
Copyright 2004 - 2015 © Control Technology Corporation

All Rights Reserved.

Model 5300

Communications &

Logging Guide

&

Blank

&

 WARNING: Use of CTC Controllers and software is to be done only by

experienced and qualified personnel who are responsible for the application and use

of control equipment like the CTC controllers. These individuals must satisfy

themselves that all necessary steps have been taken to assure that each application

and use meets all performance and safety requirements, including any applicable

laws, regulations, codes and/or standards. The information in this document is given

as a general guide and all examples are for illustrative purposes only and are not

intended for use in the actual application of CTC product. CTC products are not

designed, sold, or marketed for use in any particular application or installation; this

responsibility resides solely with the user. CTC does not assume any responsibility or

liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software

described in this document is provided under license agreement and may be used and

copied only in accordance with the terms of the license agreement. The information,

drawings, and illustrations contained herein are the property of Control Technology

Corporation. No part of this manual may be reproduced or distributed by any means,

electronic or mechanical, for any purpose other than the purchaser’s personal use, without

the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware

revision levels. Some features may not be supported in earlier revisions. See www.ctc-

control.com for the availability of firmware updates or contact CTC Technical Support.

Model Number Hardware Revision Firmware Revision

5300 All Revisions >= 5.00.90R69.44

http://www.ctc-control.com/
http://www.ctc-control.com/

&

TABLE OF CONTENTS

[1] Communications Summary ... 9
[2] Serial Communications ... 11

Port Settings via Registers .. 11
Port Settings via WebMON .. 13

[3] Networking Communications ... 17

CTNet .. 17
UDP... 17

TCP ... 17
Configuring a CTNet Node using Registers ... 18
Configuring IP Addresses using Registers ... 18
Configuring the IP address automatically with DHCP ... 19

Setting the Controller’s DNS Name via Telnet .. 20
Communicating to the Controller Using CTNet ... 20

Network Configuration via WebMON ... 21
Ethernet Settings ... 21

[4] ASCII Computer/Terminal Protocol ... 25

ASCII Computer Protocol... 25

ASCII Terminal Protocol .. 26
ASCII Protocol Commands .. 27

Initiate computer mode: .. 27

Initiate terminal mode: .. 27
Read a counter/register: .. 27

Write a counter/register: ... 28
Returned Error Messages .. 28

[5] TCP/IP Raw Sockets ... 29

TCP Client .. 29
TCP Server .. 31

Lantronix CoBox/Xpress interface Example .. 31

[6] UDP Peer to Peer Protocol Overview ... 33
Peer-to-Peer Protocol Registers .. 33

Registers 21000-21299 ... 34

Initiating a Peer to Peer Session.. 36
[7] Modbus .. 39

Modbus Slave RTU TCP & RTU/ASCII Serial ... 39
Modbus Slave Serial RTU/ASCII ... 50

Modbus Master TCP RTU & Serial RTU/ASCII ... 51

Registers 21000-21299 ... 52
Example: Modbus TCP & RTU Serial Master Initialization 55

Modbus TCP Master Sample Program ... 55

Modbus RTU Serial Master Sample Program .. 56
Modbus RTU Serial Master Multidrop QuickBuilder Initialization..................... 58

Testing with Win-Tech’s ModSim32 ... 60

&

[8] SNTP Simple Network Time Protocol .. 67
SNTP Register Configuration ... 67
SNTP WebMON Configuration ... 68

[9] SMTP .. 71

Register Access ... 71
Creating Emails using WebMON ... 72

Tree View, Local/Controller ... 72
Creating/Editing New Email Template ... 73
Deleting Email Template .. 75

Creating Emails using ASCII Text Editor .. 75
SMTP Email Diagnostics .. 78

[10] POP3.. 80
Mail Inbox Server Configuration .. 80
Email Formatting .. 82

Section Headers .. 82

ASCII Text Emails .. 83
Microsoft Outlook Plain Text, Individual Basis ... 84

Microsoft Outlook Plain Text, Default for All ... 87
Sample Email and Response ... 88

Microsoft Exchange 2000 Setup ... 91

[11] DNS Support ... 94

DNS and the Model 5300 ... 95
[12] Quickstep & QuickBuilder Symbols ... 96

Quickstep Symbol Table ... 96

Quickstep HMI Communications ... 97
QuickBuilder Symbol Table ... 98

QuickBuilder HMI Communications .. 100
[13] Fault Task Handler .. 102

Fault Codes ... 104

Fault Task Handler Example .. 105
[14] Formatted Messaging .. 108

Message.ini Extended Formats ... 109

[15] Network Performance Adjustments .. 111
[16] Data Logging ... 114

Logging Controller Setup ... 114

Virtual Directory Creation .. 114
Logging Record Format and Operation .. 115

Log.ini Format .. 117
Log Format Example .. 118

SNAPSHOT .. 119

Log File Deletion .. 119
Log Disk Maintenance .. 119

[17] FTP Client ... 123

Setup ... 123
Commands .. 135
Telnet Error Codes .. 137

&

[18] Advanced Scripting ... 139
Data Table ... 140

load datatable [Variant regnum] [filename] .. 140
save datatable [Variant regnum] [filename] ... 140

Diagnostics .. 141
disktest 1 [file size] [block size] [/path/file] ... 141
disktest 2 [file size] [block size] [/path/file] ... 141

Quickstep .. 141
enable quickstep2 .. 141

disable quickstep2 ... 141
File System.. 142

set close nvariant [Variant #]" .. 142
set logpath [path]... 142
set scriptspath [path] ... 143
set nvariantpath [path]... 143

set emailspath [path] ... 143
set webpath [path] ... 143

set firmwarepath [path] ... 143
set programspath [path]... 143
set datatablespath [path] .. 143

copy [source path/file] [destination path/file] ... 144

Monitor ... 144
mon tfs init .. 144
mon tfs rm ... 144

mon tfs ls ... 144
mon reboot .. 144

Miscellaneous ... 144
get vproperties [Variant #] .. 144
printf [format string…] ... 144

clear startup project ... 145
get project.. 145

get project info [project file] ... 145

get startup project .. 145
run project [opt. project file] ... 145
set startup project [opt. project file] .. 145

Advanced Commands ... 145
Inc <Register> ... 145
Dec <Register> ... 145
If <Resource> <Logic> <Resource> goto <Label> ... 146
:<Label> .. 146

Onerror <optional error mask> goto <Label> .. 146
Goto <Label> .. 146
End .. 146

Delay <Register or constant – milliseconds> ... 146
Alarm <TIME=HH:MM:SS> <optional day of week, DOW=Mon…> 147
ERRORCODE .. 147

&

Script Example .. 149
[19] CTNet Binary Protocol (Server Interface) .. 151

Binary Protocol ... 152
Protocol Framing .. 152

Binary Protocol Error Responses .. 154
Binary Protocol Commands .. 154
Variant Packets ... 157
Register and Flag Access Command/Response definitions 158
Variant Structures ... 160

Variant Access Commands ... 164
Get Properties - Command 91... 164

Read a Variant - Command 93.. 164
Change a Variant - Command 95.. 166
Read a Variant Array Block - Command 109 ... 167
Write a Variant Array Block - Command 111 .. 169

Read a Block of Variants Randomly - Command 113 171
Register and Flag Access Commands ... 173

Reading a Numeric Register - Command 9 .. 173
Reading a Bank of 16 Registers - Command 77 ... 174
Reading a Bank of 50 Registers - Command 75 ... 174

Request Random Registers from List - Command 87 .. 175

Changing a Register Value - Command 11 .. 176
Reading a Flag’s State - Command 17 ... 176
Changing a Flag’s State - Command 19 ... 177

Digital Input/Output Access Commands .. 177
Reading a Bank of 8 Inputs - Command 15 .. 178

Reading a Bank of 128 Inputs - Command 79 .. 178
Reading a Bank of 8 Outputs - Command 21 ... 179
Reading a Bank of 128 Outputs - Command 81 ... 179

Selectively Changing the First 128 Outputs - Command 25 180
Analog Input and Output Access Commands ... 181

Reading an Analog Input - Command 29 ... 181

Reading an Analog Output - Command 31... 182
Changing an Analog Output - Command 33 .. 182
Change Multiple Analog Outputs - Command 85 .. 183

Servo Access Commands .. 183
Reading a Servo’s Position - Command 23 .. 184
Reading a Servo’s Error - Command 47 ... 184
Reading a Servo’s Dedicated Inputs - Command 27 .. 185

Data Table Access Commands ... 186

Reading a Data Table’s Dimensions - Command 49 .. 186
Changing a Data Table’s Dimensions - Command 51.. 187
Reading a Data Table Value - Command 53 .. 187

Changing a Data Table Value - Command 55 .. 188
Reading a Data Table Row - Command 57 .. 188
Changing a Data Table Row - Command 59 .. 189

&

System and Controller Status Access Commands .. 190
Reading a Controller’s Current Status - Command 61 190
Changing a Controller’s Status - Command 63 .. 190
Reading a Controller’s System Configuration - Command 65 191

Changing a Controller’s System Configuration - Command 67 191
Listing Counts of Inputs, Outputs, Motion - Command 13 192
Listing Counts of Miscellaneous I/O - Command 69 ... 193
Reading Controller Step Status - Command 35 .. 193

IP Encapsulation ... 195

[A] BulletProof FTP Server .. 198
Installation... 198

Operation... 204
[B] Network Port Usage.. 210

Port Numbers .. 210

&

With the release of the Model 5300 firmware revision 5.00.90R69.20

and above, numerous features are available. Many of these features are

in the area of communications, while a number of significant ones allow

for greater programming flexibility. This manual’s focus is on those

features relevant to the area of communications, some of which are

listed below:

o (4) Serial ports that support the CTNet Binary protocol, CTC ASCII Protocol,

User Defined, Modbus RTU/ASCII Master and Slave protocols

o COM1 to COM4 are independently configurable; including baud rates to 115Kb,

stop bits, data bits, parity, and communication protocols

o Serial communications settings saved and restored at power up

o Telnet Server for remote administration interface

o FTP Client and Server, reference Document No. 951-530001: Remote

Administration Guide.

o HTTP 1.0 Web server for WebMON (Document No. 951-530012: WebMON 2.0

User’s Guide) diagnostics.

o Modbus/TCP RTU Master and Slave

o UDP Peer to Peer

o TCP client/server raw socket interface, bidirectional (up to 20)

o CTNet Binary protocol

o SMTP support for sending emails

o POP3 inbox support for receiving emails and processing embedded script

messages

o Up to 9 serial ports, including 4 local and 5 virtual TCP to terminal servers or host

applications

o Configurable connection throttling to enhance overall system performance

o String formatted output messages with embedded register values from within

Quickstep (printf format).

o SNTP Time Server synchronization for real time clock.

o DHCP support

o DNS name registration via DHCP

o ‘C’ Programming for custom protocols along with support for UDP Datagrams.

&

o Configuration of most parameters via the Java WebMON Administration

Interface applet.

&

The controller contains four RS-232 serial ports. Optionally, COM3 can

be ordered with RS-485 in which case COM4 is not available. RS-485

operation is transparent to software, with automatic line turnaround and

timing controlled by hardware. These ports support numerous

communications protocols, many of which are detailed elsewhere within

this document. This section is meant as a general overview.

Port Settings via Registers

Serial port parameters may be modified directly via registers, such as when programming

via Quickstep. The factory default communication settings for the two serial ports are:

Baud Rate - 19200

Data Bits - 8

Parity - None

Stop Bits - 1

All parameters may be changed using available registers. Use register 12000 to select

either port by storing a 1 or 2. Set the following registers based on the configuration

desired:

Set register 12301 to select the baud rate as follows:

2 - 1,200

3 - 2,400

4 - 4,800

5 - 9,600

6 - 19,200 (default)

7 - 38,400

8 – 57,600

9 – 115,400

Set register 12308 to select the parity as follows:

0 - None (default)

&

1 - Odd

2 - Even

Set register 12309 to select the stop bits as follows:

1 - Stop bit on transmit (default)

2 - Stop bits on transmit

Set register 12310 to select the data bits as follows (not including parity):

7 - Data bits

8 - Data bits (default)

For example, the following Quickstep instructions will change the baud rate on port 1 to

9600 Baud:

 store 1 to Reg_12000

 store 5 to Reg_12301

Serial port settings are non-volatile and may be saved to serial E
2
 memory. Saving these

and other parameters is done by writing a 1 to register 20096.

In summary the following are relevant serial port control registers:

Serial Communications Registers

message.ini

&

Only baud rate, stop bits, data bits, parity, protocol, and port specific address are

saved to non-volatile memory.

Port Settings via WebMON

Alternatively to directly modifying registers, serial port parameters may be modified

using the WebMON utility. Refer to Document No. 951-520012: WebMON User's

Guide, as a review, and note that the Serial tab allows immediate configuration of the

local COMM1 and COMM2 serial ports, within the controller. All changes take effect

immediately and are placed in permanent storage, thereby surviving power cycling. Once

parameters are updated an immediate read is done of all parameters, providing visual

verification of your changes.

The COMM configuration provides a table of two rows, one for each serial port. It

consists of a number of data entry fields, each with their own special functionality:

&

 COMM

 Baud Rate

 Data Bits

 Parity

 Stop Bits

 Protocol

 Address

COMM

This is not an editable field. It is used to reference either COMM1 (row 1) or

COMM2 (row 2).

Baud Rate

A pull down list box is available to select the desired baud rate. Baud rates from

1200 to 115,200 are available. Note that using baud rates above 19,200 can cause

system degradation, depending upon the protocol and data flow of the system.

Data Bits

A pull down list box is available to select either “7” or “8” data bits.

Parity

A pull down list box is available to select “None”, “Odd”, or “Even” parity.

Stop Bits

A pull down list box is available to select either “1” or “2” stop bits.

Protocol

A pull down list box is available to select the individual protocols to be active on each

port. Details for each are provided in Chapter [3] Networking Communications and

Chapter [7] Modbus. Available selections are:

 CTC Binary (Default, compatible with CTCMON and ctccom32.dll)

 Modbus Master RTU – controller polls the device.

 Modbus Master ASCII – controller polls the device.

 Modbus Slave RTU – controller polled by external device

 Modbus Slave ASCII – controller polled by external device

&

Address

This is the address to be used when Modbus protocols are selected. When in Master

mode only a single device may be polled. To poll multiple devices the Address

register must be changed by the Quickstep program, dynamically. An address from 1

to 255 is valid.

&

Blank

&

The 5300 series controllers can be configured to communicate over

Ethernet using one of several transport protocols: CTNet, UDP, and

TCP. This section discusses the how to set up and configure the

controller for network communications.

CTNet

CTNet is a proprietary, non-routable protocol typically used for legacy communications

to the Model 2700 controller products. It tends to be faster than UDP or TCP/IP due to

the lack of processing overhead, but like UDP, it lacks acknowledgement of each packet.

Note that the Binary Message subset of the CTNet protocol can optionally be sent using

UDP and TCP via IP Encapsulation. Refer to the IP Encapsulation section for further

details. TCP encapsulation is limited to 32 simultaneous connections.

UDP

User Datagram Protocol is used to send packets across an IP Network in an unreliable

manner, with no packet acknowledgement. The protocol is fully routable across the

network, unlike CTNet. It is the preferred interface for many products when performance

is required and the application itself can perform error recovery. The Model 5300

supports UDP packet transport for peer to peer communications, CTCMon, and CTServer

products.

TCP

Transmission Control Protocol is used to establish connection-oriented, sequenced, and

error free sessions over an IP Network. The protocol is fully routable across the network,

unlike CTNet, and each data packet is acknowledged when received correctly by the

receiver. Retransmission of lost packets is built into the protocol. Typical retry timers of

250 milliseconds limit the uses of TCP in a real-time controller. The Model 5300

&

supports TCP packet transport for FTP, Telnet, Modbus TCP Master/Slave, RAW

client/server connections, CTCMon, and CTServer products.

When using any of these protocols it is important to note that whenever the Model

5300 is placed on a network, it should be connected to a switch, not a hub. A switch will

isolate traffic to broadcasts that are specific to the controller, whereas a hub will cause the

Model 5300 to receive all traffic on its link. The 5300 is limited to 128 socket

connections. Of those 128 a maximum of 32 simultaneous TCP Binary protocol and 32

Modbus TCP Slave.

Configuring a CTNet Node using Registers

Details of the CTNet protocol can be found within the Guide to CTC Serial Data

Communications and Document No. MAN-1030-A: CTC Monitor User Guide, both of

which are posted on Control Technology's website (http://www.ctc-control.com/). To use

CTNet, a valid CTNet node number between 1 and 32767 must be set. To use UDP

protocol, the controller must be set up with a TCP/IP address, subnet mask, and optional

gateway.

The CTNet node number of the controller is stored in register 20000. Simply write the

node number to register 20000, write a 1 to register 20096, and then cycle power on the

controller for the change to be accepted.

 Store 21 to Reg_20000

 Store 1 to Reg_20096

Configuring IP Addresses using Registers

If you are not using DHCP to automatically obtain your IP address, then the TCP/IP

address is configured statically as follows:

Sample IP Address - 168.254.132.34 (random example)

Sample Subnet Mask - 255.255.255.0 (typical)

Sample Gateway - 168.254.132.88 (random example)

The actual values to use will depend on the network that the controller is connected to.

Contact your IT department to determine acceptable addresses for your network.

Registers 20048 to 20051 are the 4 parts of the IP address:

store 168 to Reg_20048

store 254 to Reg_20049

store 132 to Reg_20050

store 34 to Reg_20051

Registers 20064 to 20067 are the 4 parts of the Subnet Mask:

store 255 to Reg_20064

store 255 to Reg_20065

http://www.ctc-control.com/

&

store 255 to Reg_20066

store 0 to Reg_20067

Registers 20080 to 20083 are the 4 parts of the Gateway Address (optional):

store 168 to Reg_20080

store 254 to Reg_20081

store 132 to Reg_20082

store 88 to Reg_20083

A gateway is only required if the controller needs to communicate over a Wide-Area

Network (WAN). If not using a gateway, then set these registers to 0 (default). The

controller can talk to devices on a Local Area Network without using a gateway, but not

over the Internet or outside its subnet. The following command saves the IP address and

all other modified IP address parameters to non-volatile memory:

 store 1 to Reg_20096

Finally, cycle power to the controller to activate the new IP information.

The IP address can be set up through a Quickstep program or with CTC Monitor. Note

that if you set the IP address registers to 0, then write 1 to Reg_20096 and cycle power,

the controller will use DHCP to obtain its network information automatically. You will

be aware that the controller is attempting to connect to a DHCP server when the S3 LED

flashes repeatedly, at a high rate (100ms/second). The S3 LED will stop flashing once

the Model 5300 has obtained an IP address from a DHCP server. While searching for a

valid DHCP address, serial port CTC Monitor access will be available to a limited

number of registers, typically 20000 and above, but Quickstep and Ethernet

communications will be disabled. Once an IP address is available the 5300 will continue

to boot, initializing the network and starting Quickstep application software.

Configuring the IP address automatically with DHCP

The controller is capable of retrieving its IP information automatically, from a DHCP

server, RFC 2131. The Dynamic Host Configuration Protocol (DHCP) is a

communication protocol that lets network administrators automate assigning of IP

addresses within a network.

Every device (computers, controllers, etc.) that resides on a TCP/IP network must have

an IP address assigned. Without DHCP, the IP address must be entered manually at each

device, as detailed in the previous section. If devices move to another location in another

part of the network, a new IP address must be entered. DHCP allows a network

administrator to supervise and distribute IP addresses from a central point and

automatically assigns a new IP address when a computer is plugged into a different

location on the network. DHCP also provides other services beyond assigning IP

addresses. It provides features including Domain Name Service (DNS) server addresses,

gateway information, and Simple Network Time Protocol (SNTP, section 6.0) servers,

thus allowing for fully automatic configuration of the controller IP parameters.

&

DHCP uses the concept of a "lease" or amount of time that a given IP address will be

valid for a computer. The lease time can vary depending upon how long a user is likely to

require the network connection at a particular location. DHCP also supports static

addresses for devices that need a permanent IP address.

DHCP is enabled by default in the controller. At power up, the controller will request to

use whatever IP address is set in the 20048 block (except 0.0.0.0, which enables DHCP),

and the DHCP server will either allow it or supply a new IP address. This final address

will be temporarily written to the 20048 block, but not permanently. Although not stored

permanently, it is still the active IP address for the system. Only the user or Quickstep

can make this IP address permanent, by storing a 1 to register 20096. If you do not want

to use DHCP, it can only be disabled by setting an actual IP address and subnet mask.

Setting the Controller’s DNS Name via Telnet

When the controller communicates with a DHCP server, it also requires a unique system

name that is typically used for DNS resolution (assuming the server is using dynamic

DNS). Presently this name is derived from the controller’s serial number, placing

"CTC_BF_" before the number. For example, if the serial number is 100-52801, then the

DNS name entry for the controller is CTC_BF_10052801. User-definable names are also

possible and may be set using the “set systemname <name>” command within the Telnet

administration screen, followed by writing a 1 to register 20096 (to save the change), and

rebooting the controller.

Note that many software packages and other devices with CTC communications drivers

can identify controllers only by IP address and not by name.. Depending on how your

network is configured, DHCP may change the IP address of the controller without

warning, causing devices and software to lose connection or connect to the wrong

controller. In this case, it is better to manually assign a static IP address to the controller.

The network administrator should be contacted prior to assigning any IP address, to avoid

conflicts.

Communicating to the Controller Using CTNet

CTNet is a lightweight non-routable Ethernet protocol used by legacy CTC controllers. It

is recommended that UDP be used, instead, whenever possible, since it is routable.

In order to communicate with the controller from a PC using CTNet protocol, the

WinPCap driver must be installed on the PC and an updated ctccom32v2.dll file

must be installed in the Windows system32 directory.

The latest version of the WinPCap driver may be downloaded from the customer care

section of CTC’s website www.ctc-control.com. Compatibility information will be

included with the download. Currently Windows 95, 98, ME, NT4, 2000, and XP are

supported.

http://www.ctc-control.com/

&

To install the driver:

1. First, uninstall any previously installed CTNet drivers, including CTC Transport

and CTC Packet Driver. If you have not previously installed these drivers, this

step can be skipped. DO NOT INSTALL WinPCap OVER AN EXISTING

CTNet DRIVER.

2. Double click the WinPCap.exe file and run through the installation program.

3. In your Windows system32 directory (typically Windows\system for Windows

95, 98, and ME and WINNT\system32 for Windows NT/2000/XP) replace the

existing ctccom32v2.dll file with the file included with the WinPCap

download.

4. Restart the PC.

Once the driver is installed, CTC Monitor 2.8 or later can be used to communicate to the

controller. Every controller on the network must have a unique node number, and each

PC based connection must use a unique Host node number.

Note that WinPCap only needs to be installed when using the non-routable binary

protocol version of CTNet, that used in legacy Model 2700 products using the 2217

Ethernet Controller. Operating CTNet over UDP and TCP can be done using IP

Encapsulation and does not required WinPCap. The Model 2700 does require the 2717

controller for backward compatibility.

Network Configuration via WebMON

Instead of directly modifying registers, network parameters may be modified using the

WebMON utility. The Ethernet tab in WebMON is used to set various network

parameters. Refer to Document No. 951-520012: WebMON 2.0 User's Guide for details.

Settable parameters include general network IP information, SNTP Time server interface

and POP3 email. SNTP, SMTP, and POP3 network configuration can be found in their

respective sections.

Ethernet Settings

The Ethernet Settings consists of a number of data entry fields, each with their own

special functionality:

 DNS Name

 IP Address

 Subnet Mask

 Gateway IP

&

 Modbus

 CTCNode

 Mode

 DHCP Enabled

DHCP Enabled (check box to enable)

The controller is capable of retrieving its IP information automatically (IP Address,

Subnet Mask, and Gateway IP), from a DHCP server, RFC 2131. The Dynamic Host

Configuration Protocol (DHCP) is a communication protocol that lets network

administrators automate assigning of IP addresses within a network.

All devices (computers, controllers, etc.) that reside on a TCP/IP network must have

an IP address assigned. Without DHCP, the IP address must be entered manually at

each device. If devices move to another location in another part of the network, a new

IP address must be entered. DHCP allows a network administrator to supervise and

distribute IP addresses from a central point and automatically assigns a new IP

address when a computer is plugged into a different location on the network. DHCP

also provides other services beyond that of just an IP address. It provides Domain

Name Service (DNS) server addresses, gateway information, Simple Network Time

Protocol servers, etc., thus allowing for fully automatic configuration of the controller

IP parameters.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be

valid for a computer. The lease time can vary depending upon how long a user is

likely to require the network connection at a particular location. DHCP also supports

static addresses for devices that need a permanent IP address.

Checking the check box on the Setup Screen enables DHCP. At power up, the

controller will request to use whatever IP address is currently set (except 0.0.0.0,

which enables DHCP), and the DHCP server will either allow it or supply a new IP

address. This final address will temporarily be written to the 20048 register block of

the controller, but not permanently, and will appear in the IP Address data entry

field. Once complete with all changes, simply press the Update Network button to

notify the controller of changes. Values are immediately read back from the

controller, allowing for visual confirmation.

DNS Name

When the controller communicates with a DHCP server it also requires a unique

system name that is typically used for DNS resolution (assuming the server is using

dynamic DNS). Presently this name is derived from the controller’s serial number,

placing “CTC_BF_“, before the number. For example, if the serial number was 100-

52801, then the DNS name entry for the controller would become

CTC_BF_10052801. User-settable names are also possible by simply double-

clicking the data entry field and entering a unique name. Up to 20 characters are

allowed in the Controllers DNS Name. When the Update Network button is

&

selected the controller will immediately notify the DHCP server of a name change, if

DHCP is enabled. If dynamic DNS is enabled, on your host, the name change will

become available immediately on your network.

Many software packages, and other devices with CTC communications

drivers, do not have the capability to identify controllers by name, only by IP

Address. Depending on how your network is configured, DHCP may change the IP

address of the controller without warning, causing devices and software to lose

connection or connect to the wrong controller. In this case, it is better to manually

assign a static IP address to the controller. The network administrator should be

contacted prior to assigning any IP address, to avoid conflicts.

IP Address

If you are not using DHCP to automatically obtain your IP Address information, then

the TCP/IP IP address is configured statically. It must be entered using a ‘dot’

notation as follows:

Example IP Address: 168.254.132.34 (example)

The actual values to use will depend on the network that the controller is connected

to. Contact your IT department to determine acceptable addresses for your network.

Subnet Mask

If you are not using DHCP to automatically obtain your IP Address information, then

the TCP/IP subnet mask address is configured statically. It must be entered using a

‘dot’ notation as follows:

Example Subnet Mask: 255.255.255.0 (typical)

The actual values to use will depend on the network that the controller is connected

to. Contact your IT department to determine acceptable addresses for your network.

Gateway IP

If you are not using DHCP to automatically obtain your IP Address then the TCP/IP

Gateway address is configured statically. It must be entered using a ‘dot’ notation as

follows:

Example Gateway 168.254.132.88 (example)

The actual values to use will depend on the network that the controller is connected

to. Contact your IT department to determine acceptable addresses for your network.

A value of 0.0.0.0 will disable the use of a gateway. A Gateway is the address to

which requests will be forwarded if they are outside the range of your IP domain, as

tested against the assigned subnet mask. Typically a gateway is used to forward

requests to another network and/or the Internet.

&

Modbus

The Modbus address is used to set the address that will be used by the Modbus/TCP

communications protocol. It is typically referred to as the Device ID. It may be set

from 1 to 255.

CTCNode

The CTC Node number is used by the CTNet protocol. This is a lightweight non-

routable Ethernet protocol used by legacy CTC controllers. It is recommended that

UDP be used, instead, whenever possible, since it is routable. Setting this node

number to 0 disables its use in the controller. Be careful setting this node number

since no two controllers can have the same address. Valid numbers are from 1 to

32767. Some very old CTC controllers only communicate on nodes 1 to 254.

Mode

Mode is used to set the Ethernet connection method, speed and duplex, and typically

is not used. By default it is set to Auto. Auto means auto-negotiate, or let the

controller and external router/switch negotiate connection speed and duplex. The

fastest possible will generally be negotiated, 100 Megabits/Full Duplex. Sometimes,

where old wiring may exist or noisy environments, it is best to reduce the speed of the

Ethernet interface. Also if Ethernet speed is not important, the slower speed will

reduce the load on the controller and generally allow increased performance by other

aspects of the controller during peak Ethernet traffic.

A pull-down box is provided to override the default. Available are 100 full/half

duplex, 10 full/half duplex, and auto. Note that the current negotiated speed is shown

in the text area above the data entry fields. The screen capture below shows the

current speed is negotiated to 100 full duplex:

&

The Model 5300 supports a number of serial port communication

protocols. The default, along with the CTC Binary Protocol, is a simple

ASCII protocol. Both run at the same time and are automatically

detected based on the serial data stream. The ASCII Protocol is a simple

way to send commands to the controller. The commands are in the form

of simple ASCII messages. Most computer languages provide a method

for sending ASCII messages to a serial communications port.

ASCII Computer Protocol

Controllers are initialized to the CTC ASCII terminal protocol upon power-up. To

change the terminal protocol, you must send a command to the controller’s serial port

establishing a new protocol. In the following example, the P sets the protocol and C

establishes the CTC ASCII computer protocol. All commands are followed by a carriage

return <CR>, ASCII 13, which signals the controller that the command is complete. Most

versions of BASIC automatically add the required carriage return at the end of the

transmission.

To set the CTC ASCII computer protocol:

1. Enter the following command:
P C <CR>

2. To acknowledge the change to the computer protocol, the controller responds

with:
P C Ø <CR>

Ending the response with a carriage return is consistent with the computer protocol.

Once you have opened the serial port and set the computer protocol, you can begin

sending commands to the controller. The following example forces the number 1200 into

register 10, the command is R10=1200. The command must end with the code for a

&

carriage return command, ASCII 13. The following statement, in BASIC, accomplishes

this transmission:

PRINT #1, "R10=1200"

Computers and versions of BASIC vary. Refer to manufacturer’s published data.

By sending this command, we assume that the serial port 1 is already opened and defined

as port No. 1. Most versions of BASIC automatically add the required carriage return at

the end of the transmission. Check with your version of BASIC to see if it automatically

adds the carriage return command.

When operating in the CTC ASCII computer protocol, the controller responds with a

carriage return command, acknowledging message reception. Your BASIC program

should receive and test this message. If a transmission error occurs, the controller instead

responds with an error message. You can program the message test as follows:

LINE INPUT #1, R$

IF R$<>"" THEN GOTO 100

The statement LINE INPUT #1, R$ tells the computer to receive the controller’s

response and to assign the response to character string R$. In most versions of BASIC, a

response consisting of only a carriage return is received as a null string or an empty

message. The statement IF R$<>"" THEN GOTO 100 has the computer test the

response. If the controller’s response is not equal to a null string, a transmission error

occurred. At this point, the program jumps to line 100.

The controller’s response must be taken in by the computer. If it is not, the

response remains in the computer’s communication buffer, and affects the computer’s

ability to receive future messages.

ASCII Terminal Protocol

At times you may want to use a dumb terminal or a computer running a terminal

emulation program to communicate with a controller. You can use a lap top computer

configured as a dumb terminal for diagnostic or debugging purposes, forcing outputs on

or off, reading register values, or forcing a value to be stored into a register. The CTC

ASCII computer protocol is not suited to this task, since it has been optimized for use in

communicating with a running computer program. It addition, you must terminate each

response with a carriage return, signaling the completion of the message.

When you use a dumb terminal to directly view the response of the controller, the

carriage return places the terminal’s cursor to the beginning of the same line, and the next

message overwrites the previous message and responses. The CTC ASCII terminal

protocol solves this problem by responding to commands from a terminal or computer

&

with an instantaneous line feed, <LF> ASCII 10, moving the terminal to the next line on

its screen. The controller transmits its response, if any, with a carriage return and a line

feed. Any messages sent to or from the controller are recorded on successive lines.

Except for the use of line feeds, the terminal protocol is identical to the computer

protocol.

Controllers are initialized to the CTC ASCII terminal protocol upon power-up. If you

have changed it, you must reset the protocol. In the following example, the P sets the

protocol and T establishes the CTC ASCII terminal protocol. All commands are followed

by a carriage return. To set the CTC ASCII terminal protocol:

1. Enter the following command:
P T <CR>

2. To acknowledge the change to the computer protocol, the controller responds

with:
<LF>

P T <CR>

<LF>

The controller immediately responded with a line feed and the response ended with both

a carriage return and a line feed. This creates a readable display on the terminal. This

response is also consistent with the terminal protocol.

ASCII Protocol Commands

Using either the computer or terminal protocols you can access any of the controller’s

registers. The example commands use <CR> to stand for a carriage return (ASCII 13)

and <LF> for a line feed (ASCII 10):

Initiate computer mode:

Send - PC<CR>

Response - PC0<CR>

Initiate terminal mode:

Send - PT<CR>

Response - <LF>PT<CR><LF>

Read a counter/register:

Send - R<counter/register number><CR>

Response:

Computer mode - < counter/register number ><CR>

Terminal mode - <LF>< counter/register number ><CR><LF>

&

Note: Register read/write commands can be chained together using a ‘;’ as a

separator. Each command will be responded to uniquely.

Example: R1000=5;R1005;R1006<CR>

Write a counter/register:

Send - R<counter/register number>=<new value><CR>

Response:

Computer mode - <CR>

Terminal mode - <LF>

Note: Register read/write commands can be chained together using a ‘;’ as a

separator. Each command will be responded to uniquely.

Example: R1000=5;R1005;R1006<CR>

Returned Error Messages

Number too small – If a register is specified as zero, then the controller sends

the following error message:

Computer mode - <less than sign,< > <bell, 07H><CR>

Terminal mode - <LF><less than sign,< ><bell, 07H><CR><LF>

Number too large – If a register is specified that is greater than the number

supported, then the controller sends the following error message:

Computer mode - <greater than sign,> > <bell,

07H><CR>

Terminal mode - <LF><greater than sign,> >

<bell, 07H><CR><LF>

Protocol error – If a “P” command (protocol) is not in the correct format then

the controller will send the following error message:

Computer mode - P<bell, 07H><CR>

Terminal mode - <LF>P<bell, 07H><CR><LF>

Syntax error – If the controller cannot make any sense of the command, then

it sends the following message:

Computer mode - ?<bell, 07H><CR>

Terminal mode - <LF>?<bell, 07H><CR><LF>

&

Up to 20 TCP Client/Server RAW Socket sessions are supported by the

Model 5300 controller. These socket sessions provide a virtual pipe,

with no formatting of data. To the controller they merely appear as

another serial port, even though the connected device can reside

virtually anywhere on a network connection. This interface is extremely

useful for connection to external programs, such as Visual Basic or

Ethernet based terminal servers such as the Newport or Lantronix devices. Lantronix is

described within this section, Newport is similar.

TCP Client

A TCP Client RAW Socket session is when the host computer runs a TCP Server and the

controller connects to it. Typically a well-known IP address and public TCP port number

is available for this connection. Once the connection is made, any data sent to the

actively selected serial port (12000 register) is sent to the host and anything sent by the

host to the controller is placed in its receive buffer, exactly like an actual serial port. To

initiate a connection, a number of registers must be configured.

The RAW Socket session register blocks begin at a base of 22000 and extend to 22049,

one repeating block pattern (10 registers locations per block) for each serial port

supported. The actual block used has nothing to do with the serial port itself when

referenced from Quickstep since the serial port assignment is a configurable parameter.

Blue Fusion Controllers have 4 physical serial ports (COM1=1, COM2=2, COM3=3,

COM4=4, 0 not used) within the controller. They can also access virtual serial ports 6 to

25, which may be assigned as desired. Remember that server connections will use the

next available port when allowing connections from a host client. Therefore, it is

important to reserve your port first prior to enabling a Server register block.

Registers are defined based on their offset from their base, repeating after each 10.

Therefore, beginning at register 22000:

&

 XX represents a multiplier of 10, which is the size of a block (00, 01, 02…).

An example for a script program to initialize a connection to a host at IP address

12.40.53.185 and TCP port 3001 is shown below. Note the controller Serial Port ID

Register, number 22000, must be set up first:

22000 = 6 # set up this client connection as controller port 6

22001 = 0 # set that we are the client, initiating connection

22002 = 12 # most significant octet of IP address 12.40.53.185

22003 = 40

22004 = 53

22005 = 185 # least significant octet of IP address 12.40.53.185

22006 = 3001 # TCP port to attempt connection to

22007 = 1 # To initiate a connection write a 1 to the status

 #register then read it until it is a 1

 # which means connected. 0 is offline, -1

 #is not initialized.

Once register 22007 is read as a 1, then port 6 will appear as a standard serial port to a

Quickstep application. As with any serial port, the port must be selected first by writing

the port number to register 12000 prior to transferring data or initiating commands. The

port is available for reading and writing upon connection to the host, i.e. when register

22007 = 1. Should a connection ever be lost, 22007 will contain a 0 and a read of 12000

(Message status register) will return a 1, indicating transmitter busy, or in this case,

offline. With TCP the transmitter will never be busy unless offline. The controller will

periodically retry the client connection.

&

TCP Server

A TCP Server RAW Socket session is when the host computer is the client, connecting to

the controller on a public TCP port number. Once the connection is made, any data sent

to the actively selected serial port is sent to the host and anything sent by the host is

placed in the receive buffer, exactly like a controller serial port. In order to allow a

server to be active the same registers as detailed in Client must be configured; except a 1

is placed in register 22XX1 and our port number to listen on is stored in 22XX6.

Registers are defined based on their offset from their base, repeating after each 10.

Therefore beginning at register 22000:

A server thread will be launched as soon as a 1 is written to the status register. Note that

only one connection is allowed at a time since all information is directed to and from a

controller virtual serial port. If more than one connection attempt is made to the same

port number defined in the configuration block, it will be initially accepted and then

rejected.

Lantronix CoBox/Xpress interface Example

The Lantronix CoBox-DR1-IAP or Xpress-DR-IAP Device Server (www.lantronix.com)

is one of several serial to Ethernet converter devices which will work with the controller

using the TCP RAW Client socket protocol. To the controller, this device is

communicated to over TCP port 3001 and becomes a simple virtual serial port to

Quickstep. It operates exactly as a resident local port, supporting the same

communication protocols. Communication is tunneled over the network to the device.

Even a serial port version of CTC Mon or a CTC 4010 User Interface can be connected

and run over this interface, allowing for easy port expansion. Modbus is also supported.

http://www.lantronix.com/

&

By encapsulating serial data and transporting it over Ethernet, devices such as these allow

virtual serial links to be established over Ethernet and distributed virtually anywhere

within a plant or global enterprise.

Lantronix CoBox Serial to Ethernet Converters

&

Peer to Peer communications allow a controller to monitor another

controller’s registers from across a network. In essence, the

designated registers become public and a copy of their contents is

periodically transmitted across the network, to the requesting

controller, thereby making them appear as though they are local. The

update scan time is configurable and the registers may be read from or

written to in a manner similar to normal registers.

Peer-to-Peer Protocol Registers

The controller can only perform peer-to-peer operations with other 5100/5200/5300

modules. Model 5300 controllers can also communicate with Model 2700 controllers via

the 2717 communications module, but not via the 2217 module. The 5300’s peer-to-peer

registers let it communicate directly with other Model 5300 modules without requiring a

dedicated server. It can also gather register information locally for different network

protocols.

Registers 21000-21299 are read/write registers that are reserved for peer-to-peer

networks. Each block of 10 sequential registers is assigned to a designated peer node and

defines the peer environment for that connection. You can retrieve data from and

automatically update up to 100 sequential registers with a single request. Also note that

this register block can be used for many other functions, besides peer to peer, such as

Modbus, interfacing in a similar manner. Reference that section for further details.

&

Registers 21000-21299

21000-21299

&

&

Cont’d

Initiating a Peer to Peer Session

In general, the initializing of the peer-to-peer mechanism works as follows:

o Write the desired number of registers to 21XX5 register.

o Write the slave's IP address to 21XX0 - 21XX3 register

o Write the register to begin reading from the slave device to 21XX4

o Write a 1007 to register 21XX8 to select the re-mapping area.

o Write where in the 23000-24999 register range you want it to appear to register

21XX9.

&

o Write a 0 to the index register 21XX8 to default it back to viewing the first data

item.

o Write the scan time, typically 100ms to register 21XX6, to initiate the connection

and begin peer to peer.

Monitor status register 21XX7 for a 1 prior to reading/writing to either the 21XX9 data

area or the re-mapped area in the 23000-24999 block.

&

Blank

&

The Modbus Protocol is a messaging structure developed by Modicon in

1979. It is used for master-slave/client-server communications between

intelligent devices and has become an industry standard. Details of the

protocol may be found at the web site www.modbus.org. This protocol

allows a master to periodically poll the controller to collect the desired

information. Modbus supports two major flavors of data representation:

RTU and ASCII. RTU is a more compact protocol, consisting of binary characters, while

ASCII represents each binary nibble as a separate character, hence doubling the length of

transmissions. RTU is also more secure in that it includes a CRC-16 at the end of the

message while ASCII only has a single LRC. The CTC Model 5300 controllers

support Modbus Master/Slave TCP RTU, Modbus Master Serial RTU/ASCII, and

Modbus Slave Serial RTU/ASCII.

Tools used to test the protocol are available from a number of sources. The Model 5300

controller was tested using those available from www.win-tech.com, namely their

ModScan32 for RTU/ASCII Slave testing and ModSim32 for Master.

Modbus Slave RTU TCP & RTU/ASCII Serial

A polling master can drive a slave controller using the Modbus protocol. The Model

5300 controller supports slave mode both over an Ethernet TCP connection and/or a

serial connection. Modbus allows for interfaces to such things as coils, analog, register,

etc. Since the Model 5300 controller is able to access all of its resources via its register

interface, typically only the Holding Register commands are used: Write Single Register

(function code 0x06), Write Multiple Registers (function code 0x10), and Read Holding

Registers (0x03). Alternatively, the “Read Input Discrete” (maps to digital in modules),

“Read coils”, and “Write Single Coil” (maps to digital output modules) are supported.

http://www.modbus.org/
http://www.win-tech.com/

&

 Function codes
 Code Sub code (hex)

Read input discrete 02 02

Read coils 01 01

Write single coil 05 05

Write multiple coils 15 0F

Read input register 04 04

Read multiple
registers

03 03

Write Single register 06 06

Write multiple
registers

16 10

Read/write multiple
registers

23 17

Mask write register 22 16

Read file record 20 6 14

Write file record 21 6 15

Read device
identification

43 14 2B

Figure 7.1: Modbus Function codes from Modbus.org (highlighted blue are supported by Model 5300)

You should also note that Modbus Holding registers are 16 bits in width and those of the

Model 5300 controller are 32 bits, since Modbus is Big Endean. This means when

reading register 1 in the 5300 controller, the high 16 bits equates to Modbus register 1

and the low 16 bits to Modbus register 2. Modbus register 3 would be the high 16 bits of

register #2, and so on. The number of registers that can be read by a polling master at

one time is limited:

Modbus RTU TCP – 120 Modbus 16 bit registers (60 5300 registers).

Modbus RTU Serial - 120 Modbus 16 bit registers (60 5300 registers).

Modbus ASCII Serial - 56 Modbus 16 bit registers (28 5300 registers).

This maximum is a limitation imposed by the Modbus TCP specification (which limits

receive buffers to 255 bytes), not by the controller.

Modbus TCP Slave is always enabled and available for requests on TCP port 502

(standard). Either a Quickstep program or other means must manually enable Modbus

RTU/ASCII Serial. This is done simply by writing a 3 to the “Serial Active Protocol

Selection” Register, 12320, for RTU, or a 4 for ASCII. Prior to enabling it is

recommended that the Model 5300 controller Modbus Unit/Device address also be set,

using register 12321. Should a non-volatile controller wide default Modbus address be

desired, set register 12322 with the address followed by a write to register 20096.

Differences between TCP and serial implementations are detailed in the Modbus Slave

Serial RTU/ASCII section.

&

As a demonstration of the functionality of the Modbus RTU TCP/Slave interface, this

section details the interface of Win-Tech’s ModScan32 software and how it applies with

regards to the Model 5300 controller. As mentioned before, CTC only supports the

Holding Register interface. Upon installation of ModScan32, a screen such as Figure 7.3

will appear. Note that the Address field is set to 1, but the display screen starts at 40001.

This is Modbus nomenclature. Address of 1 is the same as the upper 16 bits of the

controller register 1. Note Length is set to 50 (120 max), and Device ID is ignored since

TCP is point to point (Device ID is ignored only when in TCP slave mode, not when the

controller operates as a Master or serial slave).

Figure 7.3: ModScan32 Master Scanning Program (only Holding Register supported)

&

Figure 7.4 shows the setup for an interface to a controller with a TCP address of

12.40.53.199 and the Modbus Slave running a server on the standard port of 502:

Figure 7.4: ModScan32 Master Scanning Program TCP Connection Setup

In order to do a single register write to a Modbus 16-bit register, double click that

register. Figure 7.5 shows changing Modbus register 40002 (Address 2) to a value of 5,

&

which would translate to the lower 16 bits of Quickstep register 1. Remember Modbus

Address 1 is the upper 16 bits.

Figure 7.5: Single register write, value 5 to 40002

Changing a number of registers all at once is known as a Write Multiple Register access.

This can be done using the Extended Access option:

Figure 7.6: Write Multiple register (Preset Regs) selection

The Preset Multiple Registers pop-up will appear. Note that in TCP, the Model 5300

controller ignores any slave or node identifiers since it is a single device and not acting as

a gateway. Set the Modbus register you wish to start changes with and the number of

registers to change, up to a maximum of the number that you are viewing:

&

Figure 7.7: Preset Multiple register dialog

In this case we will change Addresses 1 to 10 to sequential numbers 1 to 10:

Figure 7.8: Select number of multiple writes to do

As shown below, the current register values are displayed in the dialog box.

&

Figure 7.9: Preset Multiple register dialog viewing existing values

Note below, Figure 7.10, that each register value has been changed. Also, we scrolled

down so we could get to register 10. Click Update and note the changed register values

from the previous display; 40002 is no longer 5 but now 2, Figure 7.11.

&

Figure 7.10: Preset Multiple new values entered

Upon clicking the Update key, the new values are written to the controller registers and

new values read back using the Read Multiple Register command.

&

Figure 7.11: New values written and read back, Quickstep registers 1 to 5, Modbus 1 to 10

If any errors occur, a Modbus exception will occur. One such common error is

attempting to read too many registers or illegal registers. Below is what is returned if >

120 Modbus registers are attempted:

&

Figure 7.12: Modbus Exception Example > 120 registers

Editing the 125 appropriately will update the error. Below is an example of displaying

registers in the 13002 block of the Model 5300 controller. 13002 is the system

millisecond tic counter. Real time clock/date values can also be seen incrementing in

other registers dynamically. Note that 26003 is the high 16 bits of 13002 and 26004

(13002 * 2) is the base lower 16 bits.

&

Figure 7.13: Display of controller system tic, dynamically updating, 426003/4

A maximum of 32 simultaneous Modbus TCP Slave connections are allowed at

one time. Idle connections will timeout in about 1 minute.

&

Modbus Slave Serial RTU/ASCII

The Modbus Slave Serial RTU and ASCII protocol functions exactly like that of Modbus

TCP Slave with regards to how to access information and ModScan32 operation (see

figure 7.14 for serial port setup versus TCP). There are some key differences since an

RS232 connection is used versus a network connection.

Figure 7.14: ModScan32 Master Scanning Program Serial Connection Setup, select RTU or ASCII

Transmission Mode.

They are as follows:

&

1. The virtual TCP communication ports may also be used except for point to point

operations with a single address present. In other words, the communications

traffic of other Modbus nodes should not be present on the virtual port, although

they can be on COM1/2. This is necessary because Modbus specifies a 3.5

character quiet time between packets and a maximum of a 1.5 inter-character

delay during the continuous transmission of a packet data stream in RTU mode (1

second for ASCII mode). The virtual ports cannot guarantee these timing

constraints, although from a high level protocol viewpoint, the ports do comply.

2. By default, the Modbus protocol is disabled on the serial and virtual ports. To

enable the port, it must be the active port in the 12000 register and the proper

Modbus protocol must be written to register 12320. Note that by default the slave

port address is 2 and that any value written as the Modbus slave address will be

that used on all serial ports, system wide. Note that writing a value of 0 to

register 12320 will disable Modbus and return the port to normal CTC protocol

operation.

When Modbus is enabled on a serial port using CTC MON, no further

communications will be available on that port except with Modbus. In other words, you

will lose your CTC MON link if talking on the same port that is selected as active in

register 12000.

Modbus Master TCP RTU & Serial RTU/ASCII

The Modbus Master protocol allows the controller to poll a Modbus TCP or Serial slave

device, periodically requesting the registers for a particular device ID. The Model 5300

controller is capable of polling the Holding Registers (R/W, 4XXXX Modbus registers),

Input Registers (read only by Modbus definition, 3XXXX Modbus registers), Input

Status Registers (read only by Modbus definition, 1XXXX), and Coil Status Registers

(R/W, 0XXXX Modbus registers) of a remote device. Write Single Holding Register

(function code 0x06), Write Multiple Holding Registers (function code 0x10), Read

Holding Registers (0x03), Read Coil Status (function code 0x01), Force Single Coil

(function code 0x05), Read Input Status Registers (function code 0x02), and Read Input

Registers (0x04) commands are supported. Multidrop mode is supported for serial ports

although the exact timings of the Modbus specification may not apply, confirmation with

the specific device is required. This typically is not a problem since the 5300 is less strict

with character timeouts than the actual specification.

With firmware prior to R44 the Serial Modbus Master did not support multidrop or

Coil/Input Registers, and the 5300 only polled a single device ID. The active device ID

register also had to be changed in order to begin polling a different device. Those who

required slow scanning of multiple devices changed the device ID within the Modbus

Master Register Control Block (21000-21299, shared with the UDP Peer to Peer register

block) by the use of a Quickstep/QuickBuilder program. This caused all subsequent polls

to use that device ID and hence allow the reading/writing of multiple devices. With

release R44 and later this is now automatic by simply defining multiple 21XXX blocks

referencing the same serial port as the COM port. The Device ID should not be changed,

after initially set. Each 21XXX block can now specify a unique device ID to be polled.

&

A maximum of 256 sequential Modbus registers (16 bit) can be polled, each optionally

mapped to a corresponding controller register (32 bit, 21XX8, index 1007). You may

also adjust the active start register by changing register 21XX4, described in 3.2.1,

dynamically. The controller will read a maximum of 120 RTU (56 ASCII) registers per

packet request. This means if the number of registers desired is 50, then 50 will be read

with each poll. If the number of registers is greater than 120, then multiple requests are

made. If 256 registers are requested in RTU mode, for example, the first 120 are read,

then the next 120, then the remaining 16, all transparently to the user/programmer. When

using the remapping register option, all registers will appear sequential within the 23000-

24999 register blocks. Simply read and write as desired.

Registers 21000-21299

The Model 5300 controller can run numerous Modbus TCP Master connections and a

RTU/ASCII Serial connections at the same time, to differing devices, limited only by the

performance desired. Each is configured using the Modbus Master Register Control

Block (MMRCB). This same block serves multiple purposes and is shared with the UDP

Peer to Peer Protocol register block detailed in the Registers 21000-21299 section.

21000-

21299

&

Cont’d

&

&

Example: Modbus TCP & RTU Serial Master Initialization

An example of Quickstep initialization code is shown below to set up a connection to the

following remote device:

Modbus TCP Master Sample Program

IP address - 12.40.53.168

Device ID - 1

Number of sequential registers to read - 160

Scan time - 100 ms. (set last to initiate)

Starting Register - 1

Re-map registers to consecutive block beginning at registers 23000.

This is the first setup so use 21000, next would be 21010… 21020, etc…

[1] Initialize_ModbusMaster

 ;;; This program is used to initialize the TCP port

 ;;; for Modbus TCP Master operation. A single

 ;;; device is polled using device ID 1 and 160 registers

 ;;; are read and mapped into the 23000 block. Therefore

 ;;; registers 23000 - 23159 are used, with 23000 referencing

 ;;; Modbus Register #1. Make sure your Modbus device has

 ;;; at least 160 consecutive registers starting at '1'

 ;;; otherwise Modbus Exceptions will occur.

 ;;; Begin by doing the following:

 ;;; 21005 = Maximum number of registers to read (160)

 ;;; 21000 - 21003 = Set this to be the IP address to

 ;;; connect to. In this example we

 ;;; will use 12.40.53.168

 ;;; 21004 = Modbus start register (1)

 ;;; 21008 = 1003 = Set index to point to protocol register

 ;;; 21009 = 2 = Set protocol to Modbus TCP Master

 ;;; 21008 = 1004 = Set TCP port to connect to, default is 502

 ;;; 21009 = 502 = For demo set port to 502 even though

 ;;; default

 ;;; 21008 = 1007 = Set index to point to where to view data

 ;;; 21009 = 23000 = Start remapped area at 23000 for 160 regs.

 ;;; 21008 = 0 = Always set the index back to 0 before

 ;;; begin

 ;;; 21006 = 100 = Set scan poll time to 100 ms./block read,

&

 ;;; min is 50ms. This also initiates polling.

 --

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 160 to reg_21005

 store 12 to reg_21000

 store 40 to reg_21001

 store 53 to reg_21002

 store 168 to reg_21003

 store 1 to reg_21004

 store 1003 to reg_21008

 store 2 to reg_21009

 store 1004 to reg_21008

 store 502 to reg_21009

 store 1007 to reg_21008

 store 23000 to reg_21009

 store 0 to reg_21008

 store 100 to reg_21006

 goto Next

[2] Wait_For_Online

 ;;; Once Modbus Master starts to poll we must wait until

 ;;; it is online before proceeding.

 <NO CHANGE IN DIGITAL OUTPUTS>

 if reg_21007=1 goto Modbus_Online

 delay 500 ms goto Wait_For_Online

[3] Modbus_Online

 ;;; It is OK to read and process data now since Modbus

 ;;; is online to the device. If you wish to monitor another

 ;;; device other than Unit ID 1, then change the index

 ;;; register 21008 to 1005 and write the desired Unit ID to

 ;;; register 21009, then set 21008 back to 0 and monitor 21007

 ;;; for a 1 for online state, once again. Results will appear

 ;;; in the 23000 block.

 --

 <NO CHANGE IN DIGITAL OUTPUTS>

 --

 delay 1000 ms goto Modbus_Online

When Reg_21007 is equal to a 1, then the connection is active and you may interact with

the remote device. If a 3 had been written to 1003, then Modbus Master RTU Serial on

COM1 would be used.

Modbus RTU Serial Master Sample Program

IP address - 12.40.53.168 (can be set to any value other than –1)

Device ID - 1

Number of sequential registers to read - 160

Scan time - 100 ms. (set last to initiate)

Starting Register - 1

&

Serial Port - COM1

Remap registers to consecutive block beginning at registers 23000.

This is the first setup so use 21000, next would be 21010… 21020, etc…

[1] Initialize_ModbusMaster

 ;;; This program is used to initialize the COM1 port

 ;;; for Modbus RTU Serial Master operation. A single

 ;;; device is polled using device ID 1 and 160 registers

 ;;; are read and mapped into the 23000 block. Therefore

 ;;; registers 23000 - 23159 are used, with 23000 referencing

 ;;; Modbus Register #1. Make sure your Modbus device has

 ;;; at least 160 consecutive registers starting at '1'

 ;;; otherwise Modbus Exceptions will occur.

 ;;; Begin by doing the following:

 ;;; 21005 = Maximum number of registers to read (160)

 ;;; 21000 - 21003 = Any value, required to unlock register

 ;;; group, on Modbus TCP this is the IP

 ;;; address for a connection.

 ;;; 21004 = Modbus start register (1)

 ;;; 21008 = 1003 = Set index to point to protocol register

 ;;; 21009 = 3 = Set protocol to Modbus RTU Serial (4 for

 ;;; ASCII Serial)

 ;;; 21008 = 1004 = Set serial port to use, default is 1

 ;;; 21009 = 1 = For demo set port to 1 even though default

 ;;; if define more than one 21XXX block with

 ;;; same serial port will become multidrop

 ;;; 21008 = 1007 = Set index to point to where to view data

 ;;; 21009 = 23000 = Start remapped area at 23000 for 160 regs.

 ;;; 21008 = 0 = Always set the index back to 0 before

 ;;; begin

 ;;; 21006 = 100 = Set scan poll time to 100 ms./block read,

 ;;; min is 10ms. This also initiates polling.

 --

 <NO CHANGE IN DIGITAL OUTPUTS>

 --

 store 160 to reg_21005

 store 10 to reg_21000

 store 10 to reg_21001

 store 10 to reg_21002

 store 10 to reg_21003

 store 1 to reg_21004

 store 1003 to reg_21008

 store 3 to reg_21009

 store 1004 to reg_21008

 store 1 to reg_21009

 store 1007 to reg_21008

 store 23000 to reg_21009

 store 0 to reg_21008

 store 100 to reg_21006

 goto Next

[2] Wait_For_Online

 ;;; Once Modbus Master starts to poll we must wait until

 ;;; it is online before proceeding.

&

 --

 <NO CHANGE IN DIGITAL OUTPUTS>

 --

 if reg_21007=1 goto Modbus_Online

 delay 500 ms goto Wait_For_Online

[3] Modbus_Online

 ;;; It is OK to read and process data now since Modbus

 ;;; is online to the device. If you wish to monitor another

 ;;; device other than Unit ID 1, then change the index

 ;;; register 21008 to 1005 and write the desired Unit ID to

 ;;; register 21009, then set 21008 back to 0 and monitor 21007

 ;;; for a 1 for online state, once again. Results will appear

 ;;; in the 23000 block.

 --

 <NO CHANGE IN DIGITAL OUTPUTS>

 --

 delay 1000 ms goto Modbus_Online

Modbus RTU Serial Master Multidrop QuickBuilder Initialization

IP address – 172.16.2.26 (can be set to any value other than –1)

Device ID – 1, 2, 3

Number of registers to read – 10 from each with Input Registers from node 3

instead of Holding Registers.

Scan time - 150 ms. (set last to initiate polling)

Starting Register - 3
Serial Port – COM3 (note that the 5300 can be supplied with RS485 COM3).

Remap registers to consecutive block beginning at registers 23001, 23011, 23021.

ip1 = 2;

ip2 = 26;

polltime = 150; // Time between polls, this is about the fastest for USB to serial

 // converters

/*

CTC Binary Protocol UDP:

 protocol - 8

 commport - 3000

CTC Binary Protocol TCP:

 protocol - 9

 commport - 6000

Modbus RTU Serial:

 protocol - 3

 commport - 1 for COM1, 2 for COM2, 3 for COM3, 4 for COM4

Modbus ASCII Serial:

 protocol - 4

 commport - 1 for COM1, 2 for COM2, 3 for COM3, 4 for COM4

Modbus RTU TCP:

 protocol - 2

 commport - 502

*/

commport = 3;

protocol = 3; // RTU

timeout = 250; // Amount of milliseconds to wait till receive response.

&

// This must be TX packet + RX packet time since timer starts at

// beginning of transmission while awaiting full receive response.

// Thus more registers read the larger this value needs to be.

// Number of multidrop nodes on this commport

numNodes = 3;

// Number of poll loops until check an offline node, default is 10, if all offline

// then every poll.

offlineLoops = 5;

// Must reset the connection on each node and wait until it is shutdown in case

// this is a restart

baseReg = 21005; // Number of Ports definition register

for i = 0 to numNodes repeat {

 // Clear connections for each node defined

if ($REGISTERS[baseReg + (i*10)] != -1) then

{

$REGISTERS[baseReg + (i*10)] = -1; // Set Number of registers to read

 // to -1 to clear old connection

while ($REGISTERS[baseReg + (i*10)] != -1) repeat { };

}

};

basereg = 21000;

$REGISTERS[basereg+5] = 10; //Number of registers to read

$REGISTERS[basereg] = 172; // IP Address, if serial set to anything

$REGISTERS[basereg+1] = 16; // IP Address

$REGISTERS[basereg+2] = ip1; // IP Address

$REGISTERS[basereg+3] = ip2; // IP Address

$REGISTERS[basereg+4] = 1; // Modbus start register 0000H

$REGISTERS[basereg+8] = 1003; // Set index to point to protocol register

$REGISTERS[basereg+9] = protocol; // Set protocol to that defined

$REGISTERS[basereg+8] = 1004; // Set index to port definition

$REGISTERS[basereg+9] = commport; // Port to that defined

$REGISTERS[basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter

$REGISTERS[basereg+9] = 1; // Set Slave ID to poll

$REGISTERS[basereg+8] = 1007; // Set index to Remap register definition

$REGISTERS[basereg+9] = 23001; // Set register to remap Modbus access to

$REGISTERS[basereg+8] = 1010; // Set index to packet timeout

$REGISTERS[basereg+9] = timeout; // Set packet timeout value in milliseconds.

$REGISTERS[basereg+8] = 1017; // Set index to offline loop counter

$REGISTERS[basereg+9] = offlineLoops;// Set number of poll cycles before attempt an

 // offline node.

$REGISTERS[basereg+8] = 0; // Set index to 0 when done

$REGISTERS[basereg+6] = polltime; // Set Poll Rate in mS for this node (delay from

 // last packet sent to any node).

 // This will start everything

basereg = 21010;

$REGISTERS[basereg+5] = 10; //Number of registers to read

$REGISTERS[basereg] = 172; // IP Address, if serial set to anything

$REGISTERS[basereg+1] = 16; // IP Address

$REGISTERS[basereg+2] = ip1; // IP Address

$REGISTERS[basereg+3] = ip2; // IP Address

$REGISTERS[basereg+4] = 11; // Modbus start register 0000H

$REGISTERS[basereg+8] = 1003; // Set index to point to protocol register

$REGISTERS[basereg+9] = protocol; // Set protocol to that defined

$REGISTERS[basereg+8] = 1004; // Set index to port definition

$REGISTERS[basereg+9] = commport; // Port to that defined

$REGISTERS[basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter

$REGISTERS[basereg+9] = 2; // Set Slave ID to poll

$REGISTERS[basereg+8] = 1007; // Set index to Remap regsiter definition

$REGISTERS[basereg+9] = 23011; // Set register to remap Modbus access to

$REGISTERS[basereg+8] = 1010; // Set index to packet timeout

$REGISTERS[basereg+9] = timeout; // Set packet timeout value in milliseconds.

$REGISTERS[basereg+8] = 1017; // Set index to offline loop counter

&

$REGISTERS[basereg+9] = offlineLoops; // Set number of poll cycles before attempt an

offline node.

$REGISTERS[basereg+8] = 0; // Set index to 0 when done

$REGISTERS[basereg+6] = polltime; // Set Poll Rate in mS for this node (delay from

 // last packet sent to any node). This will start

 // everything

basereg = 21020;

$REGISTERS[basereg+5] = 10; //Number of registers to read

$REGISTERS[basereg] = 172; // IP Address, if serial set to anything

$REGISTERS[basereg+1] = 16; // IP Address

$REGISTERS[basereg+2] = ip1; // IP Address

$REGISTERS[basereg+3] = ip2; // IP Address

$REGISTERS[basereg+4] = 21; // Modbus start register 0000H

$REGISTERS[basereg+8] = 1003; // Set index to point to protocol register

$REGISTERS[basereg+9] = protocol; // Set protocol to that defined

$REGISTERS[basereg+8] = 1004; // Set index to port definition

$REGISTERS[basereg+9] = commport; // Port to that defined

$REGISTERS[basereg+8] = 1005; // Set index to Modbus Slave ID to poll parameter

$REGISTERS[basereg+9] = 3; // Set Slave ID to poll

$REGISTERS[basereg+8] = 1007; // Set index to Remap regsiter definition

$REGISTERS[basereg+9] = 23021; // Set register to remap Modbus access to

$REGISTERS[basereg+8] = 1010; // Set index to packet timeout

$REGISTERS[basereg+9] = timeout; // Set packet timeout value in milliseconds.

$REGISTERS[basereg+8] = 1017; // Set index to offline loop counter

$REGISTERS[basereg+9] = offlineLoops; // Set number of poll cycles before attempt an

 // offline node.

$REGISTERS[basereg+8] = 1016; // Set index to Input Register Selection (3XXXX)

$REGISTERS[basereg+9] = 3; // Set to 3XXXX.

$REGISTERS[basereg+8] = 0; // Set index to 0 when done

$REGISTERS[basereg+6] = polltime; // Set Poll Rate in mS for this node (delay from

 // last packet sent to any node). This will start

 // everything

Testing with Win-Tech’s ModSim32

As a demonstration of the functionality of the controller Modbus Master interface, this

section details the interface of Win-Tech’s ModSim32 software and how it applies with

regard to our product. It is assumed that the controller Modbus TCP Master or Serial is

set up to point to the PC and is attempting a connection. As mentioned before, we only

support the Holding Register interface. Upon invoking ModSim32 the screen below will

appear.

&

In order to activate the Modbus slave, you must select the Connection menu item and the

method of the connection, Modbus/TCP Svr for network or the appropriate Port # for a

serial port.

If Serial, select RTU or ASCII and set the baud rate, stop bits, and parity appropriately.

Default for the Model 5300 is 19.2K baud, 8 data bits, 1 stop bit, no parity. However,

this is not the default for ModSim and must be changed as shown below:

&

Next, devices must be created to listen to the requests. This is done using menu

selection: File-> New:

In order to access this device, the controller must have its Device ID set to 1 (the default)

and the Starting Address set to 100. If not set correctly, an exception status will be

&

returned upon connection and 21XX7 register will contain a -1. To set the Device ID to a

3, as in our example, modify as below:

Note that the Address field is set to 100, but the display screen starts at 40100. This is

Modbus nomenclature. To modify a device Holding Register contents, simply double

click on the address and enter the new value in the dialog that appears:

&

The screen capture above shows the modification of address 100. Additional devices can

also be created by once again selecting File->New. This allows for the testing of

multiple Modbus Slave devices at the same time:

&

Above shows multiple devices enabled. If there are further questions about the use of

ModSim32, simply select the Help menu item and a manual will appear.

&

Blank

&

The Model 5300 controller supports the Simple Network Time Protocol

(SNTP) as a client connecting to a server. This protocol provides a

means to synchronize a computer system clock to that of the world

clock, via the Internet. Government agencies provide this service for

computers to query the current atomic clock time and adjust their clocks

appropriately. For more detailed information reference www.time.gov

and www.boulder.nist.gov/timefreq/service/its.htm.

The time returned is based on Coordinated Universal Time (UTC), which is Greenwich

Mean Time (GMT). As such, there is no adjustment for daylight savings time or time

zones, which must be done locally. To avoid daylight savings time problems it is

recommended that you base the controller time on GMT (default) and then use the

provisions in the RTC Setup tab to automatically set the clock based on the time zone

you are in, using an offset from GMT. Refer to Document No. 951-520012: WebMON

2.0 User's Guide for further details on the RTC Setup tab.

Use of SNTP is not a requirement but typically real time clocks can be expected to drift

up to 30 seconds per week. The controller may drift up to 12 seconds per week,

depending on the tolerance of crystals, components, etc. Synchronization allows its real

time clock to be automatically set with regards to date, year, day of week, and time.

SNTP Register Configuration

SNTP may be configured using either a direct register interface or by individual registers.

By default the controller will use the IP address of 192.43.244.18, port 123. The default

update frequency is once/day and the default time zone used for clock reset is GMT.

These may be changed by modifying the following registers:

http://www.time.gov/
http://www.boulder.nist.gov/timefreq/service/its.htm

&

A 1 must be written to register 20096 whenever the above changes are made in

order to store those changes to non-volatile storage. Also, to disable SNTP, simply set

the IP address of the SNTP Host to 0.0.0.0.

SNTP WebMON Configuration

WebMON provides a more direct method of updating the SNTP configuration. As with

registers, the SNTP Time Server Settings consist of a number of data entry fields, each

with their own special functionality:

 Server IP

 Port

 Refresh Rate

 Offset GMT

 SNTP Enabled

By default the controller will use the IP address of 192.43.244.18, port 123. Updates will

be performed once/day and the clock is set to GMT.

Server IP

The Server IP address designates the host that will provide the time service for the

controller. By default the address is 192.43.244.18. Data is entered using the “dot”

notation. Entering an IP address of 0.0.0.0 will disable SNTP requests.

Port

The Port is the TCP/IP port that the Time Server will be listening on for time

requests. Typically this is port 123, which is the factory default.

Refresh Rate

The Refresh Rate is the number of seconds before the next synchronization request

with the SNTP server. For example 3600 would be an hour, 86400 would be 24

hours (default). When a change in time is made to this value it typically takes about 1

&

minute before the new value will take effect. Power cycling of the controller is not

required.

Offset GMT

Offset GMT contains the number of seconds to add or subtract from GMT once the

time is received from the server. The default is 0, which means to set the clock to

GMT. –18000 (-5 hours) would be the value used for Eastern Standard Time during

daylight savings time, -14400 (4 hours) when not. Note that the value is both positive

and negative.

SNTP Enabled

If the SNTP Enabled check box is checked, SNTP requests will be enabled and

done in the background based upon the above parameters. When deselected the IP

address will be forced to 0.0.0.0. If the time service is not being used it is best to

ensure this box is not checked, thereby conserving CPU resources.

&

Blank

&

Simple Mail Transfer Protocol (SMTP), documented in RFC 821, is

the Internet's standard host-to-host mail transport protocol which

typically operates over TCP port 25. The controller is capable of

sending formatted email, using SMTP, under the control of a

Quickstep program or by remote communications accessing a data

register. Messages may be created either within an ASCII text editor

or using WebMON 2.0. Refer to Document 951-520012: WebMON 2.0 User’s Guide

for additional information on creating messages with WebMON.

For email to operate properly the controller must have an email account on the

email server. This will consist of a user account and password. The same account can be

shared by multiple controllers.

Register Access

Text files created in a specific format and naming convention are stored on the flash disk

/_system/Emails subdirectory. Files are stored with a name of “Email_###.email” where

‘###’ references the value which would be written to the SMTP Send Register (12317),

to request transmission. For example, a file name of “Email_001.email” would be sent if

a ‘1’ was written to the SMTP Send Register. Register 12318 is the SMTP Status

Register. The status contents are defined as follows, after a write to the SMTP Send

Register:

STATUS DESCRIPTION
0 Processing

-1 Undefined

0x80000100 General Error, out of memory

0x80000900 Error, parameter error, aborted

0x80001400 Requested operation has failed.

0x80002100 Error, cannot connect to host.

http://www.freesoft.org/CIE/RFC/821/index.htm

&

Creating Emails using WebMON

The Email Notification tab in WebMON can be used to automatically create, edit, and

delete email files.

Tree View, Local/Controller

At the top of the Email Notification tab is a tree list. This list is used to access formatted

email files either locally or stored on a controller disk. Local->Emails references the

local disk drive of the computer running WebMON. Selecting Local->Emails->Open

will cause a dialog box to open and the selection of any email file for editing purposes.

Selecting Local->Emails->Save will cause a dialog box to open and an email that is

within the form at the bottom will be saved to the computer’s hard disk.

&

Files that exist within the controller’s disk may be individually viewed and selected from

the Controller->Emails->Open tree node. Each file represents an individual node. To

save a file that is created using the email template (form below the tree view), simply

double click the Controller->Emails->Save node. The file will be saved and named

using the Script Number defined within the email template, Email###.email.

Creating/Editing New Email Template

To create a new email, simply select the New button to the right of the Email

Notification Tree view. This will cause all existing information to be removed from the

template form and defaults to be entered. Alternatively an existing email could be loaded

and modified as desired, then saved.

A number of data entry fields are available to define the email to be sent by the

controller. The top most field, immediately below the tree view, allows the entry of a

numeric from 1 to 999. This will become the file sequence number used within the email

file name, Email###. Leading 0’s will automatically be provided.

The next set of data entry fields is a table whose row defines the SMTP server that is to

be used for sending email. Each email may use the same and/or different SMTP servers.

Make sure you are authorized for using the server and you are not attempting to relay.

Relaying is restricted and occurs when you try to copy an email to someone that is not

authorized, outside your domain. For example if the domain was ctc-control.com, you

would not be able to send a copy of the email to hotmail.com, using POP3. Mail Servers

can be configured to allow for exceptions, if desired. A typical way around this would be

to use a distribution list within your mail server that in turn sends outside the domain.

Available data entry parameters for the first table are:

&

SMTP IP Address (SMTP Server)

This is the server IP address of the server handling your email account. It is typically

within the same domain as your ‘From:’ email address. The “dot” notation format is

used.

Port

The standard SMTP port used is 25; but it may be changed here if desired. This is the

port the SMTP server will be listening on for connection requests.

Source Host (HELO)

This is an optional field which can be used to report your domain within the email. It

is required by some hosts. For example the domain of www.ctc-control.com would

be ctc-control.com.

The second table is used to define who the email is from [FROM(Originator)], who it is

to be sent to [TO(Destination)], and who it is to be copied to [CC(Copy to)]. Only one

address is supported per entry. If larger distributions are required it is suggested that a

Distribution List be created on the Email server.

The required format of each email address is person@domain.com. Enter each as needed.

Note the CC (Copy to) field is optional:

Subject

The Subject line will appear as the summary in an email message. Enter any desired

text:

Message

The Message area can contain up to 4K bytes of data. Messages may be any mix of

normal text characters and references to Controller registers. Registers are references

using “C” style printf directives. For example, to reference the 13002 register and

have its contents placed in a message a %dR13002 would be used, optionally

%05dR13002 would force at least 5 characters wide with leading 0’s as filler. In

printf notation %d is decimal, %x is lower case hex, and %X is upper case HEX.

These are the only acceptable printf syntaxes currently supported in email messages.

Below shows an example of a message which would include the current value of the

13002 register, when sent:

http://www.ctc-control.com/
mailto:person@domain.com

&

Deleting Email Template

Deleting an email is only supported from a controller disk. To delete a file use the

Controller->Emails->Open tree view to list the available files. Highlight the one

desired and select the Delete button. The file will be deleted and the tree updated.

Creating Emails using ASCII Text Editor

The text used to create emails, to be sent by a Model 5300 controller, requires a specific

format. That format includes various ‘section headers’, used to define the necessary

parameters. It is recommended that WebMON be used for the creation of all emails

although this section is included for those who desire a further understanding of the

format.

There are two section headers. The first, known as [SMTP], must appear in the

beginning of the file and is used to define all the specific details of the email message,

such as destination, mail server, etc. No spaces are allowed except within the email

message itself, designated by the [SMTP_MESSAGE] section header. It is best to use a

sample email as an example:

 # This is a comment

[SMTP]

IP=12.40.53.10

&

PORT=25

HELO=

TO=kevin@ctc-control.com

FROM=Test5300@ctc-control.com

CC=

BCC=

SUBJECT=Test email message

[SMTP_MESSAGE]

Enter Email Message to send, %05dR13002 references register...

- The Pound sign may appear as the first character in any line. All following text on

that line will be ignored. It is used to place comments within your email definition

document.

[SMTP] – Section header. Required to be on the first line of the file.

IP= This is the SMTP Server name, it may be a DNS resolvable name or an IP

address of the server handling your email account. It is typically within the same

domain as the From: email address. The “dot” notation format is used. No spaces

are allowed before or after the ‘=’ sign.

PORT= The standard SMTP port used is 25; it may be changed here if desired. This

is the port the SMTP server will be listening on for connection requests.

HELO= Optional field that can be used to report your domain within the email. It is

required by some hosts. For example the domain of www.ctc-control.com would be

ctc-control.com.

TO= Required field, defining the destination. Only one addressee may be listed per

TO entry, although multiple TO fields are allowed.

FROM= Required field, the email address that represents the controller and that can

be replied to. This account should exist on the SMTP server. Otherwise, relaying

must be enabled.

CC= Optional field, defining the destination to copy the email to. Only one

addressee may be listed per CC although multiple CC fields are allowed.

BCC= Optional field, defining the destination to copy the email to. Only one

addressee may be listed per BCC although multiple BCC fields are allowed. Typically

BCC fields are hidden and will not be displayed when the email is received by other

addressees.

SUBJECT= Required field, specifies the email subject, generally a short summary.

Spaces are allowed within the text.

[SMTP_MESSAGE] – Section header. Required prior to the start of the email text

message. All following text is assumed to be part of the email. Refer to the Creating

Emails using WebMON section for details on the Message area.

http://www.ctc-control.com/

&

Ensure that the <Enter> key is entered on the last item in the message, returning

the cursor to the far left-hand side of the message.

[SMTP] - New to the 5300 firmware release R69.20 is the support of the AUTH

LOGIN sequence used by a number of public email sites. One in particular is

www.gmx.com. This web site can be used for both POP3 and SMTP email. Unlike sites

like gmail and hotmail it does not require SSL/TLS encryption. To enable the AUTH

LOGIN feature simply specify a USER and PASSWORD definition within the [SMTP]

section:

USER= User account name, limited to 80 characters. For GMX mail server this is

your email address.

PASSWORD= Email account password, limited to 80 characters.

GMX email account sample reference:

[SMTP]

IP=smtp.gmx.com

PORT=25

HELO=

TO=somename@gmail.com

FROM=bluefusion@gmx.com

CC=

SUBJECT=test GMX Email

USER=bluefusion@gmx.com

PASSWORD=BlueFusion

[SMTP_MESSAGE]

Testing GMX email, %dR13002 references register...

Below is an Email message sent and received when the sample email file was stored to

Email_001.email within the /_system/Emails sub-directory, and a 1 was written to the

SMTP Send Register 12317:

http://www.gmx.com/

&

After communications the SMTP Send Register displays the email message number sent

along with the results in the SMTP Status Register, 12318. 12318 changed to 0 after the

initial write of a 1 to 12317, ending with a 1 after successful transmission:

Monitored with CTCMON

Notice that the %05dR13002 was replaced by the actual register value in the controller

(10940) at the time the email was composed for transmission.

SMTP Email Diagnostics

Trying to resolve SMTP problems can be difficult without network tracing capability. To

help in this matter the ‘test esmtp’ and ‘test smtp’ commands can be executed via the

telnet administrator interface. These commands allow you to send a sample email and

monitor what is being sent and received, typically yielding better diagnostic information:

test smtp <host> <from> <to> (no login is used, internal email server)

test esmtp <host> <from> <to> <username> <password> (uses the AUTH LOGIN sequence)

Example of Diagnostic Trace:

BlueFusion/>test esmtp smtp.gmx.com bluefusion@gmx.com someone@gmail.com

bluefusion@gmx.com BlueFusion

220 mail.gmx.com GMX Mailservices ESMTP {mp-us002}

helo

250 mail.gmx.com GMX Mailservices {mp-us002}

AUTH LOGIN

334 VXNlcm5hbWU6

Ymx1ZWZ1c2lvbkBnbXguY29t

334 UGFzc3dvcmQ6

Qmx1ZUZ1c2lvbg==

235 2.7.0 Go ahead {mp-us002}

mail from:<bluefusion@gmx.com>

250 2.1.0 ok {mp-us002}

rcpt to:<someone@gmail.com>

250 2.1.5 ok {mp-us002}

data

354 mail.gmx.com Go ahead {mp-us002}

Date: 10/14/2010 20:24:29

From: bluefusion@gmx.com

To: someone@gmail.com

CC:

&

BCC:

Subject: 5300 Email Test

This is the first line.

This is the second.

This is register 13002 = 0625

.

250 2.6.0 Message accepted {mp-us002}

quit

221 2.0.0 GMX Mailservices {mp-us002}

SUCCESS

&

Post Office Protocol, Version 3 is a set of standardized rules (protocol)

by which a client machine can retrieve electronic mail from a mail

server (POP server). The server holds the email until the user can

retrieve it. POP3 only provides for receiving email, not sending it.

SMTP is used for transmission.

For proper operation controllers should be assigned their own email account. You may

not share an email account with a controller since each controller will read and delete

each email, as it is read and processed.

Mail Inbox Server Configuration

The POP3 Email Server configuration can only be set up using WebMON via the

Ethernet Setup tab. It consists of a number of data entry fields, each with their own

special functionality:

 POP3 Server

 Port

 Poll Rate

 Host Timeout

 User Account

 Password

 POP3 Enabled

&

POP3 Server

The POP3 Server IP address designates the host that will provide the POP3 mailbox

account for the controller. This must be the server's IP address, entered in “dot”

notation.

Port

The Port is the TCP/IP port that the POP3 Server will be listening on for mail

requests. Typically this is port 110, which is the factory default.

Poll Rate

The Poll Rate is the time, in milliseconds, that the controller will wait until it checks

for available email, within its mailbox. All available email will be read and deleted

as processed, in a sequential order. After processing this time delay will occur until

the next processing sequence. 10000 milliseconds (10 seconds) is the default interval.

Host Timeout

The Host Timeout is the time, in milliseconds, that the controller will try to contact

its POP3 server and wait for responses for mail requests. It is considered the error

timeout. After this period of time the controller will stop trying to contact the server

and wait the next poll rate interval before trying again. The default timeout period is

2000 milliseconds (2 seconds).

User Account

The User Account is the name needed to log into the mailbox. This is typically the

mailbox name but could be set differently by the POP3 server. It is limited to 30

characters.

Password

The Password is the password required, along with the User Account, to log into the

mailbox being supplied by the POP3 server. It is limited to 30 characters.

POP3 Enabled

A check box is available to enable the POP3 functionality. When checked POP3 is

active. Once all changes have been made to the above parameters select the Update
POP3 button to make the changes current in the controller.

A Hardware reset must be generated whenever the POP3 parameters are changed

for them to become active.

To verify that the controller is monitoring a POP3 account, the WebMON Setup System

tab can be viewed and the execution thread verified:

&

Email Formatting

Once the Model 5300 controller email server is configured, enabled, and system

restarted, the controller will continually poll the email server for mail. As each mail

message is found it will be downloaded, processed, and deleted from the inbox.

Processing consists of scanning the email whose messages contain special Section

Header character strings and script commands for execution.

Section Headers

The Section Headers that exist within the message body of an email are defined as

follows:

[CTC_EMAIL_START] – Script commands follow as defined within Document No.

951-530003: Model 5300 Script Language Guide. This section header may begin

and end as often as required as long as there is a matching [CTC_EMAIL_END] for

each. Note that a # sign at the beginning of a line represents a comment.

[CTC_EMAIL_START_ATTACH_ORIGINAL] – Exactly the same as

[CTC_EMAIL_START] except that a copy of the original email is appended to the

end of the reply email.

&

[CTC_EMAIL_END] – Script commands end and any text following should be

ignored.

Example Email message text:

This line is ignored and can be any information desired in the

email.

The next line will signify the start of script processing.

[CTC_EMAIL_START_ATTACH_ORIGINAL]

This is a comment.

Request a copy of this email be attached to the original, not

needed but useful to know what we sent. Regardless a copy of

each of these commands and the reply is always sent back as a

reply. [CTC_EMAIL_START] will not cause original to be

attached.

Let's assume we received an alarm condition via pager or email

so lets clear it. Possibly register 1 is used as a flag by the

program. Also keep these lines less than 72 characters when

using Microsoft Exchange as it typically auto-line wraps and

you will end up with a bad command.

1 = 0

Now lets get all the version information just to make sure

things are OK.

get versions

Restart the controller given to clear the alarm

set restart

We are all done now so return to normal email text

[CTC_EMAIL_END]

This is just normal email text. We could issue another command

block if desired following this text.

Emails must be sent as ASCII Plain Text messages, not HTML formatted. Also

only Quoted-Printable data encoding is supported within the message body, reference

RFC1341.

Mail Messages should be limited to 4096 bytes, a 9K buffer is available assuming

a reply with the original message attached.

Ensure that the enter key is entered on the last item in the message, returning the

cursor to the far left hand side of the message.

ASCII Text Emails

All emails sent to the controller MUST be sent as ASCII Plain Text messages, not

HTML formatted. Many email programs allow the selection of HTML, Rich Text, and

Plain Text. Plain Text is equivalent to ASCII text messages.

&

There are a number of ways to make this selection. Using Microsoft Outlook 2003 as an

example you may set this as the default to always use or select it on an individual email

basis.

Microsoft Outlook Plain Text, Individual Basis

On an individual email basis it may be selected after you open a window for composing a

New email:

A window will appear to compose the email, note the pull down box and ensure it is

selected to Plain Text.

Some email services, such as MSN Hotmail, always send messages in Plain Text format.

Note that there are a couple of things to be aware of, especially in Outlook 2002. First is

that text sent may automatically have line wrapping done. For example Outlook 2002

does it at 64 characters, Exchange sets it at 72 characters and Outlook 2003 has a user

settable option. The text will appear normal within your Outlook editor but is converted

prior to receipt by the controller. Also when receiving a reply, Outlook will remove

some of the line feeds making some of your lines appear as one. To remedy this for Plain

Text messages there are two option screens under Outlook->Tools->Options, then

Email Options button:

Preventing removal of extra line breaks:

&

&

Increase the line length before auto-wrapping text, referencing Outlook->Tools-
>Options->Mail Format Tab, then Internet Format button:

Some Microsoft Knowledgebase Articles worth referencing are 287816 and 327573:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;327573

http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3Bq287816

http://support.microsoft.com/default.aspx?scid=kb;EN-US;327573
http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3Bq287816

&

Microsoft Outlook Plain Text, Default for All

Configuring Microsoft Outlook to always default to Plain Text is done via the Tools

menu:

Select the Mail Format tab and set the Compose in this message format pull down to

Plain Text.

When finished, click OK. The default for all messages is now Plain Text.

&

Sample Email and Response

The email below was detailed previously and is now shown ready for sending within an

Outlook Message box:

Upon clicking Send the email will be sent to mail server where the ‘Test5300’ account

resides. Based on the poll rate the controller will then read the email, process the

commands and return a reply since the [CTC_EMAIL_ATTACH_ORIGINAL]

parameter is listed. The response received several seconds later is:

BlueFusion> 1 = 0

1 = 0

BlueFusion> get versions

&

*Local 5300 Serial Number = 00063255

 DNS Name: 5300Kev DHCP active: YES

 Group Name: Sales.DemoUnits

 IP Address = 12.40.53.158 MAC Address = 00C0CB00F717

 Total: DIN = 4 DOUT = 16 AIN = 8 AOUT = 4 MOTION = 0

 Base Firmware Revisions:

 Quickstep SH2 Application V05.00.11

 Quickstep SH2 Monitor V15.15 @

 Slot Firmware Revisions:

 01. M1-30A-Analog 2 I/O V01.07

 Ain1: data-32596 offset-32631 spanpos-27218 spanneg-31715

 Ain2: data-32615 offset-32621 spanpos-25649 spanneg-31771

 Aout1: data-00000 offset-32713 spanpos-31183 spanneg-31268

 Aout2: data-00000 offset-32734 spanpos-31176 spanneg-31261

 02. M1-31A-Analog 4 in V01.01

 Ain1: data-32809 offset-32708 spanpos-32747 spanneg-32707

 Ain2: data-00000 offset-32707 spanpos-32743 spanneg-32704

 Ain3: data-00000 offset-32706 spanpos-32753 spanneg-32705

 Ain4: data-65535 offset-32702 spanpos-32756 spanneg-32701

 03. M1-30A-Analog 2 I/O V01.07

 Ain1: data-32710 offset-32719 spanpos-31745 spanneg-31731

 Ain2: data-32707 offset-32715 spanpos-31756 spanneg-31734

 Aout1: data-00000 offset-32700 spanpos-31216 spanneg-31203

 Aout2: data-00000 offset-32709 spanpos-31157 spanneg-31140

 04. Empty V00.00

 05. M1-20A-Digital 8 Output V00.00

 Dout: 0x99

 06. M1-20A-Digital 8 Output V00.00

 Dout: 0x9F

 07. No Expansion Connected V00.00

 08. No Expansion Connected V00.00

 09. No Expansion Connected V00.00

 10. No Expansion Connected V00.00

 11. No Expansion Connected V00.00

 12. No Expansion Connected V00.00

 13. No Expansion Connected V00.00

 14. No Expansion Connected V00.00

 15. No Expansion Connected V00.00

 16. No Expansion Connected V00.00

 17. No Expansion Connected V00.00

 18. No Expansion Connected V00.00

 19. No Expansion Connected V00.00

 20. No Expansion Connected V00.00

 21. No Expansion Connected V00.00

 22. No Expansion Connected V00.00

 23. No Expansion Connected V00.00

 24. No Expansion Connected V00.00

No Thermocouples.tbl file found.

*

BlueFusion> set restart

SUCCESS: Restart Command completed.

&

-----Original Message-----

This line is ignored and can be any information desired in the

email.

The next line will signify the start of script processing.

[CTC_EMAIL_START_ATTACH_ORIGINAL]

This is a comment.

Request a copy of this email be attached to the original, not

needed but useful to know what we sent. Regardless a copy of

each of these commands and the reply is always sent back as a

reply.

[CTC_EMAIL_START] will not cause original to be attached.

Let's assume we received an alarm condition via pager or email

so lets clear it. Possibly register 1 is used as a flag by the

program. Also keep these lines less than 72 characters when

using Microsoft Exchange as it typically auto-line wraps and

you will end up with a bad command.

1 = 0

Now lets get all the version information just to make sure

things are OK.

get versions

Restart the controller given to clear the alarm

set restart

We are all done now so return to normal email text

[CTC_EMAIL_END]

This is just normal email text. We could issue another command

block if desired following this text.

&

Microsoft Exchange 2000 Setup

All email servers are different in the way they are configured. As an example the setup

of Microsoft Exchange 2000 is shown.

First invoke the Microsoft Exchange System Manager. For your server locate the POP3

protocol under the Administrative Groups, expand the folder and get the properties of the

POP3 Virtual Server that you will be using.

The Properties dialog will now appear:

&

Select the Access tab:

Select the Authentication button and ensure Basic Authentication is selected.

&

When done select OK, then click the Connection button. For security reasons you may

only want to allow access from within your domain. Below allows all connections but by

selecting the Only the list below radio button you can restrict access.

When complete select the OK button on all open dialogs.

&

(DNS - Domain Name System) A system for converting host names and

domain names into IP addresses on the Internet or on local networks that

use the TCP/IP protocol. For example, when a Web site address is given

to the DNS either by typing a URL in a browser or behind the scenes

from one application to another, DNS servers return the IP address of

the server associated with that name.

&

DNS and the Model 5300

The Model 5300 controller is capable of using DNS to resolve names used in place of IP

addresses. The actual DNS IP address used will be that returned by the DHCP server, or

when using static IP Addresses, 20128 to 20131 allow the setting of a static DNS server

reference.

DNS IP resolution is supported anywhere IP addresses are used within scripts. Both

names and IP ‘.’ nomenclature may be intermixed within commands.

Script commands that support DNS:

ftpconnect <host name or IP Address>

test esmtp <host> <from> <to> <username> <passwd>

dnslookup <host name>

dnsRlookup

 dnsRlookup <Reg #> <host name>

 dnsRlookup 5 www.ctc-control.com

 Assuming this resolved to 12.40.53.10, this would

 store the following:

 Register 5 = 12

 Register 6 = 40

 Register 7 = 53

 Register 8 = 10

http://www.ctc-control.com/

&

This section discusses the symbol file generated by Quickstep 2 and the

QuickBuilder tools. These symbols can be imported into HMI displays

and used to symbolically monitor assigned registers. Additionally the

recommended CTNet Binary Protocol commands for both legacy and

newer controllers are discussed.

Quickstep Symbol Table

Supported Controllers: Models 2700, 5100, 5200, 5300.

The symbol format used by Quickstep 2 consists of an ASCII text file with tab delimited

fields, each line representing a record entry. Each record is terminated by a 0x0d 0x0a

combination. There are four fields:

TYPE – This field determines the resource type. It consists of a single bit set as follows:

1 – Constant

2 – Analog Input

4 – Analog Output

8 – Counter

16 – Data table column

32 - Display

64 – Flag

128 – Digital Input

256 - Stepper

1024 – Register

2048 – Servo

8192 – Step Name

65536 – Unknown Step name

131072 – Digital Output

524288 – Thumb Wheel

&

RESOURCE – Assigned resource number for access.

STATE – State references the active state, normally open or closed, only used for digital

resources. If 0 then normally open and active state is a 1, if 1 then normally closed and

active state is a 0.

NAME – Symbolic name.

Example:

1024 38 0 bZeroBatchCount

1024 39 0 bEditJob

1024 9 0 bTest

128 1 0 reot

128 12 0 buckleSensors

128 13 0 sawVFDStatus

131072 13 0 servoReset

131072 14 0 servoEnable

131072 15 0 runSaw

4 1 0 sawSpeed

4 2 0 cnvyrSpeed

Referencing the symbol sawSpeed, its TYPE is a 4, meaning Analog Output.

The RESOURCE is 1, first analog output in the controller. STATE field is

ignored since that is only for digital.

For HMI access purposes only the following TYPE fields are typically supported (32 bit

integers); the rest can be ignored:

2 – Analog Input (resource 1 to N)

4 – Analog Output (resource 1 to N)

64 – Flag (resource 1 to N)

128 – Digital Input (resource 1 to N)

1024 – Register (resource 1 to N)

131072 – Digital Output (resource 1 to N)

Quickstep HMI Communications

Numerous commands are available within the CTNET Binary Protocol as described in

the previous chapter.

Note: 2700, 5100, and 5200 controllers do not support Variants.

&

To simplify access all resources can be accessed by using registers, adding the resource

number to the base value:

Refer to Document No. 951-530006: Model 5300 Quick Reference Register Guide.

Analog Input, base register 8500

Analog Output, base register 8000

Flag, base register 13200

Digital Input, base register 2000

Register, base register 0

Digital Output, base register 1000

For example, if the TYPE is a 2, designating an Analog Input, with a RESOURCE

number of 5, reading register 8505 (8500 + 5) will result in the Analog Input value.

Referencing Document No. 951-530001: Model 5300 Enhancements Overview, the

primary commands of interest are:

Command Description

9 Read a register

11 Change a register

75 Read a bank of 50 registers (limited from 1 to 1000)

77 Read a bank of 16 registers

87 Request random registers from list (not supported 2701E/2601)

QuickBuilder Symbol Table

Supported Controller: Model 5300

Two symbol table formats available, that described below as well as the Quickstep 2

table format for backward compatibility to tools like CTC MON. Note that the Quickstep

2 format has reduced symbolic information. The symbol file can be found in the project

sub-directory with a .sym file extension. Two are created upon translation that, with the

base name ending with _QS2.sym, is in the Quickstep 2 format.

The symbol format used by QuickBuilder consists of an ASCII text file with fixed field

sizes, padded with spaces, each line representing a record entry. Each record is

terminated by a 0x0d 0x0a combination. There are eight fields:

SYMBOL – Symbolic name, starting in record position 1.

GROUP – Storage group, starting in record position 51. Available groups are:

double – 64 bit double in Microsoft format externally via CTC binary protocol,

gcc internally (32 bit words swapped). Quickbuilder will reference this as a float

(float in Quickbuilder world is actually 64 bits).

boolean – 32 bit integer with 0 or 1 value, false/true.

&

int – 32 bit integer.

string – array of characters.

TYPE – Resource type, starting in record position 61. Available types are:

axis – Servo or stepper axis.

var – Variable, volatile.

nvar – Variable, non-volatile

din – Digital Input

dout – Digital Output

ain – Analog Input

aout – Analog Output

pid – PID Algorithm, where RESOURCE is input of PID and REGISTER is

output of PID.

RESOURCE – Assigned resource number for access, starting in record position 71.

REGISTER – Assigned register number for access, starting in record position 81.

Typically used instead of RESOURCE.

STORAGE – Storage type, starting in record position 91. Available types are:

scalar – Single item.

vector – One dimensional array.

table – Two dimensional array.

Note: Arrays are allocated dynamically. Thus size can change during runtime.

MODULE – Controller module model number referenced, for informational purposes

only, starting in record position 101. All spaces if variable or pid.

SLOT – Controller slot module is expected in, for informational purposes only, starting

in record position 111. All spaces if variable or pid.

Example:

buckleSensors boolean din 12 2012 scalar M3-11 1

bZeroBatchCount boolean var 0 38 scalar

cnvyrSpeed int aout 2 8002 scalar M3-34 2

cnvyrSpeed int ain 1 8501 scalar M3-32 3

COFFEE_POT boolean dout 3 1003 scalar M3-10 4

conveyorVFDStatus boolean din 14 2014 scalar M3-11 1

cSaw int var 0 16 scalar

HEATER boolean dout 2 1002 scalar M3-10 4

nvar1 double nvar 0 36701 scalar

PID_PWM int pid 8502 5903 scalar

PID1 int pid 8501 8001 scalar

PID2 int pid 8502 8017 scalar

PWM1 boolean dout 1 1001 scalar M3-10 4

var1 double var 0 36101 scalar

&

QuickBuilder HMI Communications

Numerous commands are available within the CTNET Binary Protocol as described in

the previous chapter.

Note: QuickBuilder makes extensive use of Variants, which are only supported in the

Model 5300 controller..

To simplify access all resources can be accessed by referencing the assigned REGISTER.

Referencing Document No. 951-530001: 5300 Enhancements Overview, the primary

commands of interest are:

Legacy Register Commands (scalar integers)

Command Description

9 Read a register (integer only, else converts if a Variant)

11 Change a register (integer only)

75 Read a bank of 50 registers (integer only, 1 to 1000)

77 Read a bank of 16 registers (integer only)

87 Request random registers from list (integer only, else

converts if a Variant)

Variant Commands (integers, floats, strings, scalar & arrays)

Command Description

91 Get properties (only needed if dynamic array size needed)

93 Read a variant

95 Change a variant

109 Read a variant array block (consecutive)

113 Read a block of variants, randomly

For optimized performance integer access should use the Legacy Register

Commands. Variants can be of any type and have a greater overhead.

&

Blank

&

When Quickstep programs encounter problems they fault, removing

control from the programmer. A new feature available in Blue Fusion

controllers is the Fault Task Handler. The Fault Task Handler is a

regular Quickstep task that can be branched to and executed when a soft

fault occurs. The Handler is simply a standard Quickstep program. It

can be set up as either a separate task that is looping on a delay

instruction awaiting the fault, or a main program that sets the Fault Task Handler step and

continues executing. Later branching in the program can go to the step designated to

handle the fault.

There can only be one Fault Task Handler active at a time. Any task can be activated as a

handler by writing a step number to branch to in register 13038, the

TASK_FAULT_STEP_REGISTER. A branch will occur to the designated step when a

Fault occurs. You can change which task is the handler or where to branch to at any

time, by setting 13038 to a different step, or to 0 to disable the handler. Register 13040,

TASK_FAULT_MASK_REGISTER can be set to enable which faults will cause the

branch to occur. Each bit is OR’d as required to enable each type of Fault:

FAULT MASK FAULT TYPE

0x0001 (1) Fatal Errors

0x0002 (2) Program Errors

0x0004 (4) Motion Errors

0x0008 (8) Analog Errors

0x0010 (16) Digital Errors

0x0020 (32) Communications Errors

When a Handler is executing it will ignore further soft faults and continue executing.

The fault state must be cleared for normal operation to continue. This is controlled by

register 13041, the TASK_FAULT_CLEAR_REGISTER (Write Only). This register

controls the state of program execution:

&

Program State Description

1 RESET – Reset the controller only

and then stop..

5 RESTART – Reset the controller

and begin running again at step 1.

6 STOPPED – Stop the controller

but do not reset.

8 RUNNING – Ignore the fault and

continue running.

9 FAULT – Continue to fault as

usual.

10 SHUTDOWN – Reset the

controller and shutdown, requires

a power cycle to exit.

Important registers are as follows:

Register Description

13032 Fault Code – (R) Contains the fault code for

what caused the fault.

13033 Fault Step – (R) Step in which fault occurred.

13034 Fault Task – (R) Task number, starting at 1,

which caused the fault..

13035 Fault Data – (R) Any relevant error data.

13038 Fault Step Register – (R/W) Step to branch to

when fault occurs. Write a 0 to disable.

13039 Fault Task Register – (R) Task number that is

the active Fault Handler, 0 means none.

13040 Fault Mask Register – (R/W) Bit OR of types

of fault that will invoke the handler, by

default all enabled (-1) when the Fault Step

Register is written

13041 Fault Clear Register – (W) Used to write the

recovery state when done processing the

Fault.

&

Fault Codes

Below is a table of all possible fault codes in the Model 5300:

Fault Value Fault Mask Description

1 1 Illegal function

2 1 Bad/corrupt program data

3 2 Destination step is empty

4 Not Used Bad thumbwheel data

5 1 Step one is empty step

6 2 Too many tasks

7 4 No such stepping motor

8 4 Motor not ready

9 4 Motor not profiled

10 4 No such servo exists

11 4 Servo not ready

12 4 Servo Error

13 2 No such register exists

14 2 No such data table column

15 2 No such data table row

16 Not Used No such prototyping board

17 Not Used Illegal sample time

18 8 No such analog input

19 8 No such analog output

20 2 No such display exists

21 16 No such input exists

22 16 No such output exists

23 Not Used No such thumbwheel exists

24 1 Illegal data table value

25 32 Message transmitting busy

26 1 Divide by zero error

27 1 Data out of range

28 1 Watchdog/hardware fault

29 32 Network error fault

30 Not Used Network access timeout

31 Not Used Network access busy

32 Not Used Network request lost

33 Not Used Network bad response

34 Not Used Network bad return message

35 2 No such communications port

36 32 Error in request/reply

37 2 Bad flag number selected

38 2 Bad delay timer selected

39 2 Out of soft counters

&

40 8 Error in fetching or calculating

analog In scaling

41 8 Module not calibrated

42 1 Error re-flashing module

43 2 Error trying to open request file,

not exist?

44 1 Error trying to read file, fgets?

45 1 Malloc failed

46 8 Analog module not responding

47 8 Error in fetching or calculating

analog Out scaling

48 1 Illegal build of Atmel board

49 32 Lost connection with virtual

controller

50 1 Task error

51 1 Task status error

52 Not Used Time delay not accepted, shorter

delay already set (not an error)

53 2 Error accessing Hardware I/O

54 1 Generic IODRIVER error

55 2 Invalid parameter

56 1 Invalid extend data descriptor

57 4 SPI Overrun

58 4 SPI Timeout

Fault Task Handler Example

Symbols:

 Registers Symbol Name

10 FaultFlag

13038 FaultStepRegister

13039 FaultTaskRegister

13040 FaultMaskRegister

13041 FaultClearRegister

[1] init

 ;;; A Fault Handler is installed in the first

 ;;; step to monitor for communications failure. The

 ;;; FaultMaskRegister must be set after the

FaultStepRegister,

 ;;; otherwise the handler will be invoke for all faults

 ;;; (default).

 <NO CHANGE IN DIGITAL OUTPUTS>

&

 Store 0 to FaultFlag

 store 8 to FaultStepRegister

 store 32 to FaultMaskRegister

 goto next

[2] v_setup

 ……… continue program ………….

[8] FaultHandler

 ;;; This step is invoked should a fault occur, such as a

 ;;; network disconnect. The FaultMaskRegister controls

 ;;; under what circumstances the handler is invoked. This

 ;;; example is very simple. It basically shuts all the

 ;;; local outputs off and sets a flag in FaultFlag that

 ;;; has no purpose. Note that no other tasks will be running

 ;;; in the system nor can this task fault when the handler

 ;;; is invoked.

 <TURN OFF ALL DIGITAL OUTPUTS>

 store 1 to FaultFlag

 delay 3 sec goto ClearFault

[9] ClearFault

 ;;; Now attempt to recover from the fault by issuing a

RESTART

 ;;; command

 <NO CHANGE IN DIGITAL OUTPUTS>

 store 2 to FaultFlag

 store 5 to FaultClearRegister

 goto FaultHandler

&

Blank

&

The Model 5300 can transmit string-formatted messages, similar to the

format supported by the ‘C’ function ‘sprintf’. Each message may

consist of just text and/or embedded references to any number of

registers, whose values will be substituted just prior to transmission.

Message format definitions are stored as records in a file called

message.ini which is located in the /_system/Messages

subdirectory of the flash disk. Each line of message.ini is considered a record, from

1 to a maximum of 50 messages.

Messages are written to the default communications port set in register 12000, which is

the standard Serial port selection register in Quickstep. Writing to the Message String

Transfer Register (12316) selects which record to dynamically format and write out the

communications port. A read returns the status of the write, with 0 meaning success.

The Model 5300 supports up to 7 communication ports, two of which are dedicated to

RS232, while the remaining 5 are assigned by the program as bidirectional TCP

redirector ports. The redirector ports appear to Quickstep as RS232 ports, but actually

either connect to a remote terminal server or host based application program

Typically a message consists of text with a ‘sprintf” formatted specification, followed by

r####, where #### is the desired register. Therefore, to read register 8501 to be

exactly 5 characters with preceding 0’s, %05dr8501 would be inserted in the text string.

Note the %05d is the same as a ‘printf’/’sprintf’ and actually uses the exact same

function, only enhanced. This means %05Xr8501 would cause hexadecimal values to

be generated. Sample strings using the previous example could be entered in the

message.ini file as:

Analog Value = %05dr8500\r\n

Analog Value = %05dr8501\r\n

If the above are the only two entries in the message.ini file, then writing a 2 to the

Message String Transfer Register would cause the second line to be processed and the

following to be written out the RS232 port if a 583 were in register 8501:

&

Analog Value = 00583<CR><LF>

Message.ini Extended Formats

As described previously, the message.ini file format is similar in structure to that of

the ‘C’ sprintf function, with additional enhancements. References to registers, data table

cells and time/date stamp formats are supported using this extended format:

Register (decimal) - %0#dr<register> or %dr<register>

Example: %05dr13002 (fix size with leading 0’s to at least 5 places, reg

13002)

Register (hexidecimal) - %0#xr<register> or %Xr<register>

Example: %05xr13002 (fix size with leading 0’s to at least 5 places, reg

13002)

Register (ascii) - %cr<register> or %cr<register>,<length> or

%cr<register>,r<register>

Example: %cr12001,r12302 (convert the serial port buffer to ASCII

characters)

Example: %cr12001,3 (convert the first 3 serial port buffer registers to

ASCII)

Data Table Cell - %0#dD<row>,<col> or %dD<row>,<col>

Example: %05dD1,2 (fix size with leading 0’s to at least 5 places, row 1,

column 2, from the data table).

Time/Date Stamp - %T!<time/date format>

 Example: %T!HH:mm:ss!

 %T!MM/DD/YYYY!

Where each below are optional:

 HH = hour (24 hour format)

 mm = minute

 ss = seconds

 MM – month

 DD – day

 YY – year in 2 decimal format, no century.

 YYYY – year in 4 decimal format, including century.

 E – Day in week, text – Mon, Tue, Wed, Thu, Fri, Sat, or Sun

 Z – Time zone information in 5 digit format - <sign>HH:mm from GMT

 Note:

o All other characters are treated as filler text, except ending ‘!’.

o Maximum 48 character Time/Date Stamp string.

&

the log.ini file in Document No. 951-530015: Model 5300 Logging and FTP

Client Applications Guide uses the same formats detailed above.

&

Within a Model 5300 environment many threads run in parallel, each

executing when there is work to do, and then sleeping until it is their

time to be serviced once again. At the highest general priority is your

Quickstep application program. It must yield in order to allow things

like the web server to transfer files, telnet to return key strokes, etc.

Quickstep instructions tend to poll I/O or registers, at high rates of

speed, until a change of condition occurs, at which point logical branching occurs. At

times the interval between each step can be critical, so registers are provided to control

the balancing of execution time amongst tasks.

As each Quickstep step is executed a background timer is run; upon timeout, a window is

opened allowing other threads to execute, such as the web server. Since there is only one

CPU when you service Quickstep you cannot be transferring files, when transferring files

you cannot service Quickstep, hence a decision must be made as to what is the worst case

acceptable time allowed between Quickstep steps. Register 13036, Performance

Adjustment Register (PAR), is the periodic number of milliseconds the Quickstep

execution loop will check to see if any network operations need to take place; if none

need to be done, Quickstep continues to execute, else it yields control for Register 13037

(Network Service Window, NSW) X 5 milliseconds. Thus PAR controls the network

response time for many operations while NSW controls the amount of time the network

may run prior to returning control to Quickstep. NSW is the maximum amount of time

that typically will occur between Quickstep instructions under heavy network traffic.

By default Quickstep checks to see if the network needs service every 30 milliseconds,

allowing the network window to remain open for 30 milliseconds (NSW = 6), which

becomes the worst case time between individual steps. This value may be changed at any

time. The minimum value for PAR is 10 milliseconds and NSW is 2 (2 X 5= 10

milliseconds).

Required settings:

 10 <= PAR <= 250 (smaller PAR > Network Performance)

&

 2 <= NSW <=14 (larger NSW > Network Performance)

&

Blank

&

Data Logging on a Model 5300 controller consists of the process of

periodically recording collected information in a pre-determined file

format. Data may consist of any combination of register contents, a data

table cell, time/date information, and/or constant string text. Data is

logged in a record format derived from a definition file called

log.ini. This definition file lists all the logging record formats

required, each individually selectable at run-time.

Logging Controller Setup

Data Logging causes a file to be reopened during each write operation, at which time

records are appended to it. The flash drive does not support the appending of records to

an existing file therefore only the NVRAM is supported for logging. An NVRAM disk

resides at the /RAMDISK directory of the Model 5300. Both / (root) and /_system

are FLASH. The NVRAM disk is referenced as a virtual sub-directory called data,

residing within the /_system/Messages FLASH directory.

Virtual Directory Creation

Log files are expected to exist in a virtual directory linked to the

/_system/Messages FLASH directory, called data. This allows you to reference

the main flash disk file structure but in actuality be redirected to a NVRAM disk of your

choice and size. The mount command is used to create a virtual directory. Reference

Document No. 951-520001: Model 5200 Remote Administration Guide. In summary, the

following example is used:

&

All log commands will operate on the data sub-directory, with the full path being

/_system/Messages/data. The following section will describe this process in

more detail.

Virtual directories are volatile and must be re-created upon every power cycle,

typically by the use of a script file (_startup.ini).

Logging Record Format and Operation

A predefined format file must reside within the /_system/Messages directory called

log.ini. This file contains individual records defining the desired contents to be

written to a log file during a logging sequence.

The content of the log.ini file follows the same format as that of the message.ini

file. This string-formatted message is similar to the format supported by the ‘C’ function

sprintf. Each message may consist of either text and/or embedded references to any

number of registers, where the values will be substituted just prior to writing to the log

file. A maximum completed record size (each line in a log file) of 512 bytes is

supported. Message format definitions are stored as records in a file called log.ini

which is located in the /_system/Messages subdirectory of the flash disk. Each

line of log.ini is considered a record, from 1 to a maximum of 50 pre-defined

formats.

The logging of data is controlled by two registers, the Log Selection Register (12325) and

the Log String Transfer Register (12326). The Log Selection Register determines the

name of the log file to be written, Log###.log, where ### is the register contents at

the time of an operation. For example writing a 1 to the register defines the name of the

file accessed to be Log001.log, a 2 would be Log002.log, etc. Up to 999 different

sequences may be used.

Writing to the Log String Transfer Register (12326) causes the actual write operation to

occur, selecting which record in the log.ini file to dynamically format and write to the

&

NVRAM disk file. A read on the Log String Result Register (12327) returns the status of

the write, as defined below:

 0 – Success

 43 – File error, either log.ini is missing or Log###.ini created an error.

 44 – No such record in the log.ini file

 53 – Write error, check available disk space

 -1 – Default value after setting the Log Selection Register

Script and Flash Disk Registers

Script004.ini

Script004.ini

Value Description

0-999 Normal, Log###.log file written using log.ini

1000-1999 Variant array is written to log file, Log###.log,

log.ini not referenced

2000-2999 Reserved

3000-3999 Variant array is written to QS2 data table format

using name datatable###.tab, log.ini not

referenced.

4000-4999 Reserved

5000-5999 Varant array is loaded/read from QS2 data table

format using name datatable###.tab

Log###.log

Log###.log

Log###.log

Snap###.log

Snap###.log

&

Log.ini Format

As described previously, the log.ini file format is similar in structure to that of the ‘C’

sprintf function, with additional enhancements. References to registers, data table

cells and time/date stamp formats are supported using this extended format:

Register (decimal) - %0#dr<register> or %dr<register>

 Example: %05dr13002 (fix size with leading 0’s to at least 5 places, reg 13002)

Register (hexidecimal) - %0#xr<register> or %Xr<register>

Example: %05xr13002 (fix size with leading 0’s to at least 5 places, reg

13002)

Register (ascii) - %cr<register> or %cr<register>,<length> or

%cr<register>,r<register>

Example: %cr12001,r12302 (convert the serial port buffer to ASCII

characters)

Example: %cr12001,3 (convert the first 3 serial port buffer registers to

ASCII)

Data Table Cell - %0#dD<row>,<col> or %dD<row>,<col>

Example: %05dD1,2 (fix size with leading 0’s to at least 5 places, row 1,

column 2, from the data table).

Time/Date Stamp - %T!<time/date format>

 Example: %T!HH:mm:ss!

 %T!MM/DD/YYYY!

Where each below are optional:

 HH = hour (24 hour format)

 mm = minute

 ss = seconds

 MM – month

 DD – day

 YY – year in 2 decimal format, no century.

 YYYY – year in 4 decimal format, including century.

 E – Day in week, text – Mon, Tue, Wed, Thu, Fri, Sat, or Sun

 Z – Time zone information in 5 digit format - <sign>HH:mm from GMT

 Note:

o All other characters are treated as filler text, except ending ‘!’.

o Maximum 48 character Time/Date Stamp string.

Typically a log record consists of text with a sprintf formatted specification,

intermixed, as required, with the format detailed above. Therefore, to read register 8501

to be exactly 5 characters with preceding 0’s, %05dr8501 would be inserted in the text

string. Note the %05d is the same as a printf/sprintf and actually uses the exact

&

same function, only enhanced. This means %05Xr8501 would cause hexadecimal

values to be generated. Sample strings using the previous example could be entered in

the log.ini file as:

Analog Value = %05dr8500\r\n

Analog Value = %05dr8501\r\n

If the above are the only two entries in the log.ini file, then writing a 2 to the Log

String Transfer Register will cause the second line to be processed and the following to

be written to the disk if a 583 is in register 8501:

Analog Value = 00583<CR><LF>

Log Format Example

Assume a record format of the following is desired:

 Comma delimited format

 Field 1 – MM/DD/YYYY

 Field 2 – HH:mm

 Field 3 – Time tic register 13002

 Field 4 – Analog Input 1

 Field 5 – Analog Input 5

 Field 6 – New line separator <CR> <LF>

The format for this in a log.ini file would be a record inserted with the following

format:

%T!MM/DD/YYYY!, %T!HH:mm!, %dR13002, %dR8501, %dR8505\r\n

If desired, constant text could be added or merged around the above data, although in this

example it was not needed. Additional records could be added to the log.ini file to

represent other formats to be logged. In this example only one is required thus it will be

referenced as the first record in the log.ini file.

The sequence of events to write a record to a log file with the name Log001.log would

be:

1. Set the Log Execution Register (12325) to a 1, which will set the Log String

Result Register to a -1: 12325 = 1

2. Write a 1, for the first record of the log.ini format file, to the Log String

Transfer Register (12326) to actually do the write operation: 12326 = 1

3. Monitor Log String Result Register (12327) for a change from -1 to another value,

0 signifying success. Note that if background threads (Advanced Scripting,

chapter 18) are not used the result and write operation occurs immediately upon

writing to the Log String Transfer Register and control is returned to the task only

after the write is totally complete. This means status is immediately complete and

valid:

0 – Success

&

43 – Could not open the file, either log.ini is missing or

Log###.ini created an error.

44 – No such record in the log.ini file

53 – Write error, check available disk space

4. Loop Back to step 2 to write the next record if the file name desired has not

changed.

An example of three records of data would be:

07/06/2010, 13:41, 234567, 800, 1200

07/06/2010, 13:52, 246000, 801, 1198

07/06/2010, 13:58, 250007, 808, 1190

SNAPSHOT

Snapshot capability is available which renames a file while it is actively being appended

to, allowing for real time uploads. For example, if Log001.log is being created, and

records appended, a single write to the Snapshot Execution Register (12329) renames

Log001.log to Snap001.log. The host may then upload Snap001.log, which

contains all of the logged data to that instant, while in the background records are still

being written to a new Log001.log file. This allows for automatic synchronization of

recorded data.

The Snapshot Result Register (12330) reflects the results of the operation:

SUCCESS = 0

ERROR_IOACCESS = 53 (log file does not exist or there is an existing Snap file

of the desired name)

Log File Deletion

Both Log and Snap files may be deleted by writing the file number to a special deletion

register:

LOG_DELETION_REGISTER - 12328

SNAP_DELETION_REGISTER - 12331

Upon deletion the respective status register will contain either a ‘0’ for success, or a 53

(ERROR_IOACCESS, no file existed).

LOG_STRING_RESULT_REGISTER (12327)

SNAP_RESULT_REGISTER (12330)

Log Disk Maintenance

The FLASHDISK_SELECTION_REGISTER (register 12314) is used to select the active

disk volume whose remaining space is to appear in the

FLASHDISK_SPACEAVAIL_REGISTER (12315). By default it is 0, reflecting the root

&

volume. As each volume is mounted it becomes a new volume and is assigned a number,

incrementally. To determine a volume number, simply view a directory at the root level.

The second column is the volume number; you will see a 0 in the _system row and a 1

in the mounted ramdisk row. Reading register 12315 will retrieve the actual bytes

remaining.

Directory of the root drive gives the free space on that drive:

Changing to the ramdisk drive shows the free space on that drive:

Below, using CTCMON, it is shown that volume 1 is being read, which is represented by

the value of ‘1’ in register 12314. Note the value in register 12315, which refers to the

size in bytes available in the NVRAM disk labeled ‘RAMDISK’. It is the same as what

was displayed in the Telnet session, above.

&

&

Blank

&

The Model 5300 Controller supports simultaneous FTP Server and/or

Client sessions. FTP provides a standard means to transfer files to/from

the controller from a host computer. When using the built-in FTP

Server, the remote computer is the master, initiating file transfers. This

section details the use of the 5300 FTP Client mode, where the

controller is capable of initiating its own file transfers to a remote host

FTP Server. Simple files may be uploaded/downloaded, as well as firmware updates and

new Quickstep application programs. Additional information with regards to the FTP

Server capability may be found in Document No. 951-520001: Model 5200 Remote

Administration Guide.

When using FTP Client commands within a script it must be executed as a

background threaded operation. Background execution of a script would occur by

adding 1000 to the base file script number. For example, a 1001 written to the ‘Script

Execution Register’ (12311) results in Script001.ini executing as a background

thread. Ftp Client operations should only be run from a command line within telnet or as

a background thread, not as part of a Quickstep task (file numbers, 001 – 999).

Setup

An FTP Server may reside on virtually any host or workstation computing environment.

Software is available for Windows 2000, XP Pro, 2003 Server, and Unix/Linux

environments. Unix/Linux, Windows 2000/2003 Servers, and XP Professional contain

the service as part of the installation CD. Windows 2000 must use a third party package

such as can be found at the following web links:

http://www.bpftppro.com (reference Appendix A)

http://www.serv-u.com/

http://www.candc1.com/ftpservu/index.cfm

http://www.abraxis.com/ipswitch/wsftp-server.htm

Specifications of what to use, and how to configure the environment, is beyond the scope

of this document. A very good reference for installing the resident FTP Server, and its

http://www.bpftppro.com/
http://www.serv-u.com/
http://www.candc1.com/ftpservu/index.cfm
http://www.abraxis.com/ipswitch/wsftp-server.htm

&

use, on a Windows XP Professional computer is available online from PCSTATS. The

title of their article is called: “Beginner’s Guides: Setting up a FTP Server in WinXP”.

It is strongly suggest that you read this article if you are not familiar with FTP Servers.

The web link is:

http://www.pcstats.com/articleview.cfm?articleID=1491

The article provides not only step by step procedures but also a very good background on

ftp itself, as well as security considerations.

A quick summary of the installation steps involved are as follows:

1. While logged in with administrative rights open a Control Panel Window.

http://www.pcstats.com/articleview.cfm?articleID=1491

&

2. Double-click Add or Remove Programs.

3. At the left side of the window click Add/Remove Windows Components.

&

4. The Ftp Server option is listed under the IIS component. Select it then the Details

button.

5. Make sure the check boxes are as below and then click OK.

&

6. Click Next to proceed.

7. IIS components will begin to install.

&

8. The prompt below may appear, requiring the XP Professional install CD.

9. Insert the CD and set the directory as appropriate.

&

10. Click OK when the path is correct and installation will begin.

&

11. Once complete click Finish.

&

12. From Control Panel->Administrative Tools, select Computer Management and

expand the Internet Information Service folders until the Default FTP Site

appears. This verifies that ftp is installed.

&

13. Right click the Default FTP Site and select the Properties menu item to view the

current settings. Reference the PCSTATS web site, previously discussed, for

suggestions on how to adjust security, add user accounts for access, etc. Note that by

default only local computer user accounts with Administrative privileges may

access files.

If both upload and download are to be done, Write must be enabled under the Home
Directory tab:

&

14. Windows XP has additional firewall security built into the product. The FTP Server

must be specifically enabled to allow incoming connections and bypass the firewall.

From the Control Panel select the Windows Firewall icon:

15. Select the Firewall Exceptions Tab:

16. Select Add Port:

&

17. Fill out the dialog box as below and click OK:

18. The FTP Server Name should appear in the list of checked Programs and
Services:

&

19. Click OK at the bottom of the dialog to exit:

Commands

Once a server is available, the Model 5300 controller provides two means to access the

external server via its FTP client capabilities. The first is via the command line using

Telnet, the second by the use of advanced scripting detailed in Chapter 18: Advanced

Scripting. The following demonstrates the FTP commands when using Telnet to interact

with a Windows 2003 Server:

 Ftpconnect <ip address> <User Name> <Password>

Provides initial connection to the remote host computer running the FTP Server.

 Ftpquit

Closes an FTP session after a successful Ftpconnect.

&

The following commands require the FTP connection to be active:

 Ftpls <optional path>

Get the current directory, short format.

 Ftpdir <optional path>

Get the current directory, long format.

 Ftpsend <source path> <optional destination path/name>

Send a file to the remote host. Paths enclosed in quotes (" ") allow the embedding

of register contents using the log.ini format.

 Ftpappend <source path> <optional destination

path/name>

Send a file to the remote host, if it exists append to it else create a new file. Paths

enclosed in quotes (" ") allow the embedding of register contents using the

log.ini format.

 Ftpget <source path> <optional destination path/name>

Get a file from the remote host. Firmware may be re-flashed or new programs

loaded, bypassing flash storage by directing it to the root directory. Only one ftp

server or client session can do this at a time since reserved SDRAM storage space

is used as a temporary buffer. Example:

ftpget BF5300V05009068.elf /BF5300V05009068elf

Paths enclosed in quotes (" ") allow the embedding of register contents using the

log.ini format. Example:

&

ftpget hostfile.fil "/mydir/Script%03dR1.ini"

where the contents of R1 will be substituted into the filename.

 Ftpcd <path>

Change the current directory, on the host, to that specified. Paths enclosed in

quotes (" ") allow the embedding of register contents using the log.ini format.

 Ftpmkdir <directory name>

Makes a directory on the host computer in the current directory. Paths enclosed

in quotes (" ") allow the embedding of register contents using the log.ini

format.

 Ftprename <source path/file> <new name>

Renames the specified source file to the new name. Paths enclosed in quotes

(" ") allow the embedding of register contents using the log.ini format.

 Ftprmdir <directory name>

Removes the specified directory on the host computer. Paths enclosed in quotes

(" ") allow the embedding of register contents using the log.ini format.

 Ftpdelete <source path/file>

Deletes a file on the host computer. Paths enclosed in quotes (" ") allow the

embedding of register contents using the log.ini format.

Telnet Error Codes

When executing ftp commands from the telnet command line the returned message will

typically begin with SUCCESS: . At times, a failure will occur, causing an error

&

message to appear. The message will be displayed in the Telnet session on a new line

using the following format:

ERROR: <message> <code>

 Where <message> is a description of the failure and <code> is detailed below:

FTP_ERROR – 0xD0

Internal ftp error.

FTP_TIMEOUT – 0xD1

Timeout occurred.

FTP_FAILED – 0xD2

General ftp failure.

FTP_NOT_CONNECTED – 0xD3

Attempted to execute a command but was not connected to the host.

FTP_NOT_DISCONNECTED – 0xD4

Host closed session during command execution.

FTP_NOT_OPEN – 0xD5

FTP failure on opening a file for transfer.

FTP_NOT_CLOSED – 0xD6

Attempted to open a file when a previous was not closed

FTP_LOGIN – 0xD9

Attempt to log onto the host failed, security violation

FTP_NOT_FOUND – 0xDA

Request was not executed (typically 550 FTP return code). Typically returned when a

file/directory does not exist, or there is a security access violation blocking access.

FTP_RETURN_CODE – 0xDB

Unknown return code from host ftp server.

&

Document #951-520003: Model 5200 Script Language Guide details

the operation of scripting within the Model 5200/5300 controller. This

section discusses features beyond that of the Model 5200, such as

automated file transfers, data table & file operations, and background

threaded script execution. A thorough knowledge of scripts is assumed.

Some advanced features available within scripts are:

 Background Execution - Scripts may not only be run as part of a step, they may

also execute as separate background threads, in parallel to Quickstep execution.

Writing a 1 to 999 to the Script Execution Register (12311) causes a script to run,

within a Step, much like a Do statement. An advanced feature allows a

programmer to write a 1001 to 1020, executing Script001 to Script020 as a thread,

much like a future Begin Quickstep statement. These scripts fully execute as an

independent background thread.

 Continuous Execution - Scripts may execute continuously until either a fatal

error or an end command is executed, terminating the script.

 Script Nesting - Scripts may also invoke other Scripts (one call level supported).

 Branching & Conditionals - Scripts support branching, program labels, and if

conditionals.

 Error Tracking - Major file and communication instructions set a status error

code, private to each script, which may be referenced from an if conditional or

onerror command. The variable is referenced as ERRORCODE and allows for

advanced retry and monitor operations.

 Execution Time Control - The Alarm instruction allows the script to sleep until

a specific time, automatically waking at a defined time such as every Friday

afternoon at 3PM. Use theDelay instruction for pauses based on millisecond

values.

&

Data Table

load datatable [Variant regnum] [filename]

The load datatable script command can be used to load a variant array from a file.

This file is stored in the same format as the QS2.TAB file format except that floats have

a decimal point and strings are enclosed in quotes. A current QS2 file would be read in

as integers, given that that is a limitation of the QS2 data table. The enhanced table that

uses variants for storage is shown below:

data_table[4][6] =

{

 84 104 105 115 32 105

 115 32 114 111 119 32

 49 0 0 0 0 0

 0 0 0 0 6.789 "string"

}

Note that tabs or spaces may be used as a separator, as all whitespace characters < ‘0’ are

ignored except LF, which designates the end of a line/row. There is no restriction on the

line/row length except as required by each Variant cell (string 223 bytes). The first 2

lines are ignored and the actual table size is set by the data found in the file. A CR LF

combination should follow the last ‘}’ to denote the end of the file.

The last two cells show examples of a float, 6.789, and a string format “string”.

Remember the string may reference other registers using the %d, message.ini,

format, but an extra % is needed (i.e., %%d). The first % will be stripped when the string

is parsed.

In the above example, 84 would be loaded into array location [0][0], and “string” would

be loaded into [3][5].

The load/save datatable commands list the array size as [row][column] for

compatibility with QS2.

save datatable [Variant regnum] [filename]

The save datatable script command operates exactly the same as the load

datatable command except that the Variant register contents are written to a file.

Any unknown cells will contain a “?”. Two separate formats are available, QS2

compatibility mode and CSV (comma delimited, similar to a log file).

In QS2 compatibility mode, seven spaces will be placed between cell data and a .tab

file extension must be used. Upon writing any existing file will be first deleted. The use

of any other file extension will cause the CSV format to be used, where each cell is

separated by a command and a single space. End of line is the same as the QS2 format,

&

CR LF. There is no header information in CSV format thus the first array location will

be the first bytes of the file.

The load/save datatable commands list the array size as [row][column]

for compatibility with QS2.

Diagnostics

disktest 1 [file size] [block size] [/path/file]

This command is used to perform a test of the file system. A file of the size [file

size] will be written using blocks of size [block size] to the file [/path/file].

An incrementing byte pattern is written and verified. The complete write is done first,

file closed and then read back and verified. For example, to test a 1MB file with a block

size of 512 bytes:

Example: disktest 1 1000000 512 /SDISK/test1.bin

disktest 2 [file size] [block size] [/path/file]

This command is used to perform a test of the file system. A file of the size [file

size] will be written using blocks of size [block size] to the file [/path/file].

An incrementing byte pattern is written and verified. The complete write is done first,

file closed and then read back and verified. For example, to test a 1MB file with a block

size of 512 bytes:

Example: disktest 2 1000000 512 /SDISK/test1.bin

Quickstep

enable quickstep2

This command enables QS2 operation at the next reboot, assuming a 1 is written to

register 20096. Quickstep may be enabled and disabled from normal operation in order

to conserve CPU cycles.

System default is enabled.

disable quickstep2

This command disables QS2 operation at the next reboot, assuming a 1 is written to

register 20096. Quickstep may be enabled and disabled from normal operation in order

to conserve CPU cycles.

&

File System

set close nvariant [Variant #]"

Non-Volatile array variants are stored in files that may be transferred among controllers,

deleted, copied, etc. The contents of the non-volatile variant are independent of the

actual register number. The file name determines its assignment. Hence _nv36702

will be used for register 36702.

If that file was copied to file _nv36703, then the data has now been duplicated and

register 36702 and 36703 now have the same data. When replacing a file it is important

to close it first. Not closing it means it cannot be deleted. You may copy a non-closed

file but make sure no task is writing to it or the data may be changing in the background.

Closing a file is also important if you are replacing non-volatile variants data, since upon

access if the file is closed it will re-attempt to open it and in this instance find the new

file. Open files cannot be replaced or deleted.

Example: set close nvariant 36702

This would close the file _nv36702 should it be open using the default path of

/SDISK/_nvar.

To close all open non-volatile specify a -1 as the [Variant #]. Should an error occur

the ERROR_OO_RANGE flag is set.

set logpath [path]

Sets an alternate log file storage path. Power up default is /_system/Messages.

&

Example: set logpath /SDISK/myLogDir

set scriptspath [path]

Sets an alternate script file storage path. Power up default is /_system/Scripts.

Example: set scriptspath /SDISK/myScriptsDir

set nvariantpath [path]

Sets an alternate nvariant file storage path. Power up default is /SDISK/_nvar which

will automatically be created at power up if it does not exist (one level only in directory

tree).

Example: set nvariantpath /SDISK/mynvariants

set emailspath [path]

Sets an alternate email file storage path. Power up default is /_system/Emails.

Example: set emailspath /SDISK/myEmailsDir

set webpath [path]

Sets an alternate web file storage path. Power up default is /_system/Web.

Example: set webpath /SDISK/myWebDir

set firmwarepath [path]

Sets an alternate firmware file storage path. Power up default is

/_system/Firmware.

Example: set firmwarepath /SDISK/myFirmwareDir

set programspath [path]

Sets an alternate program file storage path. Power up default is

/_system/Programs.

Example: set programspath /SDISK/myProgramsDir

set datatablespath [path]

Sets an alternate data tables file storage path. Power up default is

/_system/Datatables.

Example: set datatablespath /SDISK/myDatatablesDir

&

copy [source path/file] [destination path/file]

This command is used to copy a file from one location to a new location, creating a new

file and overwriting any existing.

Example: copy /SDISK/_nvar/_nv36702 /SDISK/_nvar/_nv36750

A new non-volatile Variant, 36750 now exists with the same contents of register 36702.

SCRIPT_ERRMASK_FILE error bit is set if an error occurs.

Monitor

mon tfs init

Initialize and clear the controller monitor file system.

mon tfs rm

Remove a file from the controller monitor file system.

mon tfs ls

List all the files within the controller monitor file system, typically just one, which is the

application program to execute.

mon reboot

Exit the controller application and reboot into the monitor, re-loading the entire controller

program once again. Basically a full reset where VBIAS will be shut off and execution

of application programs immediately terminated without notification.

Miscellaneous

get vproperties [Variant #]

Since there are currently no utilities to view variant information, such as how big it is,

array size, floating point precision, etc, this command will display that information:

Example: get vproperties 36702

SUCCESS: Nonvolatile Variant 36702, Size: rows - 50 / columns -

200, precision: 6.

printf [format string…]

The printf command allows for a string format to be tested prior to inclusion in a

variant cell or message.ini file. The string will be parsed exactly as it would when

used in these applications. This command is typically used for testing only as it has no

effect other than visual final string presentation.

&

Example: printf "The contents of register 100 = %dR100"

The " " are required.

clear startup project

This command will clear the current default project that is invoked at reset or power up,

thus none will be executed upon power up.

get project

This command will display the currently active project that is running.

get project info [project file]

This command is used to determine the contents of a QuickBuilder project file.

get startup project

This command will display the project set to run at power up or reset.

run project [opt. project file]

This command is used to load and run a QuickBuilder project file. The controller is

restarted. If no project is specified the last saved project will be run.

set startup project [opt. project file]

This command is used to save a specific project file name/location upon which to run at

power up and reset, as the default. If none is specified then the last executed path/name

will be saved.

Advanced Commands

Inc <Register>

Increment the contents of the reference register by 1. Typically used in counter

operations such as retrying communications.

 Example: inc 200

If the contents of register 200 was 99, it would become 100 after execution.

Dec <Register>

Decrement the contents of the reference register by 1. Typically used in counter

operations such as retrying communications.

 Example: dec 200

&

If the contents of register 200 was 99, it would become 98 after execution.

If <Resource> <Logic> <Resource> goto <Label>

<Resource> - Register reference (R####), decimal or hex constant (0x00000000), or

ERRORCODE.

<Logic> - >, >=, <, <=, !=, ==, and & resulting in a Boolean result of true or false.

<Label> - Single line within script file containing a preceding colon ‘:’ followed by a

unique character string. Example – :myLabel

Example: if R200 >= 55 goto tooBig

 if ERRORCODE & 0x00200000 goto fileFailure

:<Label>

A label consists of a single, independent line, within a script text file, to which a name is

assigned, typically as a destination for a branch operation (if or goto).

Example: :myLabel

Onerror <optional error mask> goto <Label>

Set where to automatically branch should an error occur. Execution of ‘Onerror’ with no

terms clears the branching option. Only file and communication instructions, along with

syntax errors specifically set error flags. The ‘optional error mask’ allows you to activate

individual errors. Upon return from and instruction a global ERRORCODE variable has

its individual flags set should a problem occur, else ERRORCODE = 0.

 Example: onerror (clears any error branching)

onerror goto myLabel (if any error

occurs branch to myLabel)

onerror 0x00200000 goto myLabel (branch if

file error)

Goto <Label>

Immediately branch to the desired <Label>.

End

Exit the Script.

Delay <Register or constant – milliseconds>

Delay the designated number of milliseconds. Milliseconds may either be a decimal

constant, hexadecimal notation (0x00000000), or reference the contents of a register

(R200 for register 200).

&

Example: delay 2000 (delay 2 seconds or 2000

milliseconds)

 delay R1 (delay by the number of

milliseconds in register 1)

Alarm <TIME=HH:MM:SS> <optional day of week, DOW=Mon…>

Pause execution until the designated time occurs. A ‘TIME’ and optional day of week,

DOW, from 0 (Monday) to 6 (Sunday) is listed. Each parameter may be contained within

a register. For example the hour and/or minute could reference register 15 while the

minute is a constant: R15:00. When referencing a specific day of the week, enter the

following: Mon, Tue, Wed, Thu, Fri, Sat, or Sun, for the desired day, or a number from 0

to 6. Seconds may also be included, yielding a format of <HH:MM:SS>.

 Example: alarm TIME=23:00 DOW=Mon (sleep until 11PM on Monday)

 alarm TIME=23:00 (sleep until 11PM)

 alarm TIME=R1:00 (sleep until hour contents in register 1)

 alarm TIME=23:00:05 DOW=0 (where 0 = Monday)

 alarm TIME=23:00:05 DOW=R10 (where contents R10 = 0 - 6)

ERRORCODE

ERRORCODE is a universal variable, private to each script. Upon execution of script

commands status bits are set should problems occur. if conditional and onerror

commands can branch accordingly.

SCRIPT_ERRMASK_FATAL - 0x00800000

Fatal error, such as a memory allocation failure. Currently this can only be returned by

an ftpconnect command.

SCRIPT_ERRMASK_SYNTAX - 0x00400000

Syntax error, bad parameter passed as part of a command.

SCRIPT_ERRMASK_FILE - 0x00200000

General File failure. For example, rename of file or creation of a new directory

(mkdir) failed. Affected commands are:

 mkdir

 rename

 cd

 rmdir

 format flash

 delete

 load symbols

 get symbols

&

 mount

 umount

SCRIPT_ERRMASK_FTP_CONNECT - 0x00100000

Returned if an ftpconnect attempt fails or there is an attempt to use a command that

requires a previous connection and it does not exist.

SCRIPT_ERRMASK_FTP_LOSTCONNECT - 0x00080000

Lost connection while attempting an FTP command. Affected commands are:

 Ftpls

 Ftpdir

 Ftpmkdir

 Ftprmdir

 Ftpcd

 Ftpget

 Ftpsend

 Ftpappend

 Ftpdelete

SCRIPT_ERRMASK_FTP_COMMAND - 0x00040000

Unknown FTP response code returned. Affected commands are:

 Ftpls

 Ftpdir

 Ftpmkdir

 Ftprmdir

 Ftpcd

 Ftpget

 Ftpsend

 Ftpappend

 Ftpdelete

SCRIPT_ERRMASK_FTP_NOTFOUND - 0x00020000

Operation failed, file or directory does not exist on host. Affected commands are:

 Ftpls

 Ftpdir

 Ftpmkdir

 Ftprmdir

 Ftpcd

 Ftpget

 Ftpsend

 Ftpappend

 Ftpdelete

&

SCRIPT_ERRMASK_FTP_SECURITY - 0x00010000

User name or Password failed. This only applies to ftpconnect.

Script Example

The following sample script, Script001, shows how to connect to an ftp server, send a file

called Log001.log and download a file called anyfile.log on the host to a file

called newfile.log on the controller. A maximum of 3 retries, with a 5 second

interval will be attempted before aborting. Register 2 is used as an arbitrary status

register, which can be monitored by Quickstep, and should be set to 0 prior to invoking

the script. Its status is as follows:

1 = Complete and successful

-1 = Busy running script

-2 = General failure

-3 = File did not exist on the Controller

-4 = File did not exist on the Host

The execution of the following script would occur by writing a 1001 to the Script

Execution Register (12311). Adding a 1000 to the script file number causes it to

execute as a background thread. Ftp Client operations should only be run from a

command line within telnet or as a background thread, not as part of a Quickstep

task (001 – 999).

Script001.ini:

This script tests the automated transfer of data from

the controller to a remote ftp server.

Register 1 is used as a retry counter

Register 2 is used to notify Quickstep program of completion

status

Writing to the Script Execution Register (12311) will cause

execution to occur. Script file name is currently

Script001.ini

thus writing 1001 will cause this file to run as a thread in

the

background, writing a 1 will cause it to run within a Quickstep

step.

Threaded execution (background) is the preferred method

:start

Clear the retry counter

 1 = 0

Clear our completion flag register

 2 = -1

 goto firstTime

:retry

Delay for 5 seconds and then try again

&

 delay 5000

Bump the retry counter and see if done with retries...

 inc R1

 if R1 > 3 goto abort

:firstTime

First set up where to branch if an error should occur

 onerror goto errorOccurred

Lets connect to the remote host

 ftpconnect 12.40.53.94 support ControlTech

Now lets upload a file and then download a file

If an error occurs we will exit automatically due to the

'onerror' command

SEND to host from controller

 ftpsend /_system/Messages/data/Log001.log

RECEIVE from host and store to controller under different name

 ftpget anyfile.log /_system/Messages/data/newfile.log

All done so close host session gracefully

 ftpquit

Set completion flag to 0 indicating we are done and successful

 2 = 1

If we get here we are all done

 end

Process error if should occur

:errorOccurred

Lets see what type of error occurred

First check to see if initial connection failed

 if ERRORCODE & 0x00100000 goto retry

Next see if we failed during a transfer

 if ERRORCODE & 0x00080000 goto retry

Next see if we failed because the file did not exist on the

controller

 if ERRORCODE & 0x00200000 goto nofileController

Next see if we failed because the file did not exist on the

host

 if ERRORCODE & 0x00020000 goto nofileHost

Was a fatal failure so give up

:abort

 2 = -2

 end

File did not exist on the controller

:nofileController

 2 = -3

 end

File did not exist on the host

:nofileHost

 2 = -4

 end

&

This section discusses the CTNet Binary Protocol, at the packet level, as

is supported by the controller. The CTNet binary protocol is a high-

speed protocol that has checksum and error reporting capabilities. It is

used in cases where data integrity, response time, and processing time

are the major criteria. Data transmission is fast for the following

reasons:

o Both the commands and data are represented in binary form instead of ASCII.

o The information density is higher and fewer characters are transmitted during

large data transfers.

o The controller can use the data “as is” and does not have to perform binary to

ASCII conversion.

Consequently, use of CTNet results in very short execution times. Note that CTNet used

to be non-routable (2700 with 2217 Ethernet controllers). Non-routable protocols do not

contain a networking layer (IP stack), so they cannot cross a router and are limited to

local subnets or intranets.

Non-routable CTNet uses a node number in place of an IP address. This node number is

defined by writing to Register 20000. You can also determine the node number by

reading the value in Register 20000. Set this value within the _startup.ini file by

defining the CTNET_DEVICENODE parameter.

Provisions have been made to extend the CTNet protocol by encapsulating it in a

UDP/TCP packet. In this case the IP address becomes the destination and Register 20000

is ignored. Port 3000 is for UDP and port 6000 is for TCP connections. UDP/TCP is

fully routable. Refer to the last section of this chapter for how to encapsulate. In short

the discussion that follows fully applies to the encapsulated packet. Serial port

communications are also supported for all CTNet packets; again, Register 20000 does not

apply in that case either since only point to point communications are supported.

&

A maximum of 32 simultaneous TCP Binary protocol connections are allowed at

one time. Idle connections will timeout in about 1 minute.

Binary Protocol

The CTC Binary Protocol may be used to communicate with the Model 5300 controller

via serial ports or a network connection. Regardless of the mode used, the basic message

layer is the same. On a network the serial port data is simply encapsulated as required.

Most users will not require this section and should only refer to the DLL available for use

under Windows 2000/XP. This DLL is discussed in detail within Document No.

MAN1080A: CTC 32-bit Communications Functions Reference Guide, available at

www.ctc-control.com for download. The CTC Binary Protocol is somewhat more

difficult to use than something like the ASCII Protocol, but it can significantly reduce the

time required to transfer large blocks of data between a computer and controller and is

useful in more demanding applications. The protocol is more efficient, because:

 Both the commands and data are represented in binary form instead of ASCII.

The information density is higher and, for large data transfers, fewer characters

need to be transmitted.

 The controller does not have to convert the data from ASCII to binary before

using it. This results in shorter execution times. Since the computer does not have

to convert the data to ASCII, there also may be a significant time savings in the

execution of the computer program (the time savings varies between different

computer languages).

Protocol Framing

To select the CTC Binary Protocol, the first character of the command must be a binary 1

(Ø1H). The controller interprets the rest of the command according to the binary

protocol. Use of an ASCII character, on the serial port, will result in the ASCII Protocol

being used.

The protocol uses the following format to send messages to and from the controller:

<(Ø1H)> Specifies CTC binary protocol.

<length (1 byte)> Specifies packet length to follow. Packet length is defined as n

data bytes + 2 (checksum and 0xff).

<data (n bytes)> Consists of function (command) code(s) plus relevant data. For

function code and data descriptions, see the section on Binary Protocol

Commands.

<checksum> Consists of the complement of the modulo-256 sum of data bytes.

This value, when added to the modulo-256 sum of the data packet bytes, equals

ØFFH. You can calculate the checksum by adding the data packet bytes and

complementing the resulting sum.

http://www.ctc-control.com/

&

//

// Generate a checksum for a packet

// Parameters: p - pointer to start of data section

//len - length of data only section (not length, checksum

or

//0xff)

// Returns: <checksum>

unsigned char Packet_Check(unsigned char * p, int len)

{

 unsigned int c = 0;

 int i;

 for(i=0; i<len; i++)

 c = (c + *(p + i)) & 255;

 return((char)~c);

}

<FFH> Required by binary protocol; last byte of packet must be ØFFH. When

the controller receives a binary packet, it counts out the number of bytes specified

by the packet length. If the last byte is not ØFFH, it returns an error message.

All communications are in Little Endian format.

Return communications from the controller to the computer use the same general format,

with one exception. The controller does not transmit a leading (Ø1H) byte, since the

original message was transmitted using the CTC binary protocol. If the command sent to

the controller does not require data from the controller in the return message, the

controller sends an acknowledge message like the one shown below:

<03H)> Specifies packet length to follow. Packet length is defined as n data bytes

+ 2.

<(64H)> Contains the acknowledge code; equal to decimal 100.

<9BH> Is the value of the checksum of the acknowledge code.

<FFH> Required by binary protocol; last byte of packet must be ØFFH.

When the packet sent to the controller is not correct, it transmits a not acknowledged

code. This may happen when the checksum does not calculate correctly or when the last

byte of the packet is not ØFFH. A message containing a not acknowledged code is

similar to the one shown below:

<03H)> Specifies packet length to follow. Packet length is defined as n data bytes

+ 2.

<(65H)> Contains the not acknowledged code; equal to decimal 101.

<9AH> Is the value of the checksum of the not acknowledged code.

<FFH> Required by binary protocol; last byte of packet must be ØFFH.

When the format of the message is correct, but the controller cannot execute the

command, it sends other error codes. For error code descriptions, see the section on

&

Binary Protocol Commands. The following example shows how to create a command in

correct format for the CTC binary protocol. It sets flag 4 in the controller.

1. Send the following command:

Ø1H,Ø5H,13H,Ø3H,FFH,EAH,FFH

Where:

Ø1H Is the first byte and identifies the packet as using the CTC binary protocol.

Ø5H Is the second byte and represents the length of the packet.

13H Is the third byte and contains the function code for a change flag command.

Ø3H Is the fourth byte and specifies flag 4. Flags 1 through 32 are represented as

ØØH through 1FH, and Ø3H specifies flag 4.

FFH Is the fifth byte and specifies the new state of the flag. FFH represents SET

and ØØH represents CLEAR.

EAH Is the sixth byte and contains the checksum value.

ØFFH Is the seventh and last byte of the packet and signals the end of the

message.

2. To acknowledge the message, the controller sends the following response:

Ø3H,64H,9BH,FFH

Where:

Ø3H Is the first byte and specifies the packet length

64H Is the second byte and contains the acknowledge code (decimal 100)

9BH Is the third byte and contains the checksum value of third byte

FFH Is the fourth and last byte and signals the end of the message.

Binary Protocol Error Responses

When the controller cannot execute the data transmission from the computer, the

controller responds with an error code indicating the nature of the fault. The error code is

transmitted using the following format:

Ø3H Packet length.

Error code Error code, see list below.

Checksum The checksum is the complement of the previous byte.

FFH Last byte in packet; signals the end of the message.

Possible error codes are:

64H No error (acknowledgment of transmission

65H Checksum error, or end of packet <> FFH

66H Illegal register number specified

65H Value out of range, for example, input number not present in controller

Binary Protocol Commands

Each CTC binary protocol command has specific format. This section lists the commands

and describes their format. The command descriptions also list the following information:

&

 The type of command

 Format of command sent to the controller

 Format of the controller’s response

Not all Control Technology controllers support all of these commands. Contact Control

Tech customer support if you have any questions about which of these commands you

can use, or if you have any difficulty implementing a command. The following table lists

the commands and the controllers which support the command.

&

Binary Protocol Commands
(controller response is command + 1)

9 Read a register

11 Change a register

17 Read a Flag

19 Change a Flag

75 Read a bank of 50 registers

77 Read a bank of 16 registers

87 Request random registers from list (CTServer)

91 Get properties

93 Read a variant

95 Change a variant

109 Read a variant array block (consecutive)

111 Write a variant array block (consecutive)

113 Read a block of variants, randomly

15 Read a bank of 8 inputs

21 Read a bank of 8 outputs

25 Selectively modify first 128 outputs

29 Read an analog input

31 Read an analog output

33 Change an analog output

71 Get 32 analog inputs

73 Get 32 analog outputs

79 Read a bank of 128 inputs

85 Change multiple analog outputs

91 Read a bank of 128 outputs

23 Read a servo position

27 Read a servo’s dedicated inputs

47 Read a servo error

49 Read a data table’s dimensions

51 Change a data table’s dimensions

53 Read a data table value

55 Change a data table value

57 Read a row of data table values

59 Change a row of data table values

13 List counts of inputs, outputs, stepping and servo

motors

&

35 Read controller step

61 Read controller status

63 Change controller status

65 Read system configuration

67 Change system configuration

69 List counts of miscellaneous I/O

105 Shutdown system

107 Get Controller Task Status

The following commands allow you to read and write values to registers and flags. You

can read and write values for registers 1 through 65535. Some of the registers in this

range are special function registers and you may not be able to read or write to them.

Other registers do not exist on certain models and revision levels. Consult Document No.

951-530006: Model 5300 Quick Reference Register Guide for register specifics.

Variant Packets

A number of commands are available to interface with variant storage within the Model

5300. When communicating with the controller a packed data structure is used. Two

separate structures are used, that for individual read/writes, VARIANT_STORAGE, or

for block access VARIANT_STORAGE_BLOCK (VARIANT_STORAGE_BLOCK_SERIAL if

serial port). When using block transfers the total size (number of elements) is dependent

upon whether Ethernet or serial communications is being used. Ethernet allows for a

larger packet and when using UDP and TCP the packet itself provides a CRC. Thus the

checksum field is not really needed and not used on the larger block transfers.

When using variants the packet structure is identical except that the data portion is the

packed variant structure:

<(Ø1H)> Specifies CTC binary protocol.

<length (1 byte)> Specifies packet length to follow. Packet length is defined as n

data bytes + 2 (checksum and 0xff). Checksum is not used on packet type

109/110, 111/112, and 113/114 when using Ethernet communications (length set

to 5 on request, response length is 3), it is used on serial since a reduced packet

size is used.

<Command/Response Code>

<LSB Register #> Register of interest low byte unless random read, in which

case ignored.

<MSB Register #> Register of interest high byte unless random read, in which

case ignored.

<packed variant structure> Valid structures:

VARIANT_STORAGE

VARIANT_STORAGE_BLOCK

VARIANT_STORAGE_BLOCK_SERIAL.

&

<checksum> Consists of the complement of the modulo-256 sum of data bytes.

This value, when added to the modulo-256 sum of the data packet bytes, equals

ØFFH. You can calculate the checksum by adding the data packet bytes and

complementing the resulting sum.

Register and Flag Access Command/Response definitions

// GET is request, GOT is controller response

// binary protocol message types

#define MSG_LOAD_PROGRAM_PACKET ((BYTE) 0)

#define MSG_ENTER_PROGRAM_MODE ((BYTE) 1)

#define MSG_LEAVE_PROGRAM_MODE ((BYTE) 2)

#define MSG_UNLOAD_PROGRAM_PACKET ((BYTE) 3)

#define MSG_PROGRAM_PACKET ((BYTE) 4)

#define MSG_GET_ID_CODES ((BYTE) 5)

#define MSG_GOT_ID_CODES ((BYTE) 6)

#define MSG_OLD_GET_STATUS ((BYTE) 7)

#define MSG_OLD_GOT_STATUS ((BYTE) 8)

#define MSG_GET_REGISTER ((BYTE) 9)

#define MSG_GOT_REGISTER ((BYTE) 10)

#define MSG_SET_REGISTER ((BYTE) 11)

#define MSG_12 ((BYTE) 12)

#define MSG_GET_IO_COUNTS ((BYTE) 13)

#define MSG_GOT_IO_COUNTS ((BYTE) 14)

#define MSG_GET_INPUTS ((BYTE) 15)

#define MSG_GOT_INPUTS ((BYTE) 16)

#define MSG_GET_FLAG ((BYTE) 17)

#define MSG_GOT_FLAG ((BYTE) 18)

#define MSG_SET_FLAG ((BYTE) 19)

#define MSG_20 ((BYTE) 20)

#define MSG_GET_OUTPUTS ((BYTE) 21)

#define MSG_GOT_OUTPUTS ((BYTE) 22)

#define MSG_GET_SERVO_POSITION ((BYTE) 23)

#define MSG_GOT_SERVO_POSITION ((BYTE) 24)

#define MSG_SET_OUTPUTS ((BYTE) 25)

#define MSG_26 ((BYTE) 26)

#define MSG_GET_SERVO_INPUT ((BYTE) 27)

#define MSG_GOT_SERVO_INPUT ((BYTE) 28)

#define MSG_GET_ANALOG_INPUT ((BYTE) 29)

#define MSG_GOT_ANALOG_INPUT ((BYTE) 30)

#define MSG_GET_ANALOG_OUTPUT ((BYTE) 31)

#define MSG_GOT_ANALOG_OUTPUT ((BYTE) 32)

#define MSG_SET_ANALOG_OUTPUT ((BYTE) 33)

#define MSG_34 ((BYTE) 34)

#define MSG_GET_STATUS ((BYTE) 35)

&

#define MSG_GOT_STATUS_1of4 ((BYTE) 36)

#define MSG_GOT_STATUS_2of4 ((BYTE) 37)

#define MSG_GOT_STATUS_3of4 ((BYTE) 38)

#define MSG_GOT_STATUS_4of4 ((BYTE) 39)

#define MSG_SET_EA_OUTPUT ((BYTE) 40)

#define MSG_LOAD_EA_PROGRAM_PACKET ((BYTE) 41)

#define MSG_42 ((BYTE) 42)

#define MSG_UNLOAD_EA_PROGRAM_PACKET ((BYTE) 43)

#define MSG_EA_PROGRAM_PACKET ((BYTE) 44)

#define MSG_DUMP_USER_MEMORY ((BYTE) 45)

#define MSG_USER_MEMORY ((BYTE) 46)

#define MSG_GET_SERVO_ERROR ((BYTE) 47)

#define MSG_GOT_SERVO_ERROR ((BYTE) 48)

#define MSG_GET_DATA_TABLE_SIZE ((BYTE) 49)

#define MSG_GOT_DATA_TABLE_SIZE ((BYTE) 50)

#define MSG_SET_DATA_TABLE_SIZE ((BYTE) 51)

#define MSG_52 ((BYTE) 52)

#define MSG_GET_DATA_TABLE_ELEMENT ((BYTE) 53)

#define MSG_GOT_DATA_TABLE_ELEMENT ((BYTE) 54)

#define MSG_SET_DATA_TABLE_ELEMENT ((BYTE) 55)

#define MSG_56 ((BYTE) 56)

#define MSG_GET_DATA_TABLE_ROW ((BYTE) 57)

#define MSG_GOT_DATA_TABLE_ROW ((BYTE) 58)

#define MSG_SET_DATA_TABLE_ROW ((BYTE) 59)

#define MSG_60 ((BYTE) 60)

#define MSG_GET_CONTROLLER_STATE ((BYTE) 61)

#define MSG_GOT_CONTROLLER_STATE ((BYTE) 62)

#define MSG_SET_CONTROLLER_STATE ((BYTE) 63)

#define MSG_64 ((BYTE) 64)

#define MSG_GET_SYSCONFIG_BYTE ((BYTE) 65)

#define MSG_GOT_SYSCONFIG_BYTE ((BYTE) 66)

#define MSG_SET_SYSCONFIG_BYTE ((BYTE) 67)

#define MSG_68 ((BYTE) 68)

#define MSG_GET_OTHER_IO_COUNTS ((BYTE) 69)

#define MSG_GOT_OTHER_IO_COUNTS ((BYTE) 70)

#define MSG_GET_32_ANALOG_INS ((BYTE) 71)

#define MSG_GOT_32_ANALOG_INS ((BYTE) 72)

#define MSG_GET_32_ANALOG_OUTS ((BYTE) 73)

#define MSG_GOT_32_ANALOG_OUTS ((BYTE) 74)

#define MSG_GET_50_REGISTERS ((BYTE) 75)

#define MSG_GOT_50_REGISTERS ((BYTE) 76)

#define MSG_GET_16_REGISTERS ((BYTE) 77)

#define MSG_GOT_16_REGISTERS ((BYTE) 78)

#define MSG_GET_128_INPUTS ((BYTE) 79)

#define MSG_GOT_128_INPUTS ((BYTE) 80)

&

#define MSG_GET_128_OUTPUTS ((BYTE) 81)

#define MSG_GOT_128_OUTPUTS ((BYTE) 82)

#define MSG_SET_64_ANALOG_OUTS ((BYTE) 85)

#define MSG_GET_N_REGISTERS ((BYTE) 87)

#define MSG_GOT_N_REGISTERS ((BYTE) 88)

// special message for 2217 v3.8 data structure

#define MSG_GET_2217_DATA ((BYTE) 83)

#define MSG_GOT_2217_DATA ((BYTE) 84)

// Variant data types

#define MSG_GET_VREGISTERROW ((BYTE) 89)

#define MSG_GOT_VREGISTERROW ((BYTE) 90)

#define MSG_GET_VPROPERTIES ((BYTE) 91)

#define MSG_GOT_VPROPERTIES ((BYTE) 92)

#define MSG_GET_VREGISTER ((BYTE) 93)

#define MSG_GOT_VREGISTER ((BYTE) 94)

#define MSG_SET_VREGISTER ((BYTE) 95)

#define MSG_GET_RUNCOMMAND ((BYTE) 97)

#define MSG_GOT_RUNCOMMAND ((BYTE) 98)

#define MSG_GET_VREGISTER_BLOCK ((BYTE) 109)

#define MSG_GOT_VREGISTER_BLOCK ((BYTE) 110)

#define MSG_SET_VREGISTER_BLOCK ((BYTE) 111)

#define MSG_GET_VREGISTER_RANDOM_BLOCK ((BYTE) 113)

#define MSG_GOT_VREGISTER_RANDOM_BLOCK ((BYTE) 114)

// devicenet and/or distributed io messages

#define MSG_UNLOAD_REMOTE_DATA ((BYTE) 101)

#define MSG_REMOTE_DATA_PACKET ((BYTE) 102)

#define MSG_LOAD_REMOTE_DATA ((BYTE) 103)

#define MSG_104 ((BYTE) 104)

#define MSG_GET_REMOTE_IO ((BYTE) 105)

#define MSG_GOT_REMOTE_IO ((BYTE) 106)

Variant Structures

The distribution file Ctccom32v2.h is available from the Downloads page on Control

Technology's web site and contains the definitions for the structures used with the CTC

communications DLL. The DLL conforms to the packet structure discussed within this

document. In summary below are the definitions. Note the structures are packed, aligned

on a byte boundary:

&

#define BIT0 0x0001

#define BIT1 0x0002

#define BIT2 0x0004

#define BIT3 0x0008

#define BIT4 0x0010

#define VARIANT_MAX_STRING 223

#define VARIANT_INTEGER BIT0

#define VARIANT_UINTEGER BIT1

#define VARIANT_STRING BIT2

#define VARIANT_FLOAT BIT3

#define VARIANT_DOUBLE BIT4

typedef struct

{

 int numAccess; // number of items to access

 int rowInc; // row increment, if 0 just read columns based upon colInc.

 int colInc; // col increment, if 0 just increment rows.

 int arraysizeCols; // Used on write operation, -1 do not expand existing

 // columns, else columns desired. Rows will automatically

 // grow as needed

} BLOCKACCESS;

typedef struct

{

 int type; // type of storage being used or requested

 // If -1 on read then return current, else set to type want.

 // On write must set to type that is stored within this structure

 unsigned char precision; // double to string conversion precision %.6f default

 // On read is what is presently set, write what want.

 unsigned char flags;// special flags for processing so far only

 // VARIANT_INDIRECTION_FLAG used, can be used to set property

 // in ->settings on write operation, no effect on read. Written

 // value becomes register to reference for further operations.

 unsigned char cmd;// 00, no operation other than read/write specified, else do defined

 // operation. Currently have write for properties access to 'settings'

 // VARIANT_CMD_SET_INDIRECTION and VARIANT_CMD_CLEAR_INDIRECTION,

 // write value ignored.

 unsigned char pad;

 unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or

/ handle thus usable from remote or ‘C’ API, 4096 to

// 65535, set to 0 for public reg.

 unsigned short slength; // this is reserved for later use and possible string

 // length if want unsigned char, 0 – 255 values,

// VARIANT_BYTE, future type

 unsigned int indexCol; // Column dimension index reference

 unsigned int indexRow; // Row dimension index reference

 union // Data that was read or has been written of 'type'

 {

 int iValue;

 unsigned int uiValue;

 float fValue;

 double dValue;

 unsigned int dSwap[2]; // used to swap doubles for PC access

 char sValue[VARIANT_MAX_STRING+1];

 } data;

} VARIANT_STORAGE;

#define MAX_VARIANT_BLOCK_32BITS 346 // 346 integers

#define MAX_VARIANT_BLOCK_64BITS 173 // 173 doubles

#define MAX_VARIANT_RANDOM_BLOCK (MAX_VARIANT_BLOCK_32BITS/3) // 115 items

#define MAX_VARIANT_BLOCK_32BITS_SERIAL 50

&

#define MAX_VARIANT_BLOCK_64BITS_SERIAL (MAX_VARIANT_BLOCK_32BITS_SERIAL/2)// 25 doubles

#define MAX_VARIANT_RANDOM_BLOCK_SERIAL (MAX_VARIANT_BLOCK_32BITS_SERIAL/3)// 16 items

typedef struct

{

 int reg; // may at some point reserve the upper 16 bits of this

 // integer for 'type' req.

 int row;

 int col;

} VARIANT_ACCESS_REQUEST;

// Allow for block reads

typedef struct

{

 int type; // type of storage being used or requested

 // If -1 on read then return current, else set to type want.

 // On write must set to type that is stored within this structure

 // write not supported for block access

 // If block access type field will be 0 if error else type of first cell.

 // slength will be the number of elements returned within data.block.?[n]

 unsigned char precision; // double to string conversion precision %.6f default

 // On read is what is presently set, write what want.

 unsigned char flags; // special flags for processing so far only

 // VARIANT_INDIRECTION_FLAG used, can be used to set property

 // in ->settings on write operation, no effect on read. Written

 // value becomes register to reference for further operations.

 unsigned char cmd;// 00, no operation other than read/write specified, else do defined

 // operation. Currently have write for properties access to 'settings'

 // VARIANT_CMD_SET_INDIRECTION and VARIANT_CMD_CLEAR_INDIRECTION,

 // write value ignored.

 unsigned char pad;

 unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or

// handle thus usable from remote or ‘C’ API, 4096 to

// 65535, set to 0 for public reg.

 unsigned short slength; // this is reserved for later use and possible string

// length if want unsigned char, 0 – 255 values,

// VARIANT_BYTE, future type

 unsigned int indexCol; // Column dimension index reference

 unsigned int indexRow; // Row dimension index reference

 union // Data that was read or has been written of 'type'

 {

 int iValue;

 unsigned int uiValue;

 float fValue;

 double dValue;

 unsigned int dSwap[2]; // used to swap doubles for PC access

 char *psValue;

 char sValue[VARIANT_MAX_STRING+1];

 // will be stored in same VARIANT_STORAGE upon return, thus

 // data.blockread.numAccess * sizeof(variant type)

 // if BLOCKACCESS then iValue[n], fValue[n], or dValue[n] up to

// MAX_VARIANT_READBLOCK_SIZE

 struct

 {

 BLOCKACCESS blockaccess; // Defines block read of variant cells, data

// storage must be big enough since

 union

 {

 int ibValue[MAX_VARIANT_BLOCK_32BITS];

 float fbValue[MAX_VARIANT_BLOCK_32BITS];

 double dbValue[MAX_VARIANT_BLOCK_64BITS];

&

 union

 {

 int ibValue;

 float fbValue;

 double dbValue;

 } random[MAX_VARIANT_RANDOM_BLOCK];

 VARIANT_ACCESS_REQUEST request[MAX_VARIANT_RANDOM_BLOCK];

 };

 } block;

 } data;

} VARIANT_STORAGE_BLOCK;

typedef struct

{

 int type; // type of storage being used or requested

 // If -1 on read then return current, else set to type want.

 // On write must set to type that is stored within this structure

 // write not supported for block access

 // If block access type field will be 0 if error else type of first cell.

 // slength will be the number of elements returned within data.block.?[n]

 unsigned char precision; // double to string conversion precision %.6f default

 // On read is what is presently set, write what want.

 unsigned char flags; // special flags for processing so far only

 // VARIANT_INDIRECTION_FLAG used, can be used to set property

 // in ->settings on write operation, no effect on read. Written

 // value becomes register to reference for further operations.

 unsigned char cmd;// 00, no operation other than read/write specified, else do defined

 // operation. Currently have write for properties access to 'settings'

 // VARIANT_CMD_SET_INDIRECTION and VARIANT_CMD_CLEAR_INDIRECTION,

 // write value ignored.

 unsigned char pad;

 unsigned short taskHandle; // task number (offset in task array + 1, where 0 is 1) or

// handle thus usable from remote or ‘C’ API, 4096 to

// 65535, set to 0 for public reg.

 unsigned short slength; // this is reserved for later use and possible string

// length if want unsigned char, 0 – 255 values,

// VARIANT_BYTE, future type

 unsigned int indexCol; // Column dimension index reference

 unsigned int indexRow; // Row dimension index reference

 union // Data that was read or has been written of 'type'

 {

 int iValue;

 unsigned int uiValue;

 float fValue;

 double dValue;

 unsigned int dSwap[2]; // used to swap doubles for PC access

 char *psValue;

 char sValue[VARIANT_MAX_STRING+1];

 // will be stored in same VARIANT_STORAGE upon return, thus

 // data.blockread.numAccess * sizeof(variant type)

 // if BLOCKACCESS then iValue[n], fValue[n], or dValue[n] up to

// MAX_VARIANT_READBLOCK_SIZE

 struct

 {

 BLOCKACCESS blockaccess; // Defines block read of variant cells, data

// storage must be big enough since

 union

 {

 int ibValue[MAX_VARIANT_BLOCK_32BITS_SERIAL];

 float fbValue[MAX_VARIANT_BLOCK_32BITS_SERIAL];

 double dbValue[MAX_VARIANT_BLOCK_64BITS_SERIAL];

 union

&

 {

 int ibValue;

 float fbValue;

 double dbValue;

 } random[MAX_VARIANT_RANDOM_BLOCK_SERIAL];

 VARIANT_ACCESS_REQUEST request[MAX_VARIANT_RANDOM_BLOCK_SERIAL];

 };

 } block;

 } data;

} VARIANT_STORAGE_BLOCK_SERIAL;

Variant Access Commands

Get Properties - Command 91

Command 91 reads the current properties of a variant which includes its number of rows

and columns as well as default floating point precision (typically 6).

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

05H Specifies the packet length

5BH Get Properties function code

LSB - MSB Specifies the variant register number whose properties are desired.

Specified with the least significant byte first.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Format of Controller Response

ØAH Specifies the packet length.

5CH Get Properties response code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

LSB- MSB Number of columns.

LSB- MSB Number of rows.

<Precision Byte> - Floating point precision currently set.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Read a Variant - Command 93

Command 93 reads a Variant cell. If the Variant is not an array simply set the row and

column to 0 in the structure.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE) + 5> Specifies the packet length

5DH Read a Variant function code

&

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Format of Controller Response

<sizeof(VARIANT_STORAGE) + 3> Specifies the packet length

5EH Read a Variant response code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Example Structure initialization:

Read 36201[2][5] as a double – (36201 is the LSB/MSB in the message sent)

VARIANT_STORAGE v;

 memset((void *)&v,0,sizeof(VARIANT_STORAGE));

 v.indexCol = 5;

 v.indexRow = 2;

 v.precision = 6;

 v.type = VARIANT_DOUBLE;

Depending upon which type you are accessing the returned Variant will be accessed as

follows where rp is a pointer to the receive buffer.

// Got the data

 memcpy((void *)&v,rp+4,sizeof(VARIANT_STORAGE));

 switch(v.type)

 {

 case VARIANT_FLOAT:

 variant->FloatVar = v.data.fValue;

 break;

 case VARIANT_DOUBLE:

 variant->DoubleVar = v.data.dValue;

 break;

 case VARIANT_STRING:

 variant->slength = v.slength;

 if (variant->slength > VARIANT_MAX_STRING)

 {

 // too big

 return FAILURE;

 }

 memcpy(variant->StringArray, v.data.sValue, variant-

>slength);

&

 // null terminate

 variant->StringArray[variant->slength] = 0x00;

 break;

 case VARIANT_INTEGER:

 variant->LongVar = v.data.iValue;

 break;

 default:

 return FAILURE; // unknown type

 }

 return SUCCESS;

Change a Variant - Command 95

Command 95 writes a Variant cell. If the Variant is not an array simply set the row and

column to 0 in the structure.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE) + 5> Specifies the packet length

5FH Change a Variant function code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Format of Controller Response

Ø3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Example Structure initialization:

Write 36201[2][5]– (36201 is the LSB/MSB in the message sent)

VARIANT_STORAGE v;

 memset((void *)&v,0,sizeof(VARIANT_STORAGE));

 v.indexCol = 5;

 v.indexRow = 2;

 v.precision = 6;

For each type of data writing where variant is user structure (reference previous section):

 switch(variant->type)

 {

 case VARIANT_FLOAT:

 v.data.fValue = variant->FloatVar;

 break;

&

 case VARIANT_DOUBLE:

 v.data.dValue = variant->DoubleVar;

 break;

 case VARIANT_STRING:

 if (variant->slength > VARIANT_MAX_STRING)

 {

 // too big

 return FAILURE;

 }

 memcpy(v.data.sValue, variant->StringArray,variant-

>slength);

 // null terminate

 v.data.sValue[variant->slength] = 0x00;

 break;

 case VARIANT_INTEGER:

 v.data.iValue = variant->LongVar;

 break;

 default:

 return FAILURE;

 }

… Send data packet and await ACK …

Read a Variant Array Block - Command 109

Command 109 performs a read starting at a specific row/column position in a Variant

array and reads the requested number of cells sequentially or until there are no more cells.

Format of Message Sent to Controller

UDP/TCP

Ø1H Identifies the packet as using the CTC binary protocol

< 5> Specifies the packet length for the message, without the Variant area since

including it would make the message exceed byte storage size.

6DH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field, not used.

FFH Signals the end of the message.

Serial Port:

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet

length.

6DH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage

area.

&

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Format of Controller Response

UDP/TCP

< 3> Specifies the packet length for the message, without the Variant area since

including it would make the message exceed byte storage size.

6EH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field, not used.

FFH Signals the end of the message.

Serial Port:

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 3> Specifies the packet

length.

6EH Reads a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage

area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Example Structure initialization:

Read 36201[0][0] as an integer, 5 consecutive cells – (36201 is the LSB/MSB in the

message sent). There are 35 columns in each row.

VARIANT_STORAGE_BLOCK v;

 if (ctc->connType == SERIAL)

 {

 sz = sizeof(VARIANT_STORAGE_BLOCK_SERIAL);

 length = sz+5; // packet length

 }

 else

 {

 sz = sizeof(VARIANT_STORAGE_BLOCK);

 length = 5;

 }

 // initialize the variant structure

 memset((void *)&v.type,0,sz);

 v.indexCol = 0;

 v.indexRow = 0;

&

 v.precision = 6;

 v.type = VARIANT_INTEGER; // String not supported

 v.data.block.blockaccess.colInc = 1;

 v.data.block.blockaccess.rowInc = 1;

 v.data.block.blockaccess.numAccess = 5;

 v.data.block.blockaccess.arraysizeCols = 35; // tells when to

 // increment row number

Depending upon which type you are accessing the returned Variant will be accessed as

follows where rp is a pointer to the receive buffer. sz is the size of the structure used,

that of VARIANT_STORAGE_BLOCK or VARIANT_STORAGE_BLOCK_SERIAL.

 // Got the data

 memcpy((void *)&v,rp+4,sz);

 // move the data into the vb structure

 variant->type = v.type; // type of data read

 variant->slength = v.slength; // number read

 switch(variant->type)

 {

 case VARIANT_FLOAT:

 memcpy(variant->block.fbValue, v.data.block.fbValue,

sizeof(float) * variant->slength);

 break;

 case VARIANT_DOUBLE:

 memcpy(variant->block.dbValue, v.data.block.dbValue,

sizeof(double) * variant->slength);

 break;

 case VARIANT_INTEGER:

 case VARIANT_UINTEGER:

 memcpy(variant->block.ibValue, v.data.block.ibValue,

sizeof(int) * variant->slength);

 break;

 default:

 return FAILURE; // unknown type

 }

 return SUCCESS;

Write a Variant Array Block - Command 111

Command 111 performs a write starting at a specific row/column position in a Variant

array and writes the requested number of cells sequentially or until there are no more

cells.

Format of Message Sent to Controller

UDP/TCP

Ø1H Identifies the packet as using the CTC binary protocol

< 5> Specifies the packet length for the message, without the Variant area since

including it would make the message exceed byte storage size.

6FH Writes a Variant Block function code

&

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field, not used.

FFH Signals the end of the message.

Serial Port:

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet

length.

6DH Writes a Variant Block function code

LSB - MSB Specifies the variant register number. Specified with the least

significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage

area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Format of Controller Response

Ø3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Example Structure initialization:

Write 36201[0][0] as a floats, 5 consecutive cells – (36201 is the LSB/MSB in the

message sent). There are 35 columns in each row.

VARIANT_STORAGE_BLOCK v;

 if (ctc->connType == SERIAL)

 {

 sz = sizeof(VARIANT_STORAGE_BLOCK_SERIAL);

 length = sz+5; // packet length

 }

 else

 {

 sz = sizeof(VARIANT_STORAGE_BLOCK);

 length = 5;

 }

 // initialize the variant structure

 memset((void *)&v.type,0,sz);

 v.indexCol = 0;

 v.indexRow = 0;

 v.precision = 6;

 v.type = VARIANT_FLOAT; // String not supported

&

 v.data.block.blockaccess.colInc = 1;

 v.data.block.blockaccess.rowInc = 1;

 v.data.block.blockaccess.numAccess = 5; // assume variant-

>numAccess is 5

 v.data.block.blockaccess.arraysizeCols = 35;

 // move the data in now where ‘variant’ is a user structure of

choice

 memcpy((void *)&v.data.block.fbValue, variant->fbValue,

sizeof(float) * variant->numAccess);

… Send data packet and await ACK …

Read a Block of Variants Randomly - Command 113

Command 113 reads variants in a user defined order, rather than sequentially, this

includes any cell (row/column) or different variant. All will be returned of the same type,

integer, float, or double. String is not supported.

Format of Message Sent to Controller

UDP/TCP

Ø1H Identifies the packet as using the CTC binary protocol

< 5> Specifies the packet length for the message, without the Variant area since

including it would make the message exceed byte storage size.

71H Reads a random Variant Block function code

LSB - MSB Specifies the variant register number, may be any value such as

0x0000. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK structure> Variant block storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field, not used.

FFH Signals the end of the message.

Serial Port:

Ø1H Identifies the packet as using the CTC binary protocol

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 5> Specifies the packet

length.

71H Reads a random Variant Block function code

LSB - MSB Specifies the variant register number, may be any value such as

0x0000. Specified with the least significant byte first.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage

area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field.

FFH Signals the end of the message.

Format of Controller Response

UDP/TCP

< 3> Specifies the packet length for the message, without the Variant area since

including it would make the message exceed byte storage size.

&

72H Read a random Variant Block response code

LSB - MSB returns what was sent.

<VARIANT_STORAGE_BLOCK structure> Variant storage area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field, not used.

FFH Signals the end of the message.

Serial Port:

<sizeof(VARIANT_STORAGE_BLOCK_SERIAL) + 3> Specifies the packet

length.

72H Reads a random Variant Block response code

LSB - MSB returns what was sent.

<VARIANT_STORAGE_BLOCK_SERIAL structure> Variant block storage

area.

Checksum Contains the complement of the modulo-256 sum of all bytes after the

length field

FFH Signals the end of the message.

Example Structure initialization:

Read 36301[0][0], 36301[0][1], 36301[0][2], 36301[1][0], 36302[0][0] as doubles.

VARIANT_STORAGE_BLOCK v;

 // initialize the variant structure

 if (ctc->connType == SERIAL)

 {

 sz = sizeof(VARIANT_STORAGE_BLOCK_SERIAL);

 length = sz+5; // packet length

 }

 else

 {

 sz = sizeof(VARIANT_STORAGE_BLOCK);

 length = 5;

 }

 // initialize the variant structure

 memset((void *)&v.type,0,sz);

 v.precision = 6;

 v.type = VARIANT_DOUBLE;

 v.data.block.blockaccess.numAccess = 5;

 // 36301[0][0]

 v.data.block.request[0].reg = 36301;

 v.data.block.request[0].row = 0;

 v.data.block.request[0].col = 0;

 // 36301[0][1]

 v.data.block.request[1].reg = 36301;

 v.data.block.request[1].row = 0;

 v.data.block.request[1].col = 1;

 // 36301[0][2]

 v.data.block.request[2].reg = 36301;

 v.data.block.request[2].row = 0;

 v.data.block.request[2].col = 2;

&

 // 36301[1][0]

 v.data.block.request[3].reg = 36301;

 v.data.block.request[3].row = 1;

 v.data.block.request[3].col = 0;

 // 36302[0][0]

 v.data.block.request[4].reg = 36302;

 v.data.block.request[4].row = 0;

 v.data.block.request[4].col = 0;

Depending upon which type you are accessing, the returned Variant will be accessed as

follows where rp is a pointer to the receive buffer. sz is the size of the structure used,

that of VARIANT_STORAGE_BLOCK or VARIANT_STORAGE_BLOCK_SERIAL.

 // Got the data

 memcpy((void *)&v,rp+4,sz);

 // move the data into the vb structure

 variant->type = v.type; // type of data read

 variant->slength = v.slength; // number read

 memcpy(&variant->block.random[0], &v.data.block.random[0],

sizeof(v.data.block.random) * variant->slength);

 return SUCCESS;

Register and Flag Access Commands

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying register and flag numbers

and values and for checksum error detection.

 When specifying a register number, it is expressed as ØØØ1H through ØFFFFH,

corresponding to registers 1 through 65535. For example, register 10 is expressed

as ØØØAH.

 You must specify register numbers with the least significant byte first.

 When specifying a flag number, it is expressed as ØØH through 7FH for flags,

corresponding to flags 1 through 128. For example, flag 5 is expressed as Ø4H.

 The checksum value is the complement of the previous byte(s). Some commands

use the complement of the modulo-256 sum of the previous bytes; see the

individual command descriptions earlier in this chapter for more information.

 When the controller responds with a register value, it is always a four-byte

representation of the register data expressed in 2’s (complement binary format),

with the least significant byte transmitted first.

Reading a Numeric Register - Command 9

Command 9 reads the value in any register that allows read access.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø5H Specifies the packet length

Ø9H Indicates the read register function code

&

LSB - MSB Specifies the register number, ØØØ1H - ØFFFFH. Specified with

the least significant byte first.

Checksum Contains the complement of the modulo-256 sum of the previous 3

bytes

FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length.

ØAH Indicates the register contents function code

LSB, 3SB, Four-byte representation of register data, expressed in 2’s

2SB, MSB complement binary, with the least significant byte transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 5

bytes

FFH Signals the end of the message

Reading a Bank of 16 Registers - Command 77

Command 77 reads the values in a bank of 16 consecutive registers.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø5H Specifies the packet length

4DH Indicates 16 register group read function code

LSB - MSB Specifies bank of registers to read, ØØØØH - Ø3D9H

Checksum Contains the complement of the modulo-256 sum of the previous 3

bytes

FFH Signals the end of the message

Format of Controller Response

45H Specifies the packet length

4EH Indicates the register contents function code

LSB - MSB (2 bytes) Indicates bank of registers, ØØØØH - Ø3D9H

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a

description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group.

Additional LSB - MSB lines follow for the remainder of the 16 registers in the

group.

Checksum Contains the complement of the modulo-256 sum of the previous 67

bytes

FFH Signals the end of the message

Reading a Bank of 50 Registers - Command 75

Command 75 reads the values in a bank of 50 consecutive registers, limited from 1 to

1000.

&

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

4BH Indicates 50 register group read function code

ØØH - 13H Specifies the bank of 50 registers to be read, ØØH - 13H

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

CCH Specifies the packet length

4CH Indicates the register contents function code

ØØH - 13H Indicates the bank of 50 registers to follow, ØØH - 13H

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a

description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group.

Additional LSB - MSB lines follow for the remainder of the 50 registers in the

group.

Checksum Contains the complement of the modulo-256 sum of the previous 202

bytes

FFH Signals the end of the message

Request Random Registers from List - Command 87

Command 87 reads the values of up to 50 random registers from a list.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

??H Specifies the packet length, all following bytes, including checksum but not

ending FFH.

57H Indicates Random Register Read function code

NUMREGS – Single byte from 1 to 50 representing number of following random

registers to read. Registers are listed as 2 byte shorts (16 bits), lsb/msb, results are

returned as 32 bit integers.

LSB – MSB1 First register number to read, 16 bits

LSB – MSB2 Second register number to read, 16 bits

…

LSB – MSBN Last register number to read, 16 bits

Checksum Contains the complement of the modulo-256 sum of all the bytes after

the packet length bytes

FFH Signals the end of the message

Format of Controller Response

??H Specifies the packet length

&

58H Indicates the register contents function code

NUMREGS – Single byte from 1 to 50 representing number of following random

registers results which are being returned. Registers' results are returned as 32 bit

integers, lsb to msb.

LSB - MSB (4 bytes) Contains the value of the first register in the group. For a

description of register data, see the description for single register read.

LSB - MSB (4 bytes) Contains the value of the second register in the group.

Additional LSB - MSB lines follow for the remainder of the NUMREGS registers

in the group.

…
Checksum Contains the complement of the modulo-256 sum of the previous

bytes, excluding packet length

FFH Signals the end of the message

Changing a Register Value - Command 11

Command 11 changes the value in any register that allows write access.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø9H Specifies the packet length

ØBH Indicates the Change Register Value function code

LSB - MSB (2 bytes) Specifies the register number, ØØØ1H - ØFFFFH.

Specified with the least significant byte first.

LSB - MSB (4 bytes) Four-byte representation of register data, expressed in 2’s

complement binary, with the least significant byte transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 7

bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Reading a Flag’s State - Command 17

Command 17 reads the state of any flag.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

11H Indicates the Read Flag State function code

Flag Number Specifies the flag number, ØØH - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

&

FFH Signals the end of the message.

Format of Controller Response

Ø4H Specifies the packet length

12H Indicates the Flag State function code

ØØH or FFH Indicates the flag’s status. ØØH if flag is clear and FHH if set. Any

other value means that the results are indeterminate.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Changing a Flag’s State - Command 19

Command 19 changes the state of any flag.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø5H Specifies the packet length

13H Indicates the Change Flag State function code

Flag Number Specifies the flag to be changed, ØØH - 7FH

ØØH or FFH Specifies the new state of the flag. ØØH represents CLEAR and

FFH represents SET.

Checksum Contains the complement of the previous 3 bytes

ØFFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length.

64H Contains the acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Digital Input/Output Access Commands

The following commands allow you to read digital input and output states and turn a

digital output on or off. Input and output states are read as a group of either 8 or 128.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying groups of inputs and

outputs, their states and for checksum error detection.

 When specifying a bank of inputs or outputs as a group of 8, the first bank of

inputs or outputs are specified as ØØH, corresponding to 1 through 8. The second

bank is specified as 12H, corresponding to 9 through 16, and so on up to 7FH for

the 16th bank, corresponding to 121 through 128.

&

 The checksum value is the complement of the previous byte(s). Some commands

use the complement of the modulo-256 sum of the previous bytes; see the

individual command descriptions earlier in this chapter for more information.

 When the controller responds with the data for a group of 8 inputs or outputs, the

lowest input number is represented by the least significant bit, the next the 7th

least significant bit, and so on.

 For input states, a 1 represents a grounded (on) input.

 For output states, a 1 represents an output that is turned on.

Reading a Bank of 8 Inputs - Command 15

Command 15 reads the state of a group of eight digital inputs. The Read Inputs function

code (ØFH) allows you to read a group of 8 inputs. Inputs are grouped so that the first

group of inputs is 1 to 8; the second is 9 to 16, up to 121 to 128 for the 16th and last

group.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

ØFH Indicates the Read Inputs function code

Bank Specifies the bank of inputs, ØØH - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length

1ØH Indicates the Input Data function code

ØØH - FFH Contains the data for the eight inputs. The lowest input number is

represented by the least significant bit. A 1 indicates a grounded (on) input.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Reading a Bank of 128 Inputs - Command 79

Command 79 reads a bank of 128 inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

4FH Indicates the Read 128 Inputs Request function code

Bank Specifies the input bank to read, ØØH - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

&

Format of Controller Response

Ø4H Specifies the packet length

50H Indicates the Input Values function code

Bank Input bank to follow, ØØH - 7FH

Inps1-8 Contains the data for the eight inputs, where the lowest input number is

represented by the least significant bit. A value of 1 indicates a grounded (on)

input.

Inps9-16 Contains the data for the next eight inputs. This continues for a total of

128 inputs.

Checksum Contains the complement of the modulo-256 sum of the previous 18

bytes

FFH Signals the end of the message

NOTE: The controller returns a value of zero (0) for nonexistent inputs within a bank.

Reading a Bank of 8 Outputs - Command 21

Command 21 reads the state of a group of eight digital outputs. Outputs are grouped in

the same manner as inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

15H Indicates the Read Output function code

Bank Specifies the bank of outputs, ØØH - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length

16H Indicates the Output Status function code

ØØH - FFH Contains the data for the eight outputs with the lowest output

number represented by the least significant bit. A 1 indicates that an output is on.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes.

FFH Signals the end of the message

Reading a Bank of 128 Outputs - Command 81

Command 91 reads a bank of 128 digital outputs. The outputs are grouped in the same

manner as inputs.

Format of Message Sent to Controller

&

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

51H Indicates the Read 128 Outputs request function code

Bank Specifies the bank of outputs, ØØH - 7FH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

14H Specifies the packet length

52H Indicates the output values function code

Bank Specifies the bank of outputs, ØØH - 7FH

Outs1-8 Contains the data for the eight outputs, where the lowest output number

is represented by the least significant bit. A value of 1 indicates an output is on.

Outs9-16 Contains the data for the next eight outputs. This continues for a total of

128 outputs.

Checksum Contains the complement of the modulo-256 sum of the previous 18

bytes

FFH Signals the end of the message

NOTE: The controller reports nonexistent outputs within a bank as off, value is 0.

Selectively Changing the First 128 Outputs - Command 25

Command 25 selectively changes the state of a group of 128 digital outputs. This

command uses separate on and off masks so you can change specific outputs. For

example, an off-mask-Ø of Ø6H (ØØØØ Ø11Ø in binary) would turn off outputs one

along with four through eight and outputs two and three would remain in their previous

state. A subsequent on-mask-Ø of CØH (11ØØ ØØØØ in binary) turns on outputs seven

and eight.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

23H Specifies the packet length

19H Indicates the Modify Outputs function code

off-mask-Ø to off-mask-15 Specifies a series of 16 eight-bit masks used to

selectively turn off any or all of the controller’s first 128 outputs. The masks are

applied to successive banks of 8 outputs, with the least significant bit of the mask

being applied to the lowest numbered output in the bank. A mask value of

Ø turns the associated output off. A value of 1 does not change the output.

on-mask-Ø to on-mask-15 Specifies a series of 16 eight-bit masks used to

selectively turn on any or all of the controller’s first 128 outputs. The masks are

applied to successive banks of 8 outputs, with the least significant bit of the mask

being applied to the lowest numbered output in the bank. A mask value of 1 turns

the associated output on. A value of Ø does not change the output.

&

Checksum Contains the complement of the modulo-256 sum of the previous 33

bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length

64H Contains the acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Analog Input and Output Access Commands

The following commands allow you to read analog input and output states and change the

value of an analog output. Input and output states are read individually.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying analog inputs and outputs,

their values and for checksum error detection.

 When specifying an input or output the first input or output is specified as ØØH.

The last input or output you can specify is 64. Its number is 3FH.

 The checksum value is the complement of the previous byte(s). Some commands

use the complement of the modulo-256 sum of the previous bytes; see the

individual command descriptions earlier in this chapter for more information.

Reading an Analog Input - Command 29

Command 29 reads the value of any of the analog inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

1DH Indicates the Read Analog Input function code

Analog Input Specifies the input to be read, ØØH - FFH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

&

Format of Controller Response

Ø5H Specifies the packet length

1EH Indicates the Analog Input Value function code

LSB - MSB Contains the two-byte representation of the analog value, expressed

as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH), with the least

significant byte transmitted first

Checksum Contains the complement of the modulo-256 sum of the previous 3

bytes

FFH Signals the end of the message

Reading an Analog Output - Command 31

Command 31 reads the value of any of the analog outputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

1FH Indicates the Read Analog Output function code

Analog Output Specifies the output to be read, ØØH - FFH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length

1EH Indicates the Analog Output Value function code

LSB - MSB Contains the two-byte representation of the analog value, expressed

as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH), with the least

significant byte transmitted first

Checksum Contains the complement of the modulo-256 sum of the previous 3

bytes

FFH Signals the end of the message

Changing an Analog Output - Command 33

Command 33 changes the value of any of the analog outputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø6H Specifies the packet length

21H Indicates the read analog output function code

Analog Output Specifies the output to be changed, ØØH - FFH

LSB - MSB Contains the two-byte representation of the analog value, expressed

as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH), with the least

significant byte transmitted first

&

Checksum Contains the complement of the modulo-256 sum of the previous 4

bytes

FFH Signals the end of the message.

Format of Controller Response

Ø5H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)

9BH Checksum value. Contains the complement of the previous byte.

FFH Signals the end of the message

Change Multiple Analog Outputs - Command 85

Command 85 changes the value of up to 64 sequential analog outputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø6H Specifies the packet length

55H Indicates the Write Multiple Analog Output function code

Analog Output Start Specifies the first output to be changed, Ø1H - FFH

Length Specifies the number of sequential analog outputs to change 01H - 40H

LSB – MSB First Contains the two-byte representation of the analog value,

expressed as a number in the range of 0 - 10,000 decimal (ØØØØH - 271ØH),

with the least significant byte transmitted first

…

LSB-MSB Last

Checksum Contains the complement of the modulo-256 sum of the previous

bytes

FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length

64H Contains the acknowledge function code (decimal 100)

9BH Checksum value. Contains the complement of the previous byte.

FFH Signals the end of the message

Servo Access Commands

The following commands allow you to read a servo’s position, error and auxiliary inputs.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying servo axes, their position

and error, the state of a servo’s auxiliary inputs, and for checksum error detection. You

can perform these operations for servos axes 1 - 16.

&

 When specifying a servo, the first servo axis is specified as ØØH and the 16th

specified as ØFH.

 The checksum value is the complement of the previous byte(s). Some commands

use the complement of the modulo-256 sum of the previous bytes; see the

command description.

Reading a Servo’s Position - Command 23

Command 23 reads the position of a servo.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

17H Indicates the Read Servo Position function code

Servo Number Specifies the servo axis to be read, ØØH - ØFH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length.

18H Indicates the servo position function code

LSB - MSB (4 bytes) Contains the four-byte representation of the servo's

position. The value is expressed in 2’s (complement binary format), with the least

significant bye transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 5

bytes

FFH Signals the end of the message

Reading a Servo’s Error - Command 47

Command 47 reads a servo’s error.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

2FH Indicates the Read Servo Error function code

Servo Number Specifies the servo axis to be read, ØØH - ØFH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length

3ØH Indicates the Servo Position Function code

&

LSB - MSB Contains the four-byte representation of the servo’s error. The value

is expressed in 2’s (complement binary format), with the least significant bye

transmitted first.

Checksum Contains the complement of the modulo-256 sum of the previous 5

bytes

FFH Signals the end of the message

Reading a Servo’s Dedicated Inputs - Command 27

Command 27 reads the status of a servo’s dedicated inputs. The controller returns the

status of the dedicated input using a one-bit code.

• Bit Ø, indeterminate

• Bit 1, Home input

• Bit 2, Start input

• Bit 3, Local/remote input

• Bit 4, Reverse limit input

• Bit 5, Forward limit input

• Bit 6, indeterminate

• Bit 7, indeterminate

Bit Ø is the least significant bit.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

1BH Indicates the Read Dedicated Input Status function code

Servo Number Specifies the servo axis to be read, ØØH - ØFH

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length

1CH Indicates the servo dedicated input status function code

Status Contains a one byte code of the servo’s auxiliary input status

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

&

Data Table Access Commands

The following commands allow you to read and change a data table’s dimensions; read

and change the value of a data table element; read the values in a data table row; and

change the values in a data table row.

Binary Protocol Conventions

The binary protocol uses specific conventions for specifying rows and columns of a data

table. The manner in which the row or column is specified varies with the command. The

checksum value is the complement of the previous byte(s). Some commands use the

complement of the modulo-256 sum of the previous bytes; see the individual command

descriptions earlier in this chapter for more information. The controller may return an

error code under the following circumstances:

 The requested data table size is too large for the controller.

 The requested data table size does not fit in the memory available when stored

along with the Quickstep program.

 The command contains a data table column number greater than 32.

Reading a Data Table’s Dimensions - Command 49

Command 49 reads the dimensions of a data table. The number of data table columns is

ØØH to 2ØH.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø3H Specifies the packet length

31H Indicates the Read Data Table Dimensions function code

CEH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

Ø6H Specifies the packet length

32H Indicates the Data Table Dimensions function code

LSB, MSB Contains the number of data table rows in the current program, with

the least significant byte transmitted first

columns Contains the number of data table columns

Checksum Contains the complement of the modulo-256 sum of the previous 4

bytes

FFH Signals the end of the message

&

Changing a Data Table’s Dimensions - Command 51

Command 51 changes a data table’s dimensions.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø6H Specifies the packet length

33H Indicates the Change Data table Dimensions function code

LSB, MSB Contains the new number of data table rows, with the least significant

byte transmitted first.

columns Contains the new number of data table columns.

Checksum Contains the complement of the modulo-256 sum of the previous 4

bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)

9BH Contains the checksum, complement of the previous byte

FFH Signals the end of the message

Reading a Data Table Value - Command 53

Command 53 reads the value of a specific data table element by specifying its row and

column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø6H Specifies the packet length

35H Indicates the Read Data Table Location function code

LSB, MSB Contains the row number of the data table element, with the least

significant byte transmitted first

columns Contains the column number of the data table element

Checksum Contains the complement of modulo-256 sum of the previous 4 bytes

FFH Signals the end of the message

Format of Controller Response

Ø5H Specifies the packet length

36H Indicates the data table data function code

LSB, MSB Contains the data from the data table, expressed as a positive integer.

The range is from 0 to 65,535 (decimal) with the least significant byte transmitted

first.

Checksum Contains the complement of the modulo-256 sum of the previous 3

bytes

FFH Signals the end of the message

&

Changing a Data Table Value - Command 55

Command 55 changes the value of a specific data table element by specifying its row and

column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø8H Specifies the packet length

37H Indicates the Change Data Table Location function code

LSB, MSB Contains the row number of the data table element, with the least

significant byte transmitted first.

columns Contains the column number of the data table element.

LSB, MSB Contains the new value for the specified data table element. The new

value can range from 0 to 65,535 (decimal) with the least significant bye

transmitted first.

Checksum Contains the complement of modulo-256 sum of the previous 6 bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)

9BH Contains the checksum, complement of the previous byte

FFH Signals the end of the message

Reading a Data Table Row - Command 57

Command 57 reads the values in a specific data table row and columns by specifying

their row and beginning column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø7H Specifies the packet length

39H Indicates the Read Data Table Row function code

LSB, MSB Contains the row number, with the least significant byte transmitted

first

First col Indicates the first data table column to read

Quantity Specifies the number of data table columns to read (n); <= 27 columns

Checksum Contains the complement of modulo-256 sum of the previous 5 bytes

FFH Signals the end of the message

Format of Controller Response

Length Specifies the packet length, (n * 2) + 4, where n = number of columns

read

3AH Indicates the Data Table Row Data function code

Quant Specifies the number of data table columns read (n); <= 27 columns

For each of n locations

&

LSB, MSB Contains the data from the data table, expressed as a positive integer.

The range is from 0 to 65,535 (decimal) with the least significant bye transmitted

first.

End of location data

Checksum Contains the complement of the modulo-256 sum of the previous (n *

2) + 2 bytes

FFH Signals the end of the message

If the number of data table columns specified extends beyond the actual number of

columns, the controller’s response only contains data for the existing columns and the

response will be shorter than expected.

Changing a Data Table Row - Command 59

Command 57 changes the values in a specific data table row and columns by specifying

their row and beginning column number.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

length Specifies the packet length, (n * 2) + 4, where n = number of columns to

be changed

3AH Indicates the change Data Table Row function code

LSB, MSB Contains the row number, with the least significant byte transmitted

first

First col Indicates the first data table column to change

Quantity Specifies the number of data table columns to change (n); <= 27

columns

For each of n locations

LSB, MSB Contains the data from the data table, expressed as a positive integer.

The range is from 0 to 65,535 (decimal) with the least significant bye transmitted

first.

End of location data

Checksum Contains the complement of modulo-256 sum of the previous (n * 2)

+ 5 bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length

64H Contains the acknowledge function code (decimal 100)

9BH Contains the checksum, complement of the previous byte

FFH Signals the end of the message

&

System and Controller Status Access Commands

The following commands allow you to read the status of a controller; start, stop or reset a

controller; read or change the configuration of the controller’s dedicated inputs; and

obtain information about the number and type of controller resources in a particular

controller.

Binary Protocol Conventions

The binary protocol uses specific bits for controller status and system configuration

information. See the command descriptions for information on how to send and read this

information. The checksum value is the complement of the previous byte(s). Some

commands use the complement of the modulo-256 sum of the previous bytes; see the

individual command descriptions earlier in this chapter for more information.

Reading a Controller’s Current Status - Command 61

Command 61 reads a controller’s status and reports if it is running, stopped, has a

software fault, or is in programming mode.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø3H Specifies the packet length

3DH Indicates the Read Status Byte function code

CEH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length

3EH Indicates the Status Byte function code

status Indicates the status of the controller, where:

Bit Ø = Ø if running and = 1 if stopped

Bit 1 = Ø in normal mode and = 1 in programming mode

Bit 2 = Ø if status OK and = 1 if there is a software fault

Bit 3 = Ø if in mid-program and =1 if fresh reset.

Bit Ø is the least significant bit and bits 4 through 7 are undefined.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Changing a Controller’s Status - Command 63

Command 63 changes a controller’s status.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

3FH Indicates the Change Controller Status byte function code

status Indicates the status of the controller, where:

Bit Ø = Ø to start the controller and = 1 to stop it

&

Bit 3 = 1 to reset the controller and = Ø to continue

Bit Ø is the least significant bit and will always start or stop the

controller. All unspecified and undefined bits should be set to Ø.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Reading a Controller’s System Configuration - Command 65

Command 65 reads the configuration of the controller’s dedicated inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø3H Specifies the packet length

41H Indicates the Read System Configuration function code

BEH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

Ø4H Specifies the packet length

42H Indicates the System Configuration function code

config Indicates the configuration of the controller, where:

Bit Ø = 1 if using input 1 for the start function

Bit 1 = 1 if using input 2 for the stop function

Bit 2 = 1 if using input 3 for the reset function

Bit 3 = 1 if using input 4 for the step function

Bit Ø is the least significant bit and bits 4 through 7 are undefined.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Changing a Controller’s System Configuration - Command 67

Command 67 changes the configuration of the controller’s dedicated inputs.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

43H Indicates the Change System Configuration function code

&

config Indicates the new configuration of the controller, where:

Bit Ø = 1 to use input 1 for the start function

Bit 1 = 1 to use input 2 for the stop function

Bit 2 = 1 to use input 3 for the reset function

Bit 3 = 1 to use input 4 for the step function.

Bit Ø is the least significant bit and bits 4 through 7 are undefined.

Checksum Contains the complement of the modulo-256 sum of the previous 2

bytes

FFH Signals the end of the message

Format of Controller Response

Ø3H Specifies the packet length

64H Contains the Acknowledge function code (decimal 100)

Checksum Contains the complement of the previous byte

FFH Signals the end of the message

Listing Counts of Inputs, Outputs, Motion - Command 13

Command 13 obtains information about the number and type of controller

resources and reports the information.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø3H Specifies the packet length

ØDH Indicates the I/O Count Request function code

F2H Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

ØCH Specifies the packet length

ØEH Indicates the I/O Count function code

flags Indicates the number of flags, typically 80H

inputs LSB Indicates the number of inputs, LSB: ØØH to F8H

inputs MSB MSB: ØØH to Ø4H

outputs LSB Indicates the number of outputs, LSB: ØØH to F8H

outputs MSB MSB: ØØH to Ø4H

stepping mtrs Indicates the number of stepping motor axes, ØØH to 1ØH

servos Indicates the number of servo axes, ØØH to 1ØH

analog inputs Indicates the number of analog inputs, ØØH to FFH

analog outputs Indicates the number of analog outputs, ØØH to FFH

Checksum Contains the complement of the modulo-256 sum of the previous 10

bytes

FFH Signals the end of the message

&

Listing Counts of Miscellaneous I/O - Command 69

Command 69 obtains information about the number and type of various controller

resources, such as prototyping boards, high-speed counting boards, thumbwheel arrays,

and numeric displays and reports it.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø3H Specifies the packet length

45H Indicates the Miscellaneous I/O Count Request function code

BAH Contains the checksum of the previous byte

FFH Signals the end of the message

Format of Controller Response

Ø7H Specifies the packet length

46H Indicates the I/O Count function code

protos Indicates the number of flags, typically 8ØH

h s counters Indicates the number of high-speed counters

twhls Indicates the number of 4-digits thumbwheel arrays

disps Indicates the number of 4-digit numeric displays

Checksum Contains the complement of the modulo-256 sum of the previous 5

bytes

FFH Signals the end of the message

Reading Controller Step Status - Command 35

Command 35 reads the status of tasks in the controller. By executing this command four

times, once for each group of eight tasks, you may obtain all the information necessary to

reconstruct the hierarchy and status of the controller’s tasks. In addition, if software fault

has halted execution of your program, the controller’s response indicates the type of the

fault, the step where it occurred, and any relevant parametric data. As it starts each new

task, your Quickstep program assigns a task number from 1 to 32. The main program is

always task number one. Each of the 32 tasks, whether it is currently being used or not,

reports back a step number along with a 32-bit mask word. If the program is currently

using a task number, the mask shows whether the task is currently suspended or waiting

for one or more sub-tasks to finish. This is shown by a 1 bit in the bit position of the

mask word corresponding to the task for which the current task is waiting. For example,

if the main program, task one, called up three sub-tasks, tasks two, three and four, the

mask word for task one would be as follows:

ØØØØØØØØ ØØØØØØØØ ØØØØØØØØ ØØØØ111Ø MSB LSB

To extract the hierarchy of tasks being executed:

1. Start with task one and read its mask word to determine its sub-tasks.

2. Read the mask word of each sub-task, which indicate if any tasks are being

executed at the next level down the hierarchy.

&

3. As you follow the hierarchy of tasks under execution, you may determine the

current step being executed by each via the step number data provided. Step

numbers are offset by -1.

Do not assume that Quickstep allocates task numbers in the order of task

hierarchy. The starting and stopping of task numbers in a complex program may result in

a scattering of active tasks throughout the 32 possible task numbers. The only way to

determine the active tasks is to follow the task hierarchy as outlined above. When a

controller is stopped because of a software fault the message returned by the controller

will contain a software fault code. A list of all fault codes can be found in the Fault Task

Handler chapter.

Format of Message Sent to Controller

Ø1H Identifies the packet as using the CTC binary protocol

Ø4H Specifies the packet length

23H Indicates the Status Request function code

task range Bank of 8 tasks to be read, ØØH to Ø3H, where:

ØØH = tasks 1 through 8

Ø1H = tasks 9 through 16

Ø2H = tasks 17 through 24

Ø3H = tasks 25 through 32

Checksum Contains the complement of the modulo-256 sum of the

previous 2 bytes

FFH Signals the end of the message

Format of Controller Response

39H Specifies the packet length

24H - 27H Indicates the Controller Status function code

Status - If the controller is stopped, it returns a value of ØFFH, indicating true. If

the controller is running, it returns a value of ØØH.

Fault type - Contains the type code for a software fault, if any are present. If the

value is ØØH, then no software fault is present.

 . For additional information on fault codes, see Chapter 13: Fault Task

Handler

Fault step – LSB, MSB, 16 bit, where where ØØØØH = step 1, ØØØ1H = step 2

LSB MSB (4 bytes) Data relating to software fault if any; otherwise unspecified.

48 bytes follow and provide the following data for each of the eight tasks:

LSB, MSB Step number currently being executed by this task, where ØØØØH =

step 1, ØØØ1H = step 2, and so forth.

LSB - MSB (4 bytes) 32 bit mask, indicating with a 1 or Ø for each of the 32

possible tasks whether this task is waiting for the completion of each task or not.

Lowest order bit of LSB represents task 1, etc.

Checksum Contains the complement of the modulo-256 sum of the previous 55

bytes

FFH Signals the end of the message

&

IP Encapsulation

An option exists that allows the CTC Binary Protocol to be sent over UDP and/or TCP,

allowing it to be routed. All Blue Fusion controllers support the raw, low level, non-

routable binary protocol, and additionally run background servers listening for UDP and

TCP connections that support “IP Encapsulation”. Simply put, a header is added on to

the current serial protocol. The controller listens for UDP requests on IP port 3000 and

TCP on port 6000.

#define MAXPKTDATALEN 216

#pragma pack(1)

typedef struct ctcIPPacket_s

{

 // Used to validate proper CTC packet versions.

 //

 BYTE version_major;

 BYTE version_minor;

 // Identifier for each packet sent. Used to validate

 // incoming packets.

 //

 UINT16 transaction_id;

 // Required within packet. Only the sender knows for

 // sure the type of the request. The spare aligns data

 // along word boundaries.

 //

 BYTE type;

 BYTE spare;

 // Number of octets in the CTC binary.

 //

 UINT16 data_size;

 // Up to 216 (maximum in octets) of data. Note :

current

 // maximum packet size is 216 octets + 8 octets or 224

 // octets or bytes.

 //

 BYTE data[MAXPKTDATALEN];

} CTCPACKET;

#pragma pack()

The above structure is aligned on a 1 byte boundary. (#pragma pack(1)).

version_major/version_minor

These two byte fields represent the major and minor software revision of the

initiator. The controller side simply returns whatever was received by the host

&

making the request. Typically version_major = 0x04 and

version_minor = 0x00.

&

transaction_id

The transaction_id is a two-byte, little endian format (lsb/msb) field which

contains an incrementing number, starting at 0x0001, to track the transaction

request by. The controller will return the packet setting the transaction ID to that

received, including the response information in the data field. Do not use a

transaction id of 0x0000.

Type

0x14 – Request

0x15 – Reply

spare

Not used. Alignment purposes only. Set to 0x00.

data_size

This contains the length of the data field stored in a two-byte, little endian

format (lsb/msb). The maximum size of the data field is 216 bytes.

data

This is the binary protocol transaction which has been encapsulated. Refer to

Chapter 19: CTNet Binary Protocol for additonal information on the standard

CTC Binary Protocol. Messages from the host begin with 0x01, that from the

controller are the length of the message in bytes. Both messages end with a

checksum and 0xff byte. Only the number of bytes defined within data_size

are contained within data, not the full maximum of 216 bytes.

Example: register read request of register 0x0002 with transaction ID 0x0001:

|----------------------- Header ------------------------|------------ Binary Protocol Msg -----------|

0x04 0x00 0x01 0x00 0x14 0x00 0x07 0x00 0x01 0x05 0x09 0x02 0x00 0xf4 0xff

checksum = ~(0x09 + 0x02 + 0x00) = 0xf4

Reply from controller:

|----------------------- Header ------------------------|--------------- Binary Protocol Msg ---------------|

0x04 0x00 0x01 0x00 0x15 0x00 0x08 0x00 0x07 0x0a 0x00 0x00 0x00 0x00 0xf5 0xff

Register contained 0x00000000. Note that little endian storage is used (lsb first).

&

BulletProof Software has available a low cost FTP Server ($34.95, 15

day free trial) which can be installed on Windows systems for

communications with the Model 5300. This appendix is provided as an

initial quick start guide detailing its installation and initial setup.

Detailed information and additional support is provided within their

manual. The program may be downloaded from their web site at:

http://www.bpftpserver.com/download.php.

Installation

1. From their web site click the download Icon and save the file to a desired

directory:

http://www.bpftpserver.com/download.php

&

2. Once downloaded execute their “ftpsetup.exe” file. At the welcome screen click

the Next button:

3. Accept their agreement and click Next:

&

4. Click Next at the Information screen:

5. Change the installation directory if required and click Next:

&

6. Accept the defaults of the next few screens and continue as shown:

&

&

7. Upon completion the final screen will appear, click Finish and the program will

automatically be invoked:

&

Operation

Upon initial install and execution the following will appear:

An initial user account must be added. This is the user name and password, along with

access rights you will grant this person and/or controller. Click the Setup->User
Accounts menu item:

&

The following Setup User Accounts screen will appear:

To add an account, position the mouse over the User Accounts window and right click

the mouse. A menu will appear; select Add:

&

Enter the new account name, 5222Controller is shown in the example, click OK:

&

The account has now been created. A default password of FcweTPJY is shown. This

should be changed to anything desired. By default no directory or file access is granted,

only the account created. In order to grant access a directory must be referenced and

access privileges granted. To add a directory, right click the mouse in the Access
Rights area of the screen and select Add:

A window will appear allowing you to select the desired directory and access

permissions:

&

If subdirectories are to be allowed be sure to select the +Subdirs check box. Below

shows a directory on the C: drive being added called FTPServerHome. File access

will allow upload and download as well as access to subdirectories.

&

To activate the server you must select OK, then Server->Go On-line at the main menu:

There are numerous other features available within the BulletProof software package. It

is left to the user to read their documentation available on their web site.

http://www.bpftpserver.com/help/bpftpserver.com/manual_en/

Example: Access via the telnet or script command line to this account would be:

ftpconnect 12.40.53.52 5222Controller FcweTPJY

http://www.bpftpserver.com/help/bpftpserver.com/manual_en/

&

The Model 5300 uses a number of TCP and UDP data ports for

communications. This section documents their usage.

Port Numbers

An IT professional can use the following port number list for configuration of corporate

firewalls, VPN or NAT. Below are the common ports used. In many circumstances,

especially when the Model 5300 is the client, ports are determined by the user.

21 FTP Server Inbound, TCP

23 Telnet Administrative Interface Inbound, TCP

501 Modbus TCP Inbound, TCP

3000 CTC Binary Protocol Inbound, UDP

6000 CTC Binary Protocol Inbound, TCP

21896 Controller Discovery Inbound and Outbound , UDP

40000

to

40640

Ports used for random binding, both

UDP and TCP.

Inbound and Outbound

 BELOW FOR iPANEL, REF ONLY

21891 Multicast [239.11.90.201]

Used to discover iPanel devices and

computers running CT HMI

Workstation.

Outbound from the Control

utility.

Inbound to iPanel devices and

computers running CT HMI

Workstation.

&

21892 Multicast [239.11.90.201]

Used to discover iPanel devices and

computers running CT HMI

Workstation.

Outbound from iPanel devices

and computers running CT HMI

Workstation.

Inbound to the Control utility.

21893 Multicast [239.11.90.201]

Used to communicate between

iPanels, all CT HMI products

(including Builder and Workstation)

and CTServer.

Used primarily for service discovery.

Inbound and Outbound.

9190 Used to communicate between the

Control utility and an iPanel device

or a computer running CT HMI

Workstation.

Outbound from the Control

utility.

Inbound to iPanel devices and

computers running CT HMI

Workstation.

9191 Used to communicate between the

Remote Workstation program and

an iPanel device or a computer

running CT HMI Workstation.

Outbound from the Remote

Workstation program.

8194 Web server (HTTP) port for viewing

logged historical data.

This port is only used when

developing a project using CT HMI

Builder.

Inbound to CT HMI Builder

from client browsers.

8195 Web server (HTTP) port for viewing

logged historical data.

This port is used by run-time

instances of CT HMI SA (stand-

alone, running on an iPanel) or CT

HMI WS (workstation).

Inbound to run-time instances of

CT HMI.

8192 Virtual services class-server, registry

and local-services port used by CT

HMI applications to communicate to

CTServer instances.

Inbound to virtual services.

41001

through

41099

Used to communicate between

iPanels, all CT HMI products

(including Builder and Workstation)

and CTServer.

Inbound to remote object servers

in the listed products.

