identifies the packet as using the CTC binary protocol. Ø5H Is the second byte and represents the length of the packet.

13H Is the third byte and contains the function code for a change flag command. Ø**3H** Is the fourth byte and specifies flag 4. Flags 1 through 32 are represented as $\emptyset\emptyset$ H through 1FH, and \emptyset 3H specifies flag 4.

FFH Is the fifth byte and specifies the new state of the flag. FFH represents SET and $\emptyset\emptyset$ H represents CLEAR.

EAH Is the sixth byte and contains the checksum value.

ØFFH Is the seventh and last byte of the packet and signals the end of the message.

2. To acknowledge the message, the controller sends the following response:

Ø3H,64H,9BH,FFH

Where:

Ø3H Is the first byte and specifies the packet length64H Is the second byte and contains the acknowledge code (decimal 100)9BH Is the third byte and contains the checksum value of third byteFFH Is the fourth and last byte and signals the end of the message.

Binary Protocol Error Responses

When the controller cannot execute the data transmission from the computer, the controller responds with an error code indicating the nature of the fault. The error code is transmitted using the following format:

Ø3H Packet length.
 Error code Error code, see list below.
 Checksum The checksum is the complement of the previous byte.
 FFH Last byte in packet; signals the end of the message.
 Possible error codes are:
 64H No error (acknowledgment of transmission
 65H Checksum error, or end of packet <> FFH
 66H Illegal register number specified

65H Value out of range, for example, input number not present in controller

Binary Protocol Commands

Each CTC binary protocol command has specific format. This section lists the commands and describes their format. The command descriptions also list the following information:

- The type of command
- Format of command sent to the controller
- Format of the controller's response

Not all Control Technology controllers support all of these commands. Contact Control Tech customer support if you have any questions about which of these commands you can use, or if you have any difficulty implementing a command. The following table lists the commands and the controllers which support the command.

Binary Protocol Commands				
	(controller response is command + 1)			
Register	and Flag Access Commands			
9	Read a register			
11	Change a register			
17	Read a Flag			
19	Change a Flag			
75	Read a bank of 50 registers			
77	Read a bank of 16 registers			
87	Request random registers from list (CTServer)			
Variant (Commands			
91	Get properties			
<i>93</i>	Read a variant			
<i>95</i>	Change a variant			
109	Read a variant array block (consecutive)			
111	Write a variant array block (consecutive)			
113	Read a block of variants, randomly			
Input/Ou	tput Access Commands			
15	Read a bank of 8 inputs			
21	Read a bank of 8 outputs			
25	Selectively modify first 128 outputs			
29	Read an analog input			
31	Read an analog output			
33	Change an analog output			
71	Get 32 analog inputs			
73	Get 32 analog outputs			
<i>79</i>	Read a bank of 128 inputs			
85	Change multiple analog outputs			
91	Read a bank of 128 outputs			
Servo Ac	cess Commands			
23	Read a servo position			
27	Read a servo's dedicated inputs			
47	Read a servo error			
Data Tab	le Access Commands			
49	Read a data table's dimensions			
51	Change a data table's dimensions			
53	Read a data table value			
55	Change a data table value			
57	Read a row of data table values			
59	Change a row of data table values			
System and Controller Status Access Commands				
13	List counts of inputs, outputs, stepping and servo			
	motors			

35	Read controller step
61	Read controller status
63	Change controller status
65	Read system configuration
67	Change system configuration
69	List counts of miscellaneous I/O
105	Shutdown system
107	Get Controller Task Status

The following commands allow you to read and write values to registers and flags. You can read and write values for registers 1 through 65535. Some of the registers in this range are special function registers and you may not be able to read or write to them. Other registers do not exist on certain models and revision levels. Consult *Document No.* 951-530006: Model 5300 Quick Reference Register Guide for register specifics.

Variant Packets

A number of commands are available to interface with variant storage within the Model 5300. When communicating with the controller a packed data structure is used. Two separate structures are used, that for individual read/writes, VARIANT_STORAGE, or for block access VARIANT_STORAGE_BLOCK (VARIANT_STORAGE_BLOCK_SERIAL if serial port). When using block transfers the total size (number of elements) is dependent upon whether Ethernet or serial communications is being used. Ethernet allows for a larger packet and when using UDP and TCP the packet itself provides a CRC. Thus the checksum field is not really needed and not used on the larger block transfers.

When using variants the packet structure is identical except that the data portion is the packed variant structure:

<(Ø1H)> Specifies CTC binary protocol.

<length (1 byte)> Specifies packet length to follow. Packet length is defined as n data bytes + 2 (checksum and 0xff). Checksum is not used on packet type 109/110, 111/112, and 113/114 when using Ethernet communications (length set to 5 on request, response length is 3), it is used on serial since a reduced packet size is used.

<Command/Response Code>

<LSB Register #> Register of interest low byte unless random read, in which case ignored.

<MSB Register #> Register of interest high byte unless random read, in which case ignored.

<packed variant structure> Valid structures:

VARIANT_STORAGE VARIANT_STORAGE_BLOCK VARIANT_STORAGE_BLOCK_SERIAL. <checksum> Consists of the complement of the modulo-256 sum of data bytes. This value, when added to the modulo-256 sum of the data packet bytes, equals ØFFH. You can calculate the checksum by adding the data packet bytes and complementing the resulting sum.

Register and Flag Access Command/Response definitions

// GET is request, GOT is controller response	
<pre>// binary protocol message types</pre>	
#define MSG_LOAD_PROGRAM_PACKET	((BYTE) 0)
#define MSG_ENTER_PROGRAM_MODE	((BYTE) 1)
#define MSG_LEAVE_PROGRAM_MODE	((BYTE) 2)
#define MSG_UNLOAD_PROGRAM_PACKET	((BYTE) 3)
#define MSG_PROGRAM_PACKET	((BYTE) 4)
#define MSG_GET_ID_CODES	((BYTE) 5)
#define MSG_GOT_ID_CODES	((BYTE) 6)
#define MSG_OLD_GET_STATUS	((BYTE) 7)
#define MSG_OLD_GOT_STATUS	((BYTE) 8)
#define MSG_GET_REGISTER	((BYTE) 9)
#define MSG_GOT_REGISTER	((BYTE) 10)
#define MSG_SET_REGISTER	((BYTE) 11)
#define MSG_12	((BYTE) 12)
#define MSG_GET_IO_COUNTS	((BYTE) 13)
#define MSG_GOT_IO_COUNTS	((BYTE) 14)
#define MSG_GET_INPUTS	((BYTE) 15)
#define MSG_GOT_INPUTS	((BYTE) 16)
#define MSG_GET_FLAG	((BYTE) 17)
#define MSG_GOT_FLAG	((BYTE) 18)
#define MSG_SET_FLAG	((BYTE) 19)
#define MSG_20	((BYTE) 20)
#define MSG_GET_OUTPUTS	((BYTE) 21)
#define MSG_GOT_OUTPUTS	((BYTE) 22)
#define MSG_GET_SERVO_POSITION	((BYTE) 23)
#define MSG_GOT_SERVO_POSITION	((BYTE) 24)
#define MSG_SET_OUTPUTS	((BYTE) 25)
#define MSG_26	((BYTE) 26)
#define MSG_GET_SERVO_INPUT	((BYTE) 27)
#define MSG_GOT_SERVO_INPUT	((BYTE) 28)
#define MSG_GET_ANALOG_INPUT	((BYTE) 29)
#define MSG_GOT_ANALOG_INPUT	((BYTE) 30)
#define MSG_GET_ANALOG_OUTPUT	((BYTE) 31)
#define MSG_GOT_ANALOG_OUTPUT	((BYTE) 32)
#define MSG_SET_ANALOG_OUTPUT	((BYTE) 33)
#define MSG_34	((BYTE) 34)
#define MSG_GET_STATUS	((BYTE) 35)

	MSG_GOT_STATUS_1of4	((BYTE)	
	MSG_GOT_STATUS_2of4	((BYTE)	37)
#define	MSG_GOT_STATUS_3of4	((BYTE)	38)
	MSG_GOT_STATUS_4of4	((BYTE)	39)
#define	MSG_SET_EA_OUTPUT	((BYTE)	40)
#define	MSG_LOAD_EA_PROGRAM_PACKET	((BYTE)	41)
#define	MSG_42	((BYTE)	42)
#define	MSG_UNLOAD_EA_PROGRAM_PACKET	((BYTE)	43)
#define	MSG_EA_PROGRAM_PACKET	((BYTE)	44)
#define	MSG_DUMP_USER_MEMORY	((BYTE)	45)
#define	MSG_USER_MEMORY	((BYTE)	46)
#define	MSG_GET_SERVO_ERROR	((BYTE)	47)
#define	MSG_GOT_SERVO_ERROR	((BYTE)	48)
#define	MSG_GET_DATA_TABLE_SIZE	((BYTE)	49)
#define	MSG_GOT_DATA_TABLE_SIZE	((BYTE)	50)
#define	MSG SET DATA TABLE SIZE	((BYTE)	51)
#define	MSG 52	((BYTE)	52)
#define	 MSG_GET_DATA_TABLE_ELEMENT	((BYTE)	53)
		((BYTE)	54)
#define	MSG_SET_DATA_TABLE_ELEMENT	((BYTE)	55)
#define	MSG_56	((BYTE)	56)
#define	MSG_GET_DATA_TABLE_ROW	((BYTE)	57)
#define	MSG_GOT_DATA_TABLE_ROW	((BYTE)	58)
#define	MSG_SET_DATA_TABLE_ROW	((BYTE)	59)
#define	MSG_60	((BYTE)	60)
#define	MSG_GET_CONTROLLER_STATE	((BYTE)	61)
#define	MSG_GOT_CONTROLLER_STATE	((BYTE)	62)
#define	MSG_SET_CONTROLLER_STATE	((BYTE)	63)
#define	MSG_64	((BYTE)	64)
#define	MSG_GET_SYSCONFIG_BYTE	((BYTE)	65)
#define	MSG_GOT_SYSCONFIG_BYTE	((BYTE)	66)
#define	MSG_SET_SYSCONFIG_BYTE	((BYTE)	67)
#define	MSG_68	((BYTE)	68)
#define	MSG_GET_OTHER_IO_COUNTS	((BYTE)	69)
#define	MSG_GOT_OTHER_IO_COUNTS	((BYTE)	70)
#define	MSG_GET_32_ANALOG_INS	((BYTE)	71)
#define	MSG_GOT_32_ANALOG_INS	((BYTE)	72)
#define	MSG_GET_32_ANALOG_OUTS	((BYTE)	73)
#define	MSG_GOT_32_ANALOG_OUTS	((BYTE)	74)
#define	MSG_GET_50_REGISTERS	((BYTE)	75)
	MSG_GOT_50_REGISTERS	((BYTE)	76)
	MSG_GET_16_REGISTERS	((BYTE)	77)
	MSG_GOT_16_REGISTERS	((BYTE)	78)
	MSG_GET_128_INPUTS	((BYTE)	
#define	MSG_GOT_128_INPUTS	((BYTE)	80)

<pre>#define MSG_GET_128_OUTPUTS #define MSG_GOT_128_OUTPUTS #define MSG_SET_64_ANALOG_OUTS #define MSG_GET_N_REGISTERS #define MSG_GOT_N_REGISTERS</pre>	((BYTE) ((BYTE) ((BYTE) ((BYTE) ((BYTE)	82) 85) 87)
<pre>// special message for 2217 v3.8 data structure #define MSG_GET_2217_DATA #define MSG_GOT_2217_DATA</pre>	e ((BYTE) ((BYTE)	
// Variant data types		
#define MSG_GET_VREGISTERROW	((BYTE)	
#define MSG_GOT_VREGISTERROW	((BYTE)	
#define MSG_GET_VPROPERTIES	((BYTE)	-
#define MSG_GOT_VPROPERTIES	((BYTE)	
#define MSG_GET_VREGISTER	((BYTE)	
#define MSG_GOT_VREGISTER	((BYTE)	
#define MSG_SET_VREGISTER	((BYTE)	
#define MSG_GET_RUNCOMMAND	((BYTE)	
#define MSG_GOT_RUNCOMMAND	((BYTE)	
#define MSG_GET_VREGISTER_BLOCK	((BYTE)	
#define MSG_GOT_VREGISTER_BLOCK	((BYTE)	
#define MSG_SET_VREGISTER_BLOCK	((BYTE)	111)
#define MSG_GET_VREGISTER_RANDOM_BLOCK	((BYTE)	113)
#define MSG_GOT_VREGISTER_RANDOM_BLOCK	((BYTE)	114)
<pre>// devicenet and/or distributed io messages</pre>		
#define MSG_UNLOAD_REMOTE_DATA	((BYTE)	101)
#define MSG_REMOTE_DATA_PACKET	((BYTE)	102)
#define MSG_LOAD_REMOTE_DATA	((BYTE)	103)
#define MSG_104	((BYTE)	
#define MSG_GET_REMOTE_IO	((BYTE)	105)
#define MSG_GOT_REMOTE_IO	((BYTE)	106)

Variant Structures

The distribution file Ctccom32v2.h is available from the Downloads page on Control Technology's web site and contains the definitions for the structures used with the CTC communications DLL. The DLL conforms to the packet structure discussed within this document. In summary below are the definitions. Note the structures are packed, aligned on a byte boundary:

```
#define BIT0 0x0001
#define BIT1 0x0002
#define BIT2 0x0004
#define BIT3 0x0008
#define BIT4 0x0010
#define VARIANT MAX STRING 223
#define VARIANT INTEGER BIT0
#define VARIANT UINTEGER BIT1
#define VARIANT STRING BIT2
#define VARIANT FLOAT BIT3
#define VARIANT DOUBLE BIT4
typedef struct
{
        int numAccess; // number of items to access
       int rowInc; // row increment, if 0 just read columns based upon colInc.
int colInc; // col increment, if 0 just increment rows.
        int arraysizeCols; // Used on write operation, -1 do not expand existing
                              // columns, else columns desired. Rows will automatically
                               // grow as needed
BLOCKACCESS;
typedef struct
   int type; // type of storage being used or requested
                        // If -1 on read then return current, else set to type want.
                        // On write must set to type that is stored within this structure
   unsigned char precision; // double to string conversion precision %.6f default
                               // On read is what is presently set, write what want.
   unsigned char flags;// special flags for processing so far only
                        // VARIANT INDIRECTION FLAG used, can be used to set property
                        // in ->settings on write operation, no effect on read. Written
                        // value becomes register to reference for further operations.
   unsigned char cmd; // 00, no operation other than read/write specified, else do defined
                \ensuremath{/\prime} operation. Currently have write for properties access to 'settings'
                        // VARIANT CMD SET INDIRECTION and VARIANT CMD CLEAR INDIRECTION,
                        // write value ignored.
   unsigned char pad;
   unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or
                                / handle thus usable from remote or 'C' API, 4096 to
                                // 65535, set to 0 for public reg.
   unsigned short slength;
                                // this is reserved for later use and possible string
                                // length if want unsigned char, 0 - 255 values,
                                // VARIANT BYTE, future type
   unsigned int indexCol;
                                // Column dimension index reference
   unsigned int indexRow;
                                 // Row dimension index reference
                                // Data that was read or has been written of 'type'
   union
   {
        int iValue;
        unsigned int uiValue;
        float fValue;
        double dValue;
        unsigned int dSwap[2]; // used to swap doubles for PC access
        char sValue[VARIANT MAX STRING+1];
   } data;
} VARIANT STORAGE;
#defineMAX_VARIANT_BLOCK_32BITS346// 346integers#defineMAX_VARIANT_BLOCK_64BITS173// 173doubles#defineMAX_VARIANT_RANDOM_BLOCK(MAX_VARIANT_BLOCK_32BI
```

(MAX VARIANT BLOCK 32BITS/3) // 115 items

```
#define MAX VARIANT BLOCK 32BITS SERIAL 50
```

```
#define MAX VARIANT BLOCK 64BITS SERIAL (MAX VARIANT BLOCK 32BITS SERIAL/2)// 25 doubles
#define MAX VARIANT RANDOM BLOCK SERIAL (MAX VARIANT BLOCK 32BITS SERIAL/3) // 16 items
typedef struct
                // may at some point reserve the upper 16 bits of this
       int req;
                 // integer for 'type' req.
       int row;
       int col;
} VARIANT ACCESS REQUEST;
// Allow for block reads
typedef struct
{
               // type of storage being used or requested
   int type;
               // If -1 on read then return current, else set to type want.
               // On write must set to type that is stored within this structure
               // write not supported for block access
               // If block access type field will be 0 if error else type of first cell.
               // slength will be the number of elements returned within data.block.?[n]
   unsigned char precision; // double to string conversion precision %.6f default
                             // On read is what is presently set, write what want.
   unsigned char flags;
                              // special flags for processing so far only
                      // VARIANT INDIRECTION_FLAG used, can be used to set property
                      // in ->settings on write operation, no effect on read. Written
                      // value becomes register to reference for further operations.
   unsigned char cmd; // 00, no operation other than read/write specified, else do defined
               // operation. Currently have write for properties access to 'settings'
               // VARIANT CMD SET INDIRECTION and VARIANT CMD CLEAR INDIRECTION,
               // write value ignored.
   unsigned char pad;
   unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or
                              // handle thus usable from remote or 'C' API, 4096 to
                              // 65535, set to 0 for public reg.
   unsigned short slength;
                             // this is reserved for later use and possible string
                              // length if want unsigned char, 0 - 255 values,
                             // VARIANT BYTE, future type
   unsigned int indexCol;
                            // Column dimension index reference
   unsigned int indexRow;
                             // Row dimension index reference
   union
                             // Data that was read or has been written of 'type'
       int iValue;
       unsigned int uiValue;
       float fValue;
       double dValue;
       unsigned int dSwap[2]; // used to swap doubles for PC access
       char *psValue;
       char sValue[VARIANT MAX STRING+1];
       // will be stored in same VARIANT STORAGE upon return, thus
       // data.blockread.numAccess * sizeof(variant type)
       // if BLOCKACCESS then iValue[n], fValue[n], or dValue[n] up to
       // MAX VARIANT READBLOCK SIZE
       struct
               BLOCKACCESS blockaccess;
                                           // Defines block read of variant cells, data
                                             // storage must be big enough since
               union
                      int ibValue[MAX VARIANT BLOCK 32BITS];
                      float fbValue[MAX VARIANT BLOCK 32BITS];
                      double dbValue[MAX VARIANT BLOCK 64BITS];
```

```
union
                      {
                              int ibValue:
                              float fbValue;
                              double dbValue;
                      } random[MAX VARIANT RANDOM BLOCK];
                      VARIANT ACCESS REQUEST request[MAX VARIANT RANDOM BLOCK];
              };
       } block;
  } data;
} VARIANT STORAGE BLOCK;
typedef struct
  int type;
              // type of storage being used or requested
              // If -1 on read then return current, else set to type want.
              // On write must set to type that is stored within this structure
              // write not supported for block access
              // If block access type field will be 0 if error else type of first cell.
              // slength will be the number of elements returned within data.block.?[n]
  unsigned char precision; // double to string conversion precision %.6f default
                             // On read is what is presently set, write what want.
  unsigned char flags;
                             // special flags for processing so far only
                      // VARIANT INDIRECTION FLAG used, can be used to set property
                      // in ->settings on write operation, no effect on read. Written
                      // value becomes register to reference for further operations.
  unsigned char cmd;// 00, no operation other than read/write specified, else do defined
              // operation. Currently have write for properties access to 'settings'
              // VARIANT CMD SET INDIRECTION and VARIANT CMD CLEAR INDIRECTION,
              // write value ignored.
  unsigned char pad;
  unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or
                              // handle thus usable from remote or 'C' API, 4096 to
                             // 65535, set to 0 for public reg.
                             // this is reserved for later use and possible string
  unsigned short slength;
                             // length if want unsigned char, 0 - 255 values,
                             // VARIANT BYTE, future type
  unsigned int indexCol;
                             // Column dimension index reference
  unsigned int indexRow;
                             // Row dimension index reference
  union
                             // Data that was read or has been written of 'type'
  {
       int iValue;
       unsigned int uiValue;
       float fValue;
       double dValue:
       unsigned int dSwap[2]; // used to swap doubles for PC access
       char *psValue;
       char sValue[VARIANT MAX STRING+1];
       // will be stored in same VARIANT STORAGE upon return, thus
       // data.blockread.numAccess * sizeof(variant type)
       // if BLOCKACCESS then iValue[n], fValue[n], or dValue[n] up to
       // MAX VARIANT READBLOCK SIZE
       struct
              BLOCKACCESS blockaccess;
                                           // Defines block read of variant cells, data
                                             // storage must be big enough since
              union
                      int ibValue[MAX VARIANT BLOCK 32BITS SERIAL];
                      float fbValue[MAX VARIANT BLOCK 32BITS SERIAL];
                      double dbValue[MAX VARIANT BLOCK 64BITS SERIAL];
                      union
```

```
{
    int ibValue;
    float fbValue;
    double dbValue;
    double dbValue;
    } random[MAX_VARIANT_RANDOM_BLOCK_SERIAL];
    VARIANT_ACCESS_REQUEST request[MAX_VARIANT_RANDOM_BLOCK_SERIAL];
    };
    } block;
    } data;
} VARIANT_STORAGE_BLOCK_SERIAL;
```

Variant Access Commands

Get Properties - Command 91

Command 91 reads the current properties of a variant which includes its number of rows and columns as well as default floating point precision (typically 6).

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
05H Specifies the packet length
5BH Get Properties function code
LSB - MSB Specifies the variant register number whose properties are desired.
Specified with the least significant byte first.
Checksum Contains the complement of the modulo-256 sum of all bytes after the length field
FFH Signals the end of the message.

Format of Controller Response

ØAH Specifies the packet length.
5CH Get Properties response code
LSB - MSB Specifies the variant register number. Specified with the least significant byte first.
LSB- MSB Number of columns.
LSB- MSB Number of rows.
<Precision Byte> - Floating point precision currently set.
Checksum Contains the complement of the modulo-256 sum of all bytes after the length field
FFH Signals the end of the message.

Read a Variant - Command 93

Command 93 reads a Variant cell. If the Variant is not an array simply set the row and column to 0 in the structure.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol <sizeof(VARIANT_STORAGE) + 5> Specifies the packet length 5DH Read a Variant function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.
<VARIANT_STORAGE structure> Variant storage area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the length field
FFH Signals the end of the message.

Format of Controller Response

<sizeof(VARIANT_STORAGE) + 3> Specifies the packet length 5EH Read a Variant response code LSB - MSB Specifies the variant register number. Specified with the least significant byte first. <VARIANT_STORAGE structure> Variant storage area. Checksum Contains the complement of the modulo-256 sum of all bytes after the length field FFH Signals the end of the message.

Example Structure initialization: Read 36201[2][5] as a double – (36201 is the LSB/MSB in the message sent)

```
VARIANT_STORAGE v;
memset((void *) &v,0,sizeof(VARIANT_STORAGE));
v.indexCol = 5;
v.indexRow = 2;
v.precision = 6;
v.type = VARIANT_DOUBLE;
```

Depending upon which type you are accessing the returned Variant will be accessed as follows where rp is a pointer to the receive buffer.

```
// Got the data
      memcpy((void *)&v,rp+4,sizeof(VARIANT STORAGE));
      switch(v.type)
      {
            case VARIANT FLOAT:
                  variant->FloatVar = v.data.fValue;
                  break;
            case VARIANT DOUBLE:
                 variant->DoubleVar = v.data.dValue;
                 break;
            case VARIANT STRING:
                  variant->slength = v.slength;
                  if (variant->slength > VARIANT MAX STRING)
                  {
                        // too big
                        return FAILURE;
                  }
                  memcpy(variant->StringArray, v.data.sValue, variant-
>slength);
```

Control Technology Corporation Document 951-530002-0013 01/15

```
// null terminate
variant->StringArray[variant->slength] = 0x00;
break;
case VARIANT_INTEGER:
variant->LongVar = v.data.iValue;
break;
default:
return FAILURE; // unknown type
}
return SUCCESS;
```

Change a Variant - Command 95

Command 95 writes a Variant cell. If the Variant is not an array simply set the row and column to 0 in the structure.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
<sizeof(VARIANT_STORAGE) + 5> Specifies the packet length
5FH Change a Variant function code
LSB - MSB Specifies the variant register number. Specified with the least significant byte first.
<VARIANT_STORAGE structure> Variant storage area.
Checksum Contains the complement of the modulo-256 sum of all bytes after the length field
FFH Signals the end of the message.

Format of Controller Response

Ø3H Specifies the packet length.64H Contains the acknowledge function code (decimal 100)Checksum Contains the complement of the previous byteFFH Signals the end of the message

Example Structure initialization: Write 36201[2][5]– (36201 is the LSB/MSB in the message sent)

```
VARIANT_STORAGE v;
memset((void *)&v,0,sizeof(VARIANT_STORAGE));
v.indexCol = 5;
v.indexRow = 2;
v.precision = 6;
```

For each type of data writing where variant is user structure (reference previous section):

```
switch(variant->type)
{
    case VARIANT_FLOAT:
        v.data.fValue = variant->FloatVar;
        break;
```

```
case VARIANT DOUBLE:
                  v.data.dValue = variant->DoubleVar;
                 break;
            case VARIANT STRING:
                 if (variant->slength > VARIANT MAX STRING)
                        // too big
                        return FAILURE;
                  }
                  memcpy(v.data.sValue, variant->StringArray,variant-
>slength);
                  // null terminate
                  v.data.sValue[variant->slength] = 0x00;
                 break;
            case VARIANT INTEGER:
                 v.data.iValue = variant->LongVar;
                  break;
            default:
                 return FAILURE;
      }
```

... Send data packet and await ACK ...

Read a Variant Array Block - Command 109

Command 109 performs a read starting at a specific row/column position in a Variant array and reads the requested number of cells sequentially or until there are no more cells.

Format of Message Sent to Controller UDP/TCP

Ø1H Identifies the packet as using the CTC binary protocol

< 5> Specifies the packet length for the message, without the Variant area since including it would make the message exceed byte storage size.

6DH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area. Checksum Contains the complement of the modulo-256 sum of all bytes after the length field, <u>not used</u>.

FFH Signals the end of the message.

Serial Port:

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet length.

6DH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field

FFH Signals the end of the message.

Format of Controller Response UDP/TCP

< 3> Specifies the packet length for the message, without the Variant area since including it would make the message exceed byte storage size.

6EH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field, **not used**.

FFH Signals the end of the message.

Serial Port:

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 3> Specifies the packet length.

6EH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field

FFH Signals the end of the message.

Example Structure initialization:

Read 36201[0][0] as an integer, 5 consecutive cells – (36201 is the LSB/MSB in the message sent). There are 35 columns in each row.

```
VARIANT_STORAGE_BLOCK v;
if (ctc->connType == SERIAL)
{
    sz = sizeof(VARIANT_STORAGE_BLOCK_SERIAL);
    length = sz+5; // packet length
}
else
{
    sz = sizeof(VARIANT_STORAGE_BLOCK);
    length = 5;
}
// initialize the variant structure
memset((void *)&v.type,0,sz);
v.indexCol = 0;
v.indexRow = 0;
```

Depending upon which type you are accessing the returned Variant will be accessed as follows where rp is a pointer to the receive buffer. sz is the size of the structure used, that of VARIANT_STORAGE_BLOCK or VARIANT_STORAGE_BLOCK_SERIAL.

```
// Got the data
memcpy((void *)&v,rp+4,sz);
// move the data into the vb structure
variant->type = v.type; // type of data read
variant->slength = v.slength; // number read
switch(variant->type)
{
      case VARIANT FLOAT:
           memcpy(variant->block.fbValue, v.data.block.fbValue,
                 sizeof(float) * variant->slength);
           break;
      case VARIANT DOUBLE:
           memcpy(variant->block.dbValue, v.data.block.dbValue,
                 sizeof(double) * variant->slength);
           break;
      case VARIANT INTEGER:
      case VARIANT UINTEGER:
       memcpy(variant->block.ibValue, v.data.block.ibValue,
                 sizeof(int) * variant->slength);
           break;
      default:
           return FAILURE; // unknown type
}
return SUCCESS;
```

Write a Variant Array Block - Command 111

Command 111 performs a write starting at a specific row/column position in a Variant array and writes the requested number of cells sequentially or until there are no more cells.

Format of Message Sent to Controller UDP/TCP

Ø1H Identifies the packet as using the CTC binary protocol
< 5> Specifies the packet length for the message, without the Variant area since including it would make the message exceed byte storage size.
6FH Writes a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area. Checksum Contains the complement of the modulo-256 sum of all bytes after the length field, <u>not used</u>.

FFH Signals the end of the message.

Serial Port:

Ø1H Identifies the packet as using the CTC binary protocol <sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet length.

6DH Writes a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field

FFH Signals the end of the message.

Format of Controller Response

Ø3H Specifies the packet length.64H Contains the acknowledge function code (decimal 100)Checksum Contains the complement of the previous byteFFH Signals the end of the message

Example Structure initialization:

Write 36201[0][0] as a floats, 5 consecutive cells – (36201 is the LSB/MSB in the message sent). There are 35 columns in each row.

```
VARIANT STORAGE BLOCK v;
if (ctc->connType == SERIAL)
{
      sz = sizeof(VARIANT STORAGE BLOCK SERIAL);
      length = sz+5; // packet length
}
else
{
      sz = sizeof(VARIANT STORAGE BLOCK);
     length = 5;
}
// initialize the variant structure
memset((void *)&v.type,0,sz);
v.indexCol = 0;
v.indexRow = 0;
v.precision = 6;
v.type = VARIANT FLOAT; // String not supported
```

```
v.data.block.blockaccess.colInc = 1;
v.data.block.blockaccess.rowInc = 1;
v.data.block.blockaccess.numAccess = 5; // assume variant-
>numAccess is 5
v.data.block.blockaccess.arraysizeCols = 35;
// move the data in now where 'variant' is a user structure of
choice
memcpy((void *)&v.data.block.fbValue, variant->fbValue,
sizeof(float) * variant->numAccess);
```

... Send data packet and await ACK ...

Read a Block of Variants Randomly - Command 113

Command 113 reads variants in a user defined order, rather than sequentially, this includes any cell (row/column) or different variant. All will be returned of the same type, integer, float, or double. String is not supported.

Format of Message Sent to Controller

UDP/TCP

Ø1H Identifies the packet as using the CTC binary protocol

< 5> Specifies the packet length for the message, without the Variant area since including it would make the message exceed byte storage size.

71H Reads a random Variant Block function code

LSB - MSB Specifies the variant register number, may be any value such as 0x0000. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area. Checksum Contains the complement of the modulo-256 sum of all bytes after the length field, <u>not used</u>.

FFH Signals the end of the message.

Serial Port:

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet length.

71H Reads a random Variant Block function code

LSB - MSB Specifies the variant register number, may be any value such as 0x0000. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field.

FFH Signals the end of the message.

Format of Controller Response UDP/TCP

< 3> Specifies the packet length for the message, without the Variant area since including it would make the message exceed byte storage size.

72H Read a random Variant Block response code

LSB - MSB returns what was sent.

<VARIANT_STORAGE_BLOCK structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field, **not used**.

FFH Signals the end of the message.

Serial Port:

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 3> Specifies the packet length.

72H Reads a random Variant Block response code

LSB - MSB returns what was sent.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the length field

FFH Signals the end of the message.

Example Structure initialization:

Read 36301[0][0], 36301[0][1], 36301[0][2], 36301[1][0], 36302[0][0] as doubles.

```
VARIANT STORAGE BLOCK v;
// initialize the variant structure
if (ctc->connType == SERIAL)
{
      sz = sizeof(VARIANT STORAGE BLOCK SERIAL);
      length = sz+5; // packet length
}
else
{
      sz = sizeof(VARIANT STORAGE BLOCK);
      length = 5;
}
// initialize the variant structure
memset((void *)&v.type,0,sz);
v.precision = 6;
v.type = VARIANT DOUBLE;
v.data.block.blockaccess.numAccess = 5;
// 36301[0][0]
v.data.block.request[0].reg = 36301;
v.data.block.request[0].row = 0;
v.data.block.request[0].col = 0;
// 36301[0][1]
v.data.block.request[1].reg = 36301;
v.data.block.reguest[1].row = 0;
v.data.block.reguest[1].col = 1;
// 36301[0][2]
v.data.block.reguest[2].reg = 36301;
v.data.block.request[2].row = 0;
v.data.block.request[2].col = 2;
```

```
// 36301[1][0]
v.data.block.request[3].reg = 36301;
v.data.block.request[3].row = 1;
v.data.block.request[3].col = 0;
// 36302[0][0]
v.data.block.request[4].reg = 36302;
v.data.block.request[4].row = 0;
v.data.block.request[4].col = 0;
```

Depending upon which type you are accessing, the returned Variant will be accessed as follows where rp is a pointer to the receive buffer. sz is the size of the structure used, that of VARIANT_STORAGE_BLOCK or VARIANT_STORAGE_BLOCK_SERIAL.

Register and Flag Access Commands

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying register and flag numbers and values and for checksum error detection.

- When specifying a register number, it is expressed as ØØØ1H through ØFFFFH, corresponding to registers 1 through 65535. For example, register 10 is expressed as ØØØAH.
- You must specify register numbers with the least significant byte first.
- When specifying a flag number, it is expressed as ØØH through 7FH for flags, corresponding to flags 1 through 128. For example, flag 5 is expressed as Ø4H.
- The checksum value is the complement of the previous byte(s). Some commands use the complement of the modulo-256 sum of the previous bytes; see the individual command descriptions earlier in this chapter for more information.
- When the controller responds with a register value, it is always a four-byte representation of the register data expressed in 2's (complement binary format), with the least significant byte transmitted first.

Reading a Numeric Register - Command 9

Command 9 reads the value in any register that allows read access.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocolØ5H Specifies the packet lengthØ9H Indicates the read register function code

LSB - MSB Specifies the register number, $\emptyset\emptyset\emptyset$ 1H - \emptyset FFFFH. Specified with the least significant byte first. **Checksum** Contains the complement of the modulo-256 sum of the previous 3 bytes **FFH** Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length.
ØAH Indicates the register contents function code
LSB, 3SB, Four-byte representation of register data, expressed in 2's
2SB, MSB complement binary, with the least significant byte transmitted first.
Checksum Contains the complement of the modulo-256 sum of the previous 5 bytes
FFH Signals the end of the message

Reading a Bank of 16 Registers - Command 77

Command 77 reads the values in a bank of 16 consecutive registers. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol
Ø5H Specifies the packet length
4DH Indicates 16 register group read function code
LSB - MSB Specifies bank of registers to read, ØØØØH - Ø3D9H
Checksum Contains the complement of the modulo-256 sum of the previous 3 bytes
FFH Signals the end of the message

Format of Controller Response

45H Specifies the packet length
4EH Indicates the register contents function code
LSB - MSB (2 bytes) Indicates bank of registers, ØØØØH - Ø3D9H
LSB - MSB (4 bytes) Contains the value of the first register in the group. For a description of register data, see the description for single register read.
LSB - MSB (4 bytes) Contains the value of the second register in the group.
Additional LSB - MSB lines follow for the remainder of the 16 registers in the group.
Checksum Contains the complement of the modulo-256 sum of the previous 67 bytes

FFH Signals the end of the message

Reading a Bank of 50 Registers - Command 75

Command 75 reads the values in a bank of 50 consecutive registers, limited from 1 to 1000.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
4BH Indicates 50 register group read function code
ØØH - 13H Specifies the bank of 50 registers to be read, ØØH - 13H
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

CCH Specifies the packet length

4CH Indicates the register contents function code

 $\emptyset \emptyset H - 13H$ Indicates the bank of 50 registers to follow, $\emptyset \emptyset H - 13H$

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a description of register data, see the description for <u>single register read</u>.

LSB - MSB (4 bytes) Contains the value of the second register in the group. Additional LSB - MSB lines follow for the remainder of the 50 registers in the group.

Checksum Contains the complement of the modulo-256 sum of the previous 202 bytes

FFH Signals the end of the message

Request Random Registers from List - Command 87

Command 87 reads the values of up to 50 random registers from a list. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol **??H** Specifies the packet length, all following bytes, including checksum but not ending FFH.

57H Indicates Random Register Read function code

NUMREGS – Single byte from 1 to 50 representing number of following random registers to read. Registers are listed as 2 byte shorts (16 bits), lsb/msb, results are returned as 32 bit integers.

LSB – MSB1 First register number to read, 16 bits

LSB – MSB2 Second register number to read, 16 bits

•••

LSB – MSBN Last register number to read, 16 bits

Checksum Contains the complement of the modulo-256 sum of all the bytes after the packet length bytes

FFH Signals the end of the message

Format of Controller Response

??H Specifies the packet length

58H Indicates the register contents function code

NUMREGS – Single byte from 1 to 50 representing number of following random registers results which are being returned. Registers' results are returned as 32 bit integers, lsb to msb.

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group. Additional LSB - MSB lines follow for the remainder of the NUMREGS registers in the group.

•••

Checksum Contains the complement of the modulo-256 sum of the previous bytes, excluding packet length **FFH** Signals the end of the message

Changing a Register Value - Command 11

Command 11 changes the value in any register that allows write access. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol
Ø9H Specifies the packet length
ØBH Indicates the Change Register Value function code
LSB - MSB (2 bytes) Specifies the register number, ØØØ1H - ØFFFFH.
Specified with the least significant byte first.
LSB - MSB (4 bytes) Four-byte representation of register data, expressed in 2's

complement binary, with the least significant byte transmitted first. **Checksum** Contains the complement of the modulo-256 sum of the previous 7

bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length. 64H Contains the acknowledge function code (decimal 100) Checksum Contains the complement of the previous byte FFH Signals the end of the message

Reading a Flag's State - Command 17

Command 17 reads the state of any flag. Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
11H Indicates the Read Flag State function code
Flag Number Specifies the flag number, ØØH - 7FH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes

FFH Signals the end of the message.

Format of Controller Response

Ø4H Specifies the packet length
12H Indicates the Flag State function code
ØØH or FFH Indicates the flag's status. ØØH if flag is clear and FHH if set. Any other value means that the results are indeterminate.
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Changing a Flag's State - Command 19

Command 19 changes the state of any flag. Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø5H Specifies the packet length
13H Indicates the Change Flag State function code
Flag Number Specifies the flag to be changed, ØØH - 7FH
ØØH or FFH Specifies the new state of the flag. ØØH represents CLEAR and
FFH represents SET.
Checksum Contains the complement of the previous 3 bytes
ØFFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length. 64H Contains the acknowledge function code (decimal 100) Checksum Contains the complement of the previous byte FFH Signals the end of the message

Digital Input/Output Access Commands

The following commands allow you to read digital input and output states and turn a digital output on or off. Input and output states are read as a group of either 8 or 128.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying groups of inputs and outputs, their states and for checksum error detection.

• When specifying a bank of inputs or outputs as a group of 8, the first bank of inputs or outputs are specified as ØØH, corresponding to 1 through 8. The second bank is specified as 12H, corresponding to 9 through 16, and so on up to 7FH for the 16th bank, corresponding to 121 through 128.

- The checksum value is the complement of the previous byte(s). Some commands use the complement of the modulo-256 sum of the previous bytes; see the individual command descriptions earlier in this chapter for more information.
- When the controller responds with the data for a group of 8 inputs or outputs, the lowest input number is represented by the least significant bit, the next the 7th least significant bit, and so on.
- For input states, a 1 represents a grounded (on) input.
- For output states, a 1 represents an output that is turned on.

Reading a Bank of 8 Inputs - Command 15

Command 15 reads the state of a group of eight digital inputs. The Read Inputs function code (ØFH) allows you to read a group of 8 inputs. Inputs are grouped so that the first group of inputs is 1 to 8; the second is 9 to 16, up to 121 to 128 for the 16th and last group.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
ØFH Indicates the Read Inputs function code
Bank Specifies the bank of inputs, ØØH - 7FH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length
1ØH Indicates the Input Data function code
ØØH - FFH Contains the data for the eight inputs. The lowest input number is represented by the least significant bit. A 1 indicates a grounded (on) input.
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Reading a Bank of 128 Inputs - Command 79

Command 79 reads a bank of 128 inputs. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
4FH Indicates the Read 128 Inputs Request function code
Bank Specifies the input bank to read, ØØH - 7FH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length
50H Indicates the Input Values function code
Bank Input bank to follow, ØØH - 7FH
Inps1-8 Contains the data for the eight inputs, where the lowest input number is represented by the least significant bit. A value of 1 indicates a grounded (on) input.
Inps9-16 Contains the data for the next eight inputs. This continues for a total of 128 inputs.
Checksum Contains the complement of the modulo-256 sum of the previous 18 bytes
FFH Signals the end of the message

NOTE: The controller returns a value of zero (0) for nonexistent inputs within a bank.

Reading a Bank of 8 Outputs - Command 21

Command 21 reads the state of a group of eight digital outputs. Outputs are grouped in the same manner as inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
15H Indicates the Read Output function code
Bank Specifies the bank of outputs, ØØH - 7FH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length
16H Indicates the Output Status function code
ØØH - FFH Contains the data for the eight outputs with the lowest output number represented by the least significant bit. A 1 indicates that an output is on.
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes.
FFH Signals the end of the message

FFH Signals the end of the message

Reading a Bank of 128 Outputs - Command 81

Command 91 reads a bank of 128 digital outputs. The outputs are grouped in the same manner as inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
51H Indicates the Read 128 Outputs request function code
Bank Specifies the bank of outputs, ØØH - 7FH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

14H Specifies the packet length
52H Indicates the output values function code
Bank Specifies the bank of outputs, ØØH - 7FH
Outs1-8 Contains the data for the eight outputs, where the lowest output number is represented by the least significant bit. A value of 1 indicates an output is on.
Outs9-16 Contains the data for the next eight outputs. This continues for a total of 128 outputs.
Checksum Contains the complement of the modulo-256 sum of the previous 18 bytes

FFH Signals the end of the message

NOTE: The controller reports nonexistent outputs within a bank as off, value is 0.

Selectively Changing the First 128 Outputs - Command 25

Command 25 selectively changes the state of a group of 128 digital outputs. This command uses separate on and off masks so you can change specific outputs. For example, an off-mask- \emptyset of \emptyset 6H ($\emptyset\emptyset\emptyset\emptyset\emptyset$ \emptyset 11 \emptyset in binary) would turn off outputs one along with four through eight and outputs two and three would remain in their previous state. A subsequent on-mask- \emptyset of C \emptyset H (11 $\emptyset\emptyset$ $\emptyset\emptyset\emptyset\emptyset\emptyset$ in binary) turns on outputs seven and eight.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

23H Specifies the packet length

19H Indicates the Modify Outputs function code

off-mask-Ø to off-mask-15 Specifies a series of 16 eight-bit masks used to selectively turn off any or all of the controller's first 128 outputs. The masks are applied to successive banks of 8 outputs, with the least significant bit of the mask being applied to the lowest numbered output in the bank. A mask value of Ø turns the associated output off. A value of 1 does not change the output. on-mask-Ø to on-mask-15 Specifies a series of 16 eight-bit masks used to selectively turn on any or all of the controller's first 128 outputs. The masks are applied to successive banks of 8 outputs, with the least significant bit of the mask being applied to the lowest numbered output in the bank. A mask used to selectively turn on any or all of the controller's first 128 outputs. The masks are applied to successive banks of 8 outputs, with the least significant bit of the mask being applied to the lowest numbered output in the bank. A mask value of 1 turns the associated output on. A value of Ø does not change the output.

Checksum Contains the complement of the modulo-256 sum of the previous 33 bytes **FFH** Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length **64H** Contains the acknowledge function code (decimal 100) **Checksum** Contains the complement of the previous byte **FFH** Signals the end of the message

Analog Input and Output Access Commands

The following commands allow you to read analog input and output states and change the value of an analog output. Input and output states are read individually.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying analog inputs and outputs, their values and for checksum error detection.

- When specifying an input or output the first input or output is specified as $\emptyset \emptyset H$. The last input or output you can specify is 64. Its number is 3FH.
- The checksum value is the complement of the previous byte(s). Some commands use the complement of the modulo-256 sum of the previous bytes; see the individual command descriptions earlier in this chapter for more information.

Reading an Analog Input - Command 29

Command 29 reads the value of any of the analog inputs. Format of Message Sent to Controller

> Ø1H Identifies the packet as using the CTC binary protocol Ø4H Specifies the packet length **1DH** Indicates the Read Analog Input function code Analog Input Specifies the input to be read, ØØH - FFH Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes

FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length
1EH Indicates the Analog Input Value function code
LSB - MSB Contains the two-byte representation of the analog value, expressed as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH), with the least significant byte transmitted first
Checksum Contains the complement of the modulo-256 sum of the previous 3 bytes
FFH Signals the end of the message

Reading an Analog Output - Command 31

Command 31 reads the value of any of the analog outputs. Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
1FH Indicates the Read Analog Output function code
Analog Output Specifies the output to be read, ØØH - FFH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length
1EH Indicates the Analog Output Value function code
LSB - MSB Contains the two-byte representation of the analog value, expressed as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH), with the least significant byte transmitted first
Checksum Contains the complement of the modulo-256 sum of the previous 3 bytes
FFH Signals the end of the message

Changing an Analog Output - Command 33

Command 33 changes the value of any of the analog outputs. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol
Ø6H Specifies the packet length
21H Indicates the read analog output function code
Analog Output Specifies the output to be changed, ØØH - FFH
LSB - MSB Contains the two-byte representation of the analog value, expressed as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH), with the least significant byte transmitted first

Checksum Contains the complement of the modulo-256 sum of the previous 4 bytes

FFH Signals the end of the message.

Format of Controller Response

Ø5H Specifies the packet length64H Contains the Acknowledge function code (decimal 100)9BH Checksum value. Contains the complement of the previous byte.FFH Signals the end of the message

Change Multiple Analog Outputs - Command 85

Command 85 changes the value of up to 64 sequential analog outputs. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol
Ø6H Specifies the packet length
55H Indicates the Write Multiple Analog Output function code
Analog Output Start Specifies the first output to be changed, Ø1H - FFH
Length Specifies the number of sequential analog outputs to change 01H - 40H
LSB – MSB First Contains the two-byte representation of the analog value,
expressed as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH),
with the least significant byte transmitted first

... LSB-MSB Last Checksum Contains the complement of the modulo-256 sum of the previous bytes FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length64H Contains the acknowledge function code (decimal 100)9BH Checksum value. Contains the complement of the previous byte.FFH Signals the end of the message

Servo Access Commands

The following commands allow you to read a servo's position, error and auxiliary inputs.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying servo axes, their position and error, the state of a servo's auxiliary inputs, and for checksum error detection. You can perform these operations for servos axes 1 - 16.

- When specifying a servo, the first servo axis is specified as ØØH and the 16th specified as ØFH.
- The checksum value is the complement of the previous byte(s). Some commands use the complement of the modulo-256 sum of the previous bytes; see the command description.

Reading a Servo's Position - Command 23

Command 23 reads the position of a servo. Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
17H Indicates the Read Servo Position function code
Servo Number Specifies the servo axis to be read, ØØH - ØFH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length.
18H Indicates the servo position function code
LSB - MSB (4 bytes) Contains the four-byte representation of the servo's position. The value is expressed in 2's (complement binary format), with the least significant by transmitted first.
Checksum Contains the complement of the modulo-256 sum of the previous 5 bytes

FFH Signals the end of the message

Reading a Servo's Error - Command 47

Command 47 reads a servo's error. Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
2FH Indicates the Read Servo Error function code
Servo Number Specifies the servo axis to be read, ØØH - ØFH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length3ØH Indicates the Servo Position Function code

LSB - **MSB** Contains the four-byte representation of the servo's error. The value is expressed in 2's (complement binary format), with the least significant bye transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 5 bytes

FFH Signals the end of the message

Reading a Servo's Dedicated Inputs - Command 27

Command 27 reads the status of a servo's dedicated inputs. The controller returns the status of the dedicated input using a one-bit code.

- Bit Ø, indeterminate
- Bit 1, Home input
- Bit 2, Start input
- Bit 3, Local/remote input
- Bit 4, Reverse limit input
- Bit 5, Forward limit input
- Bit 6, indeterminate
- Bit 7, indeterminate

Bit \emptyset is the least significant bit.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
1BH Indicates the Read Dedicated Input Status function code
Servo Number Specifies the servo axis to be read, ØØH - ØFH
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length
1CH Indicates the servo dedicated input status function code
Status Contains a one byte code of the servo's auxiliary input status
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Data Table Access Commands

The following commands allow you to read and change a data table's dimensions; read and change the value of a data table element; read the values in a data table row; and change the values in a data table row.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying rows and columns of a data table. The manner in which the row or column is specified varies with the command. The checksum value is the complement of the previous byte(s). Some commands use the complement of the modulo-256 sum of the previous bytes; see the individual command descriptions earlier in this chapter for more information. The controller may return an error code under the following circumstances:

- The requested data table size is too large for the controller.
- The requested data table size does not fit in the memory available when stored along with the Quickstep program.
- The command contains a data table column number greater than 32.

Reading a Data Table's Dimensions - Command 49

Command 49 reads the dimensions of a data table. The number of data table columns is $\emptyset\emptyset$ H to 2 \emptyset H.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø3H Specifies the packet length
31H Indicates the Read Data Table Dimensions function code
CEH Contains the checksum of the previous byte
FFH Signals the end of the message

Format of Controller Response

Ø6H Specifies the packet length
32H Indicates the Data Table Dimensions function code
LSB, MSB Contains the number of data table rows in the current program, with the least significant byte transmitted first
columns Contains the number of data table columns
Checksum Contains the complement of the modulo-256 sum of the previous 4 bytes
FFH Signals the end of the message

Changing a Data Table's Dimensions - Command 51

Command 51 changes a data table's dimensions. Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø6H Specifies the packet length
33H Indicates the Change Data table Dimensions function code
LSB, MSB Contains the new number of data table rows, with the least significant byte transmitted first.
columns Contains the new number of data table columns.
Checksum Contains the complement of the modulo-256 sum of the previous 4 bytes
FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length64H Contains the Acknowledge function code (decimal 100)9BH Contains the checksum, complement of the previous byteFFH Signals the end of the message

Reading a Data Table Value - Command 53

Command 53 reads the value of a specific data table element by specifying its row and column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø6H Specifies the packet length
35H Indicates the Read Data Table Location function code
LSB, MSB Contains the row number of the data table element, with the least significant byte transmitted first
columns Contains the column number of the data table element
Checksum Contains the complement of modulo-256 sum of the previous 4 bytes
FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length

36H Indicates the data table data function code

LSB, MSB Contains the data from the data table, expressed as a positive integer. The range is from 0 to 65,535 (decimal) with the least significant byte transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 3 bytes

FFH Signals the end of the message

Changing a Data Table Value - Command 55

Command 55 changes the value of a specific data table element by specifying its row and column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø8H Specifies the packet length
37H Indicates the Change Data Table Location function code
LSB, MSB Contains the row number of the data table element, with the least significant byte transmitted first.
columns Contains the column number of the data table element.
LSB, MSB Contains the new value for the specified data table element. The new value can range from 0 to 65,535 (decimal) with the least significant bye transmitted first.
Checksum Contains the complement of modulo-256 sum of the previous 6 bytes FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length64H Contains the Acknowledge function code (decimal 100)9BH Contains the checksum, complement of the previous byteFFH Signals the end of the message

Reading a Data Table Row - Command 57

Command 57 reads the values in a specific data table row and columns by specifying their row and beginning column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø7H Specifies the packet length
39H Indicates the Read Data Table Row function code
LSB, MSB Contains the row number, with the least significant byte transmitted first
First col Indicates the first data table column to read
Owantity Specifies the number of data table columns to read (n): <= 27 columns

Quantity Specifies the number of data table columns to read (n); <= 27 columns **Checksum** Contains the complement of modulo-256 sum of the previous 5 bytes **FFH** Signals the end of the message

Format of Controller Response

Length Specifies the packet length, (n * 2) + 4, where n = number of columns read

3AH Indicates the Data Table Row Data function code

Quant Specifies the number of data table columns read (n); <= 27 columns **For each of n locations**

LSB, MSB Contains the data from the data table, expressed as a positive integer. The range is from 0 to 65,535 (decimal) with the least significant by transmitted first.

End of location data

Checksum Contains the complement of the modulo-256 sum of the previous (n * 2) + 2 bytes

FFH Signals the end of the message

If the number of data table columns specified extends beyond the actual number of columns, the controller's response only contains data for the existing columns and the response will be shorter than expected.

Changing a Data Table Row - Command 59

Command 57 changes the values in a specific data table row and columns by specifying their row and beginning column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

length Specifies the packet length, (n * 2) + 4, where n = number of columns to be changed

3AH Indicates the change Data Table Row function code

LSB, MSB Contains the row number, with the least significant byte transmitted first

First col Indicates the first data table column to change

Quantity Specifies the number of data table columns to change (n); <= 27 columns

For each of n locations

LSB, MSB Contains the data from the data table, expressed as a positive integer. The range is from 0 to 65,535 (decimal) with the least significant by transmitted first.

End of location data

Checksum Contains the complement of modulo-256 sum of the previous (n * 2) + 5 bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length64H Contains the acknowledge function code (decimal 100)9BH Contains the checksum, complement of the previous byteFFH Signals the end of the message

System and Controller Status Access Commands

The following commands allow you to read the status of a controller; start, stop or reset a controller; read or change the configuration of the controller's dedicated inputs; and obtain information about the number and type of controller resources in a particular controller.

Binary Protocol Conventions

The binary protocol uses specific bits for controller status and system configuration information. See the command descriptions for information on how to send and read this information. The checksum value is the complement of the previous byte(s). Some commands use the complement of the modulo-256 sum of the previous bytes; see the individual command descriptions earlier in this chapter for more information.

Reading a Controller's Current Status - Command 61

Command 61 reads a controller's status and reports if it is running, stopped, has a software fault, or is in programming mode.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø3H Specifies the packet length
3DH Indicates the Read Status Byte function code
CEH Contains the checksum of the previous byte
FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length

3EH Indicates the Status Byte function code

status Indicates the status of the controller, where:

Bit $\emptyset = \emptyset$ if running and = 1 if stopped

Bit $1 = \emptyset$ in normal mode and = 1 in programming mode

Bit $2 = \emptyset$ if status OK and = 1 if there is a software fault

Bit $3 = \emptyset$ if in mid-program and =1 if fresh reset.

Bit \emptyset is the least significant bit and bits 4 through 7 are undefined.

Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes

FFH Signals the end of the message

Changing a Controller's Status - Command 63

Command 63 changes a controller's status. Format of Message Sent to Controller

> **Ø1H** Identifies the packet as using the CTC binary protocol **Ø4H** Specifies the packet length **3FH** Indicates the Change Controller Status byte function code **status** Indicates the status of the controller, where: Bit $\emptyset = \emptyset$ to start the controller and = 1 to stop it

Bit 3 = 1 to reset the controller and = Ø to continue Bit Ø is the least significant bit and will always start or stop the controller. All unspecified and undefined bits should be set to Ø.
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length 64H Contains the Acknowledge function code (decimal 100) Checksum Contains the complement of the previous byte FFH Signals the end of the message

Reading a Controller's System Configuration - Command 65

Command 65 reads the configuration of the controller's dedicated inputs. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocol
Ø3H Specifies the packet length
41H Indicates the Read System Configuration function code
BEH Contains the checksum of the previous byte
FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length
42H Indicates the System Configuration function code
config Indicates the configuration of the controller, where:
Bit Ø = 1 if using input 1 for the start function
Bit 1 = 1 if using input 2 for the stop function
Bit 2 = 1 if using input 3 for the reset function
Bit 3 = 1 if using input 4 for the step function
Bit Ø is the least significant bit and bits 4 through 7 are undefined.
Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes
FFH Signals the end of the message

Changing a Controller's System Configuration - Command 67

Command 67 changes the configuration of the controller's dedicated inputs. **Format of Message Sent to Controller**

Ø1H Identifies the packet as using the CTC binary protocolØ4H Specifies the packet length43H Indicates the Change System Configuration function code

config Indicates the new configuration of the controller, where:

Bit $\emptyset = 1$ to use input 1 for the start function

Bit 1 = 1 to use input 2 for the stop function

Bit 2 = 1 to use input 3 for the reset function

Bit 3 = 1 to use input 4 for the step function.

Bit \emptyset is the least significant bit and bits 4 through 7 are undefined.

Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length **64H** Contains the Acknowledge function code (decimal 100) **Checksum** Contains the complement of the previous byte **FFH** Signals the end of the message

Listing Counts of Inputs, Outputs, Motion - Command 13

Command 13 obtains information about the number and type of controller resources and reports the information.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol Ø3H Specifies the packet length ØDH Indicates the I/O Count Request function code F2H Contains the checksum of the previous byte **FFH** Signals the end of the message

Format of Controller Response

ØCH Specifies the packet length ØEH Indicates the I/O Count function code flags Indicates the number of flags, typically 80H inputs LSB Indicates the number of inputs, LSB: ØØH to F8H inputs MSB MSB: ØØH to Ø4H outputs LSB Indicates the number of outputs, LSB: ØØH to F8H outputs MSB MSB: ØØH to Ø4H stepping mtrs Indicates the number of stepping motor axes, ØØH to 1ØH servos Indicates the number of servo axes, ØØH to 1ØH analog inputs Indicates the number of analog inputs, ØØH to FFH analog outputs Indicates the number of analog outputs, ØØH to FFH Checksum Contains the complement of the modulo-256 sum of the previous 10 bytes

FFH Signals the end of the message

Listing Counts of Miscellaneous I/O - Command 69

Command 69 obtains information about the number and type of various controller resources, such as prototyping boards, high-speed counting boards, thumbwheel arrays, and numeric displays and reports it.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø3H Specifies the packet length
45H Indicates the Miscellaneous I/O Count Request function code
BAH Contains the checksum of the previous byte
FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length
46H Indicates the I/O Count function code
protos Indicates the number of flags, typically 8ØH
h s counters Indicates the number of high-speed counters
twhls Indicates the number of 4-digits thumbwheel arrays
disps Indicates the number of 4-digit numeric displays
Checksum Contains the complement of the modulo-256 sum of the previous 5 bytes
FFH Signals the end of the message

Reading Controller Step Status - Command 35

Command 35 reads the status of tasks in the controller. By executing this command four times, once for each group of eight tasks, you may obtain all the information necessary to reconstruct the hierarchy and status of the controller's tasks. In addition, if software fault has halted execution of your program, the controller's response indicates the type of the fault, the step where it occurred, and any relevant parametric data. As it starts each new task, your Quickstep program assigns a task number from 1 to 32. The main program is always task number one. Each of the 32 tasks, whether it is currently being used or not, reports back a step number along with a 32-bit mask word. If the program is currently using a task number, the mask shows whether the task is currently suspended or waiting for one or more sub-tasks to finish. This is shown by a 1 bit in the bit position of the mask word corresponding to the task for which the current task is waiting. For example, if the main program, task one, called up three sub-tasks, tasks two, three and four, the mask word for task one would be as follows:

ØØØØØØØØ ØØØØØØØØ ØØØØØØØØ ØØØØ111Ø MSB LSB

To extract the hierarchy of tasks being executed:

- 1. Start with task one and read its mask word to determine its sub-tasks.
- 2. Read the mask word of each sub-task, which indicate if any tasks are being executed at the next level down the hierarchy.

3. As you follow the hierarchy of tasks under execution, you may determine the current step being executed by each via the step number data provided. Step numbers are offset by -1.

Do not assume that Quickstep allocates task numbers in the order of task hierarchy. The starting and stopping of task numbers in a complex program may result in a scattering of active tasks throughout the 32 possible task numbers. The only way to determine the active tasks is to follow the task hierarchy as outlined above. When a controller is stopped because of a software fault the message returned by the controller will contain a software fault code. A list of all fault codes can be found in the Fault Task Handler chapter.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol
Ø4H Specifies the packet length
23H Indicates the Status Request function code
task range Bank of 8 tasks to be read, ØØH to Ø3H, where:
ØØH = tasks 1 through 8
Ø1H = tasks 9 through 16
Ø2H = tasks 17 through 24
Ø3H = tasks 25 through 32

Checksum Contains the complement of the modulo-256 sum of the previous 2 bytes

FFH Signals the end of the message

Format of Controller Response

39H Specifies the packet length

24H - 27H Indicates the Controller Status function code

Status - If the controller is stopped, it returns a value of \emptyset FFH, indicating true. If the controller is running, it returns a value of $\emptyset\emptyset$ H.

Fault type - Contains the type code for a software fault, if any are present. If the value is $\emptyset\emptyset$ H, then no software fault is present.

For additional information on fault codes, see <u>Chapter 13:</u> Fault Task Handler

Fault step – LSB, MSB, 16 bit, where where $\emptyset \emptyset \emptyset \emptyset H =$ step 1, $\emptyset \emptyset \emptyset 1H =$ step 2 **LSB MSB (4 bytes)** Data relating to software fault if any; otherwise unspecified. 48 bytes follow and provide the following data for each of the eight tasks:

LSB, MSB Step number currently being executed by this task, where $\emptyset \emptyset \emptyset \emptyset H =$ step 1, $\emptyset \emptyset \emptyset 1H =$ step 2, and so forth.

LSB - **MSB** (4 bytes) 32 bit mask, indicating with a 1 or \emptyset for each of the 32 possible tasks whether this task is waiting for the completion of each task or not. Lowest order bit of LSB represents task 1, etc.

Checksum Contains the complement of the modulo-256 sum of the previous 55 bytes

FFH Signals the end of the message

IP Encapsulation

An option exists that allows the CTC Binary Protocol to be sent over UDP and/or TCP, allowing it to be routed. All Blue Fusion controllers support the raw, low level, non-routable binary protocol, and additionally run background servers listening for UDP and TCP connections that support "IP Encapsulation". Simply put, a header is added on to the current serial protocol. The controller listens for UDP requests on IP port 3000 and TCP on port 6000.

```
#define MAXPKTDATALEN 216
#pragma pack(1)
typedef struct ctcIPPacket s
   // Used to validate proper CTC packet versions.
   11
   BYTE version major;
  BYTE version minor;
  // Identifier for each packet sent. Used to validate
   // incoming packets.
   11
  UINT16 transaction id;
  // Required within packet. Only the sender knows for
   // sure the type of the request. The spare aligns data
   // along word boundaries.
   11
  BYTE type;
   BYTE spare;
   // Number of octets in the CTC binary.
   11
  UINT16 data size;
   // Up to 216 (maximum in octets) of data. Note :
current
  // maximum packet size is 216 octets + 8 octets or 224
   // octets or bytes.
  11
  BYTE data [MAXPKTDATALEN];
} CTCPACKET;
#pragma pack()
```


The above structure is aligned on a 1 byte boundary. (#pragma pack(1)).

version_major/version_minor

These two byte fields represent the major and minor software revision of the initiator. The controller side simply returns whatever was received by the host

making the request. Typically <code>version_major = 0x04</code> and <code>version_minor = 0x00</code>.

transaction_id

The transaction_id is a two-byte, little endian format (lsb/msb) field which contains an incrementing number, starting at 0x0001, to track the transaction request by. The controller will return the packet setting the transaction ID to that received, including the response information in the data field. Do not use a transaction id of 0x0000.

Туре

0x14 - Request0x15 - Reply

spare

Not used. Alignment purposes only. Set to 0x00.

data_size

This contains the length of the data field stored in a two-byte, little endian format (lsb/msb). The maximum size of the data field is 216 bytes.

data

This is the binary protocol transaction which has been encapsulated. Refer to <u>Chapter 19: CTNet Binary Protocol</u> for additonal information on the standard CTC Binary Protocol. Messages from the host begin with 0x01, that from the controller are the length of the message in bytes. Both messages end with a checksum and 0xff byte. Only the number of bytes defined within data_size are contained within data, not the full maximum of 216 bytes.

Example: register read request of register 0x0002 with transaction ID 0x0001:

checksum = $\sim (0x09 + 0x02 + 0x00) = 0xf4$

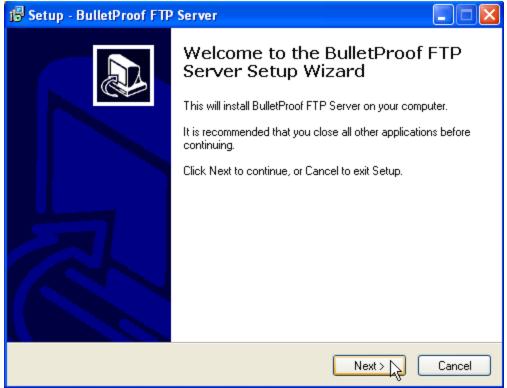
Reply from controller:

|------ Header ------ Binary Protocol Msg ------- 0x04 0x00 0x01 0x00 0x15 0x00 0x08 0x00 0x07 0x0a 0x00 0x00 0x00 0x00 0x05 0xff

Register contained 0x00000000. Note that little endian storage is used (lsb first).

[A] BulletProof FTP Server

BulletProof Software has available a low cost FTP Server (\$34.95, 15 day free trial) which can be installed on Windows systems for communications with the Model 5300. This appendix is provided as an initial quick start guide detailing its installation and initial setup. Detailed information and additional support is provided within their manual. The program may be downloaded from their web site at:


http://www.bpftpserver.com/download.php.

Installation

1. From their web site click the download Icon and save the file to a desired directory:

2. Once downloaded execute their "ftpsetup.exe" file. At the welcome screen click the Next button:

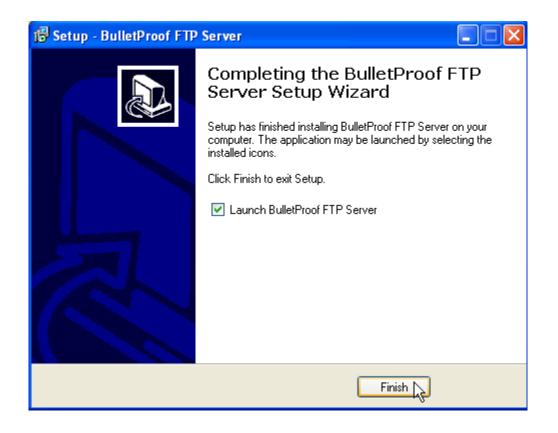
3. Accept their agreement and click Next:

	and the second
License Agreement Please read the following important information before continuing.	
Please read the following License Agreement. You must accept the terms of this agreement before continuing with the installation.	
BulletProof FTP Server (c) DigitalCandle, Inc. Development, Marketing and Retailing: DigitalCandle, Inc. (www.digitalcandle.com) WWWeb : <u>http://www.bpftpserver.com/</u> Email : support@bpftpserver.com	
END-USER LICENSE AGREEMENT FOR THIS SOFTWARE IMPORTANT - READ CAREFULLY:	•
 I accept the agreement I do not accept the agreement 	
Click Next at the Information screen:	Cancel
Betup - BulletProof FTP Server	
Information	
Please read the following important information before continuing.	Ċ
Please read the following important information before continuing. When you are ready to continue with Setup, click Next.	ð
When you are ready to continue with Setup, click Next.	
When you are ready to continue with Setup, click Next.	
When you are ready to continue with Setup, click Next. VERSION DETAILS x Fixed, + Added, * Improved/Changed, i Information	en.

5. Change the installation directory if required and click Next:

🕼 Setup - BulletProof FTP Server			
Select Destination Location Where should BulletProof FTP Server be installed?			
Setup will install BulletProof FTP Server into the following folder.			
To continue, click Next. If you would like to select a different folder, click Browse.			
C:\Program Files\BPFTP Server Browse			
Allert 0.2 MB of feet fill second is consided			
At least 0.2 MB of free disk space is required.			
< Back Next > Cancel			

6. Accept the defaults of the next few screens and continue as shown:


tup - BulletProof FTP Server	_		
elect Components Which components should be installed?			
Select the components you want to install; clear the components you install. Click Next when you are ready to continue.	u do not want to		
Full installation	~		
BulletProof FTP Server	838 KB		
BulletProof IP Watch	347 KB		
Service installer for Windows NT/2000/2003/XP only	23 KB		
✓ Help files	791 KB		
Current selection requires at least 2.1 MB of disk space.			
	xt > Car		

🔂 Setup - BulletProof FTP Server			
Select Start Menu Folder Where should Setup place the program's shortcuts?			
Setup will create the program's shortcuts in the following Start Menu folder. To continue, click Next. If you would like to select a different folder, click Browse.			
BulletProof FTP Server Browse			
< Back Next > Cancel			
🔂 Setup - BulletProof FTP Server			
Select Additional Tasks Which additional tasks should be performed?			
Select the additional tasks you would like Satup to perform while installing BulletProof			

Select Additional Tasks Which additional tasks should be performed?	ß
Select the additional tasks you would like Setup to perform while installing BulletProof FTP Server, then click Next. ✓ Create a Desktop icon ✓ Create a Quick Launch icon ✓ Create Start menu icons	
K K K K K K K K K K K K K K K K K K K	

🔂 Setup - BulletProof FTP Server	
Ready to Install Setup is now ready to begin installing BulletProof FTP Server on your computer.	
Click Install to continue with the installation, or click Back if you want to review or change any settings.	
Destination location: C:\Program Files\BPFTP Server	^
Setup type: Full installation	≡
Selected components: BulletProof FTP Server BulletProof IP Watch Service installer for Windows NT/2000/2003/XP only Help files	
Start Menu folder:	~
< Back Install	Cancel

7. Upon completion the final screen will appear, click Finish and the program will automatically be invoked:

Operation

Upon initial install and execution the following will appear:

BulletProof FTP Server v2.3.1 (Build 26) ::UNREGISTERED::	: 15 day(s) left for evalua 🔳 🗖 🔀
Server Setup Windows View Help	
🌾 🖪 🗶 🖅 🔁 📮 🕵 🕵 💆 🛤	3
BulletProof FTP Server v2.3.1 (Build 26) - Copyright (c) 1998-2004 DigitalCandle Inc, All Rights Reserved. Using WinSock 2.0 - Max Sock. 32767. Running on 2xIntel(R) Pentium(R) 4 CPU 3.20GHz 3192 Mhz with 1047532 KB (509796 KB free) under Windows NT 5.1 Service Pack 2	
C:\ Fixed Disk Drive - Free Space : 9369 MB D:\ CDRom Disk Drive E:\ Fixed Disk Drive - Free Space : 25024 MB G:\ Fixed Disk Drive - Free Space : 68856 MB H:\ Network Disk Drive - Free Space : 13133 MB K:\ Network Disk Drive - Free Space : 5469 MB Y:\ Network Disk Drive - Free Space : 13133 MB Z:\ Network Disk Drive - Free Space : 5469 MB	
1 user account 0 group account 0 free file(s)/dir(s)	
No Client FTP Server Off-line 0 bytes/s -	

An initial user account must be added. This is the user name and password, along with access rights you will grant this person and/or controller. Click the Setup->User Accounts menu item:

🖪 BulletProof FTP Server v2.3.1 (Build 26) ::UNREGISTERED:: 15 day(s) left for evalua 🔳 🗖	
Server Setup Windows View Help	
🌾 👔 🌺 Main 🔹 🕨 🐘 🗸 🏶 🧏 🕵 🙋 📫 😮	
BulletPrc Devents Manager Ctrl+E ppyright (c) 1998-2004 DigitalCandle Inc, All F Log Using W	
Running User Accounts Ctrl+U (509796 Group Accounts Ctrl+G	
C:\ Fixed Disk Drive - Free Space : 9369 MB D:\ CDRom Disk Drive	
E:\ Fixed Disk Drive - Free Space : 25024 MB G:\ Fixed Disk Drive - Free Space : 68856 MB	
H:\ Network Disk Drive - Free Space : 13133 MB K:\ Network Disk Drive - Free Space : 5469 MB	
Y:\ Network Disk Drive - Free Space : 13133 MB Z:\ Network Disk Drive - Free Space : 5469 MB	
1 user account 0 group account 0 free file(s)/dir[s)	
No Client FTP Server Off-line 0 bytes/s	

The following Setup User Accounts screen will appear:

🖪 Setup User Accounts		
Setup Miscellaneous Links & Messages Ratio, Quota, Bps IP & Banned Files Notes E Status	Setup Access Rights Directories Attributes Files Read Write Delete Append Directories Make List Delete +Subdirs All/None	User Accounts
Ok Cancel	Setup Login Password Home IP -= All IP Homes =-	
Right Click to add/modify acco	unts	

To add an account, position the mouse over the User Accounts window and right click the mouse. A menu will appear; select Add:

🖪 Setup User Accounts		
Setup Miscellaneous Links & Messages Ratio, Quota, Bps Status Notes Status	Setup Access Rights Directories Attributes Files Read Write Delete Append Directories Make List Delete +Subdirs All/None Setup	Luser Accounts
Ok Cancel	□ Login □ Password □ Home IP ·= All IP Homes =- □ Group name	

Enter the new account name, 5222Controller is shown in the example, click OK:

Enter Account Name	×
Account Name	
5222Controller	
OK Cancel	

B Setup User Accounts	;			×
Setup Miscellaneous Links & Messages Ratio, Quota, Bps IP & Banned Files Notes Status	Setup Access Rights Directories Use group hor	Attributes	Files Read Write Delete Append Directories List Delete +Subdirs	User Accounts 5222Controller
Ok Cancel	Se <u>t</u> up ✓ Login ✓ Password <u>H</u> ome IP ☐ Group name	5222Controller FoweTPJY -= All IP Homes =-		

The account has now been created. A default password of FcweTPJY is shown. This should be changed to anything desired. By default no directory or file access is granted, only the account created. In order to grant access a directory must be referenced and access privileges granted. To add a directory, right click the mouse in the Access Rights area of the screen and select Add:

🔮 Setup		
Access Rights		
Directories A	Attributes	Files
		Read Write
+ Add	Ins	Delete
🗅 New 👋]Append
Edit	F2	rectories
Browse	F3] Make
Remove	Del] List] Delete
Set as Home dir	Ctrl+H	+Subdirs

A window will appear allowing you to select the desired directory and access permissions:

Select Directory	
Pesktop My Documents My Computer My Network Places Recycle Bin	Files ✓ Read ✓ Write Delete Append Directories ✓ List Delete +Subdirs ✓ All/None Select Cancel
C:\Documents and Settings\Kevin.CTC\Desktop	:

If subdirectories are to be allowed be sure to select the +Subdirs check box. Below shows a directory on the C: drive being added called FTPServerHome. File access will allow upload and download as well as access to subdirectories.

Decuments and settings DRIVERS FTPServerHome Torial 1386 Cancel JavaComm MSOCache	🖪 Select Directory	
C:\FTPServerHome	Autologix Autologix backete backup Exec AOFO Store changed com CT auth Cygwin Cygwin2.95 DELL DemoBox Documents and Settings DRIVERS FTPServerHome JavaComm JavaComm MSOCache MSOCache NetObjects Fusion 7.5	 ✓ Read ✓ Write ✓ Delete △ Append Directories ○ Make ✓ List ○ Delete ✓ +Subdirs ○ All/None

🖪 Setup User Account	j		
Setup Miscellaneous Links & Messages Ratio, Quota, Bps P & Banned Files Notes Status	Setup Access Rights Directories C:\FTPServer Use group hom Setup Login Password Home IP Group name	Files Read Write Delete Append Directories Make List Delete FSubdirs All/Mone	User Accounts 5222Controller

To activate the server you must select OK, then Server->Go On-line at the main menu:

🖪 BulletProof FTP Server v2.3.1 (Build 26) ::UNREGISTERED:: 15 day(s) left for evalua 💷 🔲 🔀				
Server Setup Windows View Help				
- Ctrl+5 🛛 🕵 🖉 🥵 🖉 🖄 👔 🖉				
K Ctrl+P 26) - Copyright (c) 1998-2004 DigitalCandle 🔼				
sage Ctrl+B 37.				
y F9 5.1 Service Pack 2				
Ctrl+Q 9369 MB				
D:\ CDRom Disk Drive E:\ Fixed Disk Drive - Free Space : 25024 MB G:\ Fixed Disk Drive - Free Space : 68856 MB H:\ Network Disk Drive - Free Space : 13133 MB X:\ Network Disk Drive - Free Space : 13133 MB Y:\ Network Disk Drive - Free Space : 13133 MB Z:\ Network Disk Drive - Free Space : 5469 MB				
Image: Ctrl+P 6) - Copyright (c) 1998-2004 DigitalCandle sage: Ctrl+B 7. PU 3.20GHz 3192 Mhz with 1047532 KB y F9 5.1 Service Pack 2 Ctrl+Q 9369 MB Drive ive - Free Space : 25024 MB : Drive - Free Space : 13133 MB : Drive - Free Space : 13133 MB : Drive - Free Space : 5469 MB : Drive - Free Space : 5469 MB : Drive - Free Space : 5469 MB				

There are numerous other features available within the BulletProof software package. It is left to the user to read their documentation available on their web site.

http://www.bpftpserver.com/help/bpftpserver.com/manual_en/

Example: Access via the telnet or script command line to this account would be:

ftpconnect 12.40.53.52 5222Controller FcweTPJY

[B] Network Port Usage

The Model 5300 uses a number of TCP and UDP data ports for communications. This section documents their usage.

Port Numbers

An IT professional can use the following port number list for configuration of corporate firewalls, VPN or NAT. Below are the common ports used. In many circumstances, especially when the Model 5300 is the client, ports are determined by the user.

Port	Function	Direction
21	FTP Server	Inbound, TCP
23	Telnet Administrative Interface	Inbound, TCP
501	Modbus TCP	Inbound, TCP
3000	CTC Binary Protocol	Inbound, UDP
6000	CTC Binary Protocol	Inbound, TCP
21896	Controller Discovery	Inbound and Outbound, UDP
40000	Ports used for random binding, both	Inbound and Outbound
to	UDP and TCP.	
40640		
	BELOW FOR iPANEL, REF ONLY	
21891	Multicast [239.11.90.201]	Outbound from the Control
	Used to discover iPanel devices and	utility.
	computers running CT HMI	Inbound to iPanel devices and
	Workstation.	computers running CT HMI
		Workstation.

21892	Multicast [239.11.90.201]	Outbound from iPanel devices
210/2	Used to discover iPanel devices and	and computers running CT HMI
	computers running CT HMI	Workstation.
	Workstation.	Inbound to the Control utility.
21893	Multicast [239.11.90.201]	Inbound and Outbound.
	Used to communicate between	
	iPanels, all CT HMI products	
	(including Builder and Workstation)	
	and CTServer .	
	Used primarily for service discovery.	
9190	Used to communicate between the	Outbound from the Control
	Control utility and an iPanel device	utility.
	or a computer running CT HMI	Inbound to iPanel devices and
	Workstation.	computers running CT HMI
		Workstation.
9191	Used to communicate between the	Outbound from the Remote
	Remote Workstation program and	Workstation program.
	an iPanel device or a computer	
0104	running CT HMI Workstation.	
8194	Web server (HTTP) port for viewing	Inbound to CT HMI Builder
	logged historical data.	from client browsers.
	This port is <i>only</i> used when developing a project using CT HMI	
	Builder.	
8195	Web server (HTTP) port for viewing	Inbound to run-time instances of
0175	logged historical data.	CT HMI.
	This port is used by run-time	
	instances of CT HMI SA (stand-	
	alone, running on an iPanel) or CT	
	HMI WS (workstation).	
8192	Virtual services <i>class-server</i> , <i>registry</i>	Inbound to virtual services.
	and local-services port used by CT	
	HMI applications to communicate to	
	CTServer instances.	
41001	Used to communicate between	Inbound to remote object servers
through	iPanels, all CT HMI products	in the listed products.
41099	(including Builder and Workstation)	
	and CTServer .	