
Copyright 2002 - 2004 © Control Technology Corporation
All Rights Reserved.

CONTROL TECHNOLOGY CORPORATION

5100/5200 C User Programming Guide

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

2

Blank

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

3

WARNING: Use of CTC Controllers and software is to be done only by
experienced and qualified personnel who are responsible for the application and use
of control equipment like the CTC controllers. These individuals must satisfy
themselves that all necessary steps have been taken to assure that each application
and use meets all performance and safety requirements, including any applicable
laws, regulations, codes and/or standards. The information in this document is given
as a general guide and all examples are for illustrative purposes only and are not
intended for use in the actual application of CTC product. CTC products are not
designed, sold, or marketed for use in any particular application or installation; this
responsibility resides solely with the user. CTC does not assume any responsibility or
liability, intellectual or otherwise for the use of CTC products.

The information in this document is subject to change without notice. The software
described in this document is provided under license agreement and may be used and
copied only in accordance with the terms of the license agreement. The information,
drawings, and illustrations contained herein are the property of Control Technology
Corporation. No part of this manual may be reproduced or distributed by any means,
electronic or mechanical, for any purpose other than the purchaser s personal use, without
the express written consent of Control Technology Corporation.

The information in this document is current as of the following Hardware and Firmware
revision levels. Some features may not be supported in earlier revisions. See www.ctc-
control.com for the availability of firmware updates or contact CTC Technical Support.

Model Number Hardware Revision Firmware Revision
5100 > C >= 4.05.46
5200 All Revisions > 5.00.26

http://www.ctc-

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

4

TABLE OF CONTENTS

Introduction ... 5
Compiler.. 5
Distributed 'C' Files:.. 6
Features ... 7

Resource Filters... 7
Tasks ... 7
Communications ... 7
Motion Control.. 7
Program Control.. 7
Expansion.. 7

Tools.. 9
Cygwin v1.3.22 Installation (compiler) .. 9
GNU X-Tools V3.0b for Windows Installation .. 13

Verify Compiler Installation ... 16
Final System Configuration .. 18

Loadable C User Functions and Filters .. 20
System Memory Map.. 20
Resource Filter Example ... 22
Virtual Table, User and Quickstep.. 23
VTABLE_QS Function Prototypes and Definitions... 26

Register Access ... 26
Communications ... 27
Diagnostics .. 30
Motor Control.. 30
Resource Filters... 30
System Functions .. 32
Threading .. 33
UDP Networking... 38

UDPTERM/logEvent Utilities .. 42
Invoking UDPTerm... 42

UserApp.c Sample Program.. 48

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

5

Introduction

An advanced programming capability is supported by the 5100 and 5200
operating systems which allows independently compiled 'C' programs to
be loaded into memory for execution alongside Quickstep programs.
CTC recommends that only the most advanced programmers should
consider the use of the features described in this document. This
restriction is necessary due to the fact that extensive control is given to

the 'C' (simple C++ is also supported) user functions and improper use can result in an
unsafe controller.

8 MB of dynamic memory resides in the 5200 controller (2 Meg in the 5100 controller)
where user programs can be loaded and executed. Currently programs reside on the flash
disk in the /_system/Programs directory. Multiple programs may be resident, each
loaded/unloaded by Quickstep and script control running the run userprogram
<filename> script command.

'C' and C++

programs have access to virtually all the resources of the 5100/5200 and
more can be added as is needed. Currently access to serial communications, UDP
packets, TCP virtual serial ports, motion control, analog, digital, register, step logic, etc.
is available. User functions can be called upon initialization, periodic tics, as an
independent Quickstep step, and even as a totally separate thread. An independent
memory and heap area is used, including the 'C' library that is linked. Virtual function
calls are used to expose the Quickstep environment.

Additional functionality will be added to the C programming environment, upon review
of customer requests. CTC believes the growth of this aspect of the product is best
initiated by the user community. If you believe that you need features not described
within this document, contact your CTC regional sales representative.

Compiler

The compiler is available from MicroCross s website and is based on GNU, at
http://www.microcross.com/html/visual_x-tools.html. Only the gcc compiler V3.2 is
supported by to the 5100/5200, for the Hitatchi SH2. . Various manuals documenting

CHAPTER

1

http://www.microcross.com/html/visual_x-tools.html

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

6

the compiler are available from MicroCross and RedHat at
http://www.redhat.com/docs/manuals/gnupro. Since the compiler is an open source
product MicroCross is providing support for the tools for their fee. If you do not wish to
have tools support, the compiler is available free of charge from Control Technology s
web site, http://www.ctc-control.com/customer/idxdownloads.asp

as a zip file. The zip

file is quit large, around 700 Meg, but does contain all necessary files, including the
development source code.

No compiler support is provided by CTC, only MicroCross on a fee basis.

Full floating point capability is supported by the 5100/5200 although the printf, sprintf,
and vsprinf functions that reside within the GNU libraries are not used, and have been
slightly modified. A full build environment, with makefile, is also available for 'C' User
function development. They are supplied as a .zip file, 5X00UserC.zip, for
installation in the 5X00UserC directory.

Distributed 'C' Files:

The CTC 'C' Programming zip file contains a number of files. The C source files are
located in the 5X00UserC/Source subdirectory, header files in
5X00UserC/Headers. Files of interest are:

CoreFunc.c

CTC provided file, not to be modified, which provides a clean interface
to the controller OS exposed virtual function table. A table of pointers to core OS
functions is maintained and isolated by this module.
UserStart.c

CTC provided file, not to be modified, which contains printf/sprintf
substitute, memory allocation routines and some other general functions.
UserApp.c

User program and sample code, contains 'C' main function entry point
and is the file that the user will modify.
uTable.h

Main include file and definition file for virtual function calls and
user/Quickstep interface structures.
ExecEnv.cfg

Configuration file to set the proper environment variables and drive
location of the installed GNU compiler environment.
ExecEnv.exe

Executable file used to launch any of the GNU tools, including
make .
aload.sr1 - Output file of sample build. When placed in the controller
/_system/Programs subdirectory, it may be loaded and executed using the run
userprogram script command.
makefile

Rules file for building user C application programs.
build5100.bat

Example build file on how to modify the file environment to build
an sr1 file for the 5100.
build5200.bat

Example build file on how to modify the file environment to build
an sr1 file for the 5200.

http://www.redhat.com/docs/manuals/gnupro
http://www.ctc-control.com/customer/idxdownloads.asp

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

7

Features

'C' user programs are available to provide advanced functionality. They may be used in a
number of scenarios to enhance the Quickstep language and/or work independently.
Some examples are:

Resource Filters
A resource filter is a 'C' function that will be called whenever a read or write is made to a
resource. The actual value is presented to the 'C' function and it may simply return the
same value or modify it as desired. Resource filters can be installed for any Data
Register, Data Table access, Analog Input/Output values, and/or Motion values. Filters
can provide universal conversions such as scaling, complicated floating point math
calculations, maintaining your own 'C' tables and arrays, or virtually any other
manipulation that is required while intercepting a Quickstep or Network read or write
operation to a resource.

Tasks
'C' functions can be called just like Quickstep steps, accessing the same resources,
manipulating data, custom communications protocols, string manipulation, etc. Access to
the standard Quickstep task round robin loop is available. User functions can be called
once per task loop, or as super tasks, after each Quickstep step.

Communications
User functions have complete access to both the standard serial port raw data and TCP
virtual serial ports (see Lantronix COBOX terminal server), and UDP raw socket packet
interface. This allows for easy manipulation of string data for placement in registers and
the addition of custom communication protocols.

Motion Control
User functions have complete access to the same function calls made by Quickstep to add
complicated motion control algorithms. Filters can be added to Motion registers to ease
the calculation of arc, build tables on the fly, etc.

Program Control
Just as multiple Quickstep programs can reside and be dynamically loaded from the flash
disk, User Programs can also be changed dynamically.

Expansion
As new features are needed, the 'C' User Function interface will be expanded with
additional capabilities added, based on real world input. Library functions are expected
to be made available for standard conversions, filter examples, motion control, and
advanced communications.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

8

Blank

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

9

Tools

The compiler tools are based on open source, industry standard GNU
gcc, freely distributable and extremely stable. This provides a very cost
effective development environment while benefiting from a large
community of developers.

Cygwin v1.3.22 Installation (compiler)

Insert Microcross CD labeled CYGWIN (v1.3.22) or extract the downloaded zip file to
a directory of that name. The welcome message will appear if autorun starts properly,
otherwise double-click the setup application and the following Welcome screen will
appear:

CHAPTER

2

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

10

Click <Next> and the license agreement will appear.

Click <I Accept> followed by <Next>. A screen requesting user information will appear.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

11

The default installation folder will appear, click <Change> if anything other than
C:\Cygwin is desired, then click <Next> to proceed.

A summary of the current settings will appear, click <Back> to make changes or
<Install> to begin:

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

12

Installation will begin and a progress bar and Status message will appear:

Once the installation is finished the below dialog will appear, click <Finish>:

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

13

The generic C compiler is now installed. In next section the CD containing the
specific tools and libraries for the Hitachi SH2 environment will be installed.

GNU X-Tools V3.0b for Windows Installation

Cygwin v1.3.22 must be installed prior to proceeding.

Start the GNU X-Tools Shell using the desktop icon that was installed with Cygwin.

You should get the Microcross banner upon startup of the command shell. This shell is
for inputting UNIX style commands.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

14

Insert the GNU X-Tools CD into your CD drive or unzip the appropriate file to a
temporary directory. Type the following commands to install your tool-suite of choice:

$mount (Enter)

If the mount of the /mnt/cdrom is mapped to your CDROM drive letter with GNU X-
Tools, then skip over to Installation of GNU X-Tools; otherwise, perform the following
steps to mount your CDROM to the proper drive letter. From then on the mount will stay
permanent unless changed:

$ umount s /mnt/cdrom (Enter)
$ mount s b f <CD-drive-letter>: /mnt/cdrom (Enter)
 e.g., mount s b f d: /mnt/cdrom (Enter) (assuming d: drive)

If you are referencing an area on a hard disk that the xtools were unzipped to then mount
the cdrom pointing to the mapped disk drive, which is pointing to that directory.

Example: Unzipped files are in the Xtools subdirectory on the C: drive. Therefore
using Windows tools create a mapped drive, for instance K: pointing to this subdirectory:

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

15

Now mount the mapped drive:
$ mount s b f K: /mnt/cdrom (Enter) (assuming K: drive)

Typing the mount command, as above now shows the /mnt/cdrom has been created and is
mapped to the K: drive.

Now we are ready to install the X-Tools and Visual GDB for the SH2 processor. First
install the X-Tools and SH2 specific libraries:

$ xtools install sh-elf (Enter)

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

16

Now install the Visual GDB debugger (not currently supported):

$ xtools install sh-elf-gdbtk (Enter)

 Verify Compiler Installation

Once installed, you can easily verify the proper operation of your toolsuite by running a
test suite in the Cygwin directory. Follow these steps using the GNU X-Tools Shell:

 $ xtools sh-elf (Enter)

 sh-elf$ cd /home/test (Enter)

 sh-elf$./run-all (Enter) (dot forward slash run-all)

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

17

Upon completion select <Exit> and reboot your PC.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

18

Final System Configuration

In the 5X00UserC directory supplied by CTC, there exists a file called ExecEnv.cfg.
If you did not use the C drive as your installation drive, the first line of this file must be
changed to match your drive:

CYGWIN=C:\CYGWIN -> change the C: to your drive letter.

Also create a tmp subdirectory on the installation drive.

To ensure a proper installation you should build the test program. Change your current
directory to where you put the 5X00 User C software and type execenv make. The
execenv file creates a temporary environment using the ExecEnv.cfg definitions
and runs the makefile using the make utility. Output should appear similar to below:

A file called aload.sr1 should now appear. This file is the loadable module to be
executed by the controller. Its file size should be about 99,024 bytes. This sample
program simply takes any value written to registers 2 through 6 and divides it by 2. It
also contains an example on how to use the serial and UDP network ports. Its source
code is contained within UserApp.c.

Setting up the 'C' programming environment for your particular editor or specially
configuring directory structures is beyond the scope of this document. Refer to the
documentation supplied by Microcross when necessary. Typically source files are placed
in the Source subdirectory and header files in the Header subdirectory. If a new source
file is added make sure to also edit the makefile and add where needed, using an existing
file as an example.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

19

Blank

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

20

Loadable C User Functions and Filters

C User Functions are compiled and linked into a single .sr1 file. This
file is placed in the /_system/Programs directory, on the flash disk. It is
loaded using the run userprogram filename.sr1

script command, into
SDRAM memory (reference map). The run script command can either
be executed at the command line, via Telnet, or embedded in a script file
and executed by writing the script number to register 12311. Reference

the Script Language Guide; #951-520003 (951-510003, 5100), for additional information.

5200 System Memory Map
FLASH

Location Address Range Max Bytes Bus

Main Board Boot,

default flash disk

0x00000000 to 0x007FFFFF

0x00000000 to 0x001FFFFF (min base unit),

0x00100000 to 0x001FFFFF (min user space)

(up to 640 series flash)

8M

(first 1M

reserved*)

*subject to change

16

Main Board

Expansion memory

0x02000000 to 0x02FFFFFF

(up to 640 series flash)
16M 32

Top Memory Expansion

Board

0x01000000 to 0x017FFFFF

(up to 640 series flash)
8M 16

Top Memory Expansion

Board

0x03000000 to 0x037FFFFF

(up to 320 series flash)
8M 32

Bottom Memory

Expansion Board

0x01800000 to 0x017FFFFF

(up to 640 series flash)
8M 16

Bottom Memory

Expansion Board

0x03800000 to 0x03FFFFFF

(up to 320 series flash)
8M 32

Total Maximum

56M

CHAPTER

3

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

21

NV-RAM (Battery Backed)

Location Address Range Max Bytes
Bus

Width

Main Board Boot,

default flash disk

0x04000000 to 0x041FFFFF

0x04100000 to 0x041FFFFF (min user space)

2M

(first 1M

reserved*)

*subject to change

32

Top Memory Expansion

Board

0x04400000 to 0x045FFFFF

Bank 0
2M 32

Top Memory Expansion

Board

0x04600000 to 0x047FFFFF

Bank 1
2M 32

Bottom Memory

Expansion Board

0x04800000 to 0x049FFFFF

Bank 0
2M 16

Bottom Memory

Expansion Board

0x04A00000 to 0x04BFFFFF

Bank 1
2M 32

Total Maximum

10M (9M
user)

SDRAM (Dynamic Memory, volatile at hardware reset and power down)

Location Address Range Max Bytes
Bus

Width

Main Board

Execution

area for firmware and

C User programs

0x06000000 to 0x06FFFFFF

0x06000000 to 0x061FFFFF (2M)
Program execution area, copied from flash

0x06200000 to 0x062FFFFF (1M)
Current Program ram storage and heap

0x06300000 to 0x063FFFFF (1M)
Reserved

0x06400000 to 0x06BFFFFF (8M)
'C' Development area

0x06c00000 to 0x06FFFFFF (4M)
Available, FTP re-flash area @ 0x06c00000.

16M

(8M User)
32

Total Maximum

16M

(8M User)

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

22

Resource Filter Example

A Resource Filter allows a 'C' User Function to modify a value prior to the application
program receiving it or on a write operation, prior to it being written to the actual
resource. To implement a filter a User Function must first be registered with the
Quickstep OS, along with what Resource parameters will cause it to be invoked. A
RESOURCE_INFO structure is filled out and passed to the addResourceFilter
function, specifying the type of resource to be monitored, read and/or write operation,
and the assigned resource number range. For example, adding a filter to register #2 is
given below. Only register 2 is monitored since the start and end range are the same:

RESOURCE_INFO resource;
void *handle;

// Lets install a filter function as a sample
resource.type = RESOURCE_REGISTER;
resource.start = 2; // lets filter register 2
resource.end = 2; // no range, only 2 for now
resource.mode = RESOURCE_READ; // read operation only
// Now add the filter...
handle = addResourceFilter(&resource,sampleFilter);

The sampleFilter function will simply divide any read operations by 2. Therefore, if
Quickstep or CTCMON were to read register 2 and a 40 was contained in it, the value
actually read back would be 20. This same technique can be used for any available
resource. By changing resource.end to a 6 (as in supplied sample program
UserApp.c), a range of registers can be specified. Below is a simple filter function:

int sampleFilter(void *handle, FILTERPARAMS *params, STDVAL value, RETVAL *status)
{

// This sample filter simply processes a read or write operation on a register
switch(params->mode)
{

case RESOURCE_READ:
// Someone is attempting to read the register, actual value in "value"
// Let's divide it by 2 just for test purposes
if (value) // don't divide by 0...

value = value/2;
break;

case RESOURCE_WRITE:
// This won t be called since we only defined for READ, bits are Or ed
break;

}
// Return new or same value to use
return value;

}

When finished with the filter, during cleanup, make sure you call
releaseResourceFilter, passing the handle of the resource.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

23

Virtual Table, User and Quickstep

It is recommended that the programmer reference the sample programs included in the
distribution. Much of the detail provided below references the internal operations and is
not necessarily needed to construct user functions.

Two virtual tables exist which expose functions that are available, both of which are
defined in uTable.h. VTABLE_QS is the table provided by the 5200 OS and contains
the function calls available for the user program (other than the standard C library).
VTABLE_USER is the table that is filled in by the user program, as required. As a quick
reference the tables are defined below:

/**
* struct vtableQS - Quickstep OS Function table *
* *
* Virtual function table for access to Quickstep functions. *
* This table is initialized by Quickstep OS at powerup. *
**/
typedef struct vtableQS
{

REGISTER_GET regRead; // read a Quickstep register
REGISTER_PUT regWrite; // write a Quickstep register

COMM_SENDMSG commSendMsg; // Send a string out a serial port
COMM_GENERICCMD commGenericCmd; // Send a command to a serial port
COMM_GET_RQST commReadMsg; // Read a message from a serial port

ADD_RESOURCE_FILTER addResourceFilter; // add a resource filter to the access list
REMOVE_RESOURCE_FILTER removeResourceFilter; // remove a resource filter from the access list

GET_SYSTEM_TICS systemTics; // Returns number of tics since powerup, in ms.

PRINTF printf; // printf function redirected to UDP debugger output screen
SPRINTF sprintf; // sprintf function used by Quickstep, protected by mutex
LOGEVENTPLUS logEventPlus; // Log a predetermined value type and value/string to the event log
LOGEVENT logEvent; // Log a low level value into the debug event log
FIREWATCHDOG fireWatchdog; // Reset a watchdog timer, Quickstep calls it continually.

// If for any reason not return control must be called in
// less than 86 ms. or reset will occur.

ENTER_STEP_ATOMICITY enterStepAtomicity; // Obtain ownership of step atomicity
EXIT_STEP_ATOMICITY exitStepAtomicity; // Release ownership of step atomicity...

/***/
// below virtual functions are for advanced use only and not
// offered for general support
/***/
MOTION_GET_NUMMOTORS Motion_GetNumMotors; // Get number of motion objects in system
MOTION_GET_ATTRIBUTE Motion_Get_Attribute;
MOTION_PUT_ATTRIBUTE Motion_Put_Attribute;
MOTION_READY Motion_Ready; // Get state of motion object
MOTION_SIMPLE_COMMAND Motion_Simple_Command;

THREAD_CREATE thread_create; // Create a new thread
THREAD_SUSPEND thread_suspend; // Suspend an existing thread
THREAD_RESUME thread_resume; // Allow a suspended thread to resume operation
THREAD_SLEEP thread_sleep; // Sleep for the specified number of tics (1ms/tic)
MUTEX_CREATE mutex_create; // Create a mutex object
MUTEX_GET mutex_get; // get control of the mutex
MUTEX_PUT mutex_put; // give control of the mutex back
MUTEX_DELETE mutex_delete; // Destroy the mutex, giving all memory back

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

24

BYTE_ALLOCATE tx_byte_allocate; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_RELEASE tx_byte_release; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_POOL_CREATE tx_byte_pool_create; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
BYTE_POOL_DELETE tx_byte_pool_delete; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES
INTERRUPT_CONTROL interruptControl; // NOT TO BE USED EXCEPT FOR INTERNAL ROUTINES

COMM_NETWORKOPEN commNetworkOpen; // Open a network connection/socket spawning RX thread
COMM_NETWORKCLOSE commNetworkClose; // Close a network connection
COMM_NETWORKSEND commNetworkSend; // Send data on a network connection

} VTABLE_QS;

/**
* USER VIRTUAL FUNCTION TABLE PROTOTYPE DEFINITIONS *
* *
* Virtual function table hooks for access by Quickstep OS *
* to call if defined during strategic points of system *
* execution. *
* This table is initialized by user within their main() *
* function, with their 'C' functions, as needed, else place *
* a NULL in the table entry *
**/
typedef int (*USER_INITIALIZATION)(void); // Called when started, = main
typedef int (*USER_OPERATION)(void *); // Called to invoke a user operation

typedef void (*TIMER_INTERRUPT_HOOK)(); // invoked every timer tic, don't stay here long!!!
typedef int (*TASK_LOOP_HOOK)(SYSMODE state); // invoked after all Quickstep tasks have executed, round robin
typedef int (*SUPERTASK_HOOK)(SYSMODE state); // invoked after each Quickstep task
typedef int (*SERVICELOOP_HOOK)(SYSMODE state); // invoked after each Quickstep task
typedef void (*END_ALL_TASKS_HOOK)(); // invoked if all tasks are told to end.
typedef void (*USER_SHUTDOWN)(); // invoked if about to load another user module on top of this one.

/**
* struct vtableUser - User Defined Function table *
* *
* Virtual function table for access to User functions. *
* This table is initialized by user within their main() *
* function, upon initial loading into memory and prior to *
* operation *
**/
#define VALID_USER_SIGNATURE 0x10adf7L // Special identifier at start of User table, required
#define USER_VERSION_MASK 0xffff0000L
#define USER_ENTRIES_MASK 0x000000ffL

#define USER_VERSION_REQUIRED 0x00010000L // Not currently used
#define USER_ENTRIES_REQUIRED 8 // Number of function entries in the vtableUser structure
typedef struct vtableUser
{
 long signature; // Unique value to verify table is correct type
 long version; // Version control information to ensure compatibility
 USER_INITIALIZATION initialize; // User routine to be called at start, main() function
 USER_OPERATION function; // NOT USED

TIMER_INTERRUPT_HOOK timerTic; // Invoked on every timer tic (1ms) if defined
TASK_LOOP_HOOK taskLoop; // Invoked as a normal Quickstep step if defined
SUPERTASK_HOOK superTaskLoop; // Invoked after each Quickstep step, like a super task
SERVICELOOP_HOOK serviceLoopHook; // Invoked outside the Quickstep main loop when steps not running
END_ALL_TASKS_HOOK endAllTasks; // Invoked if all tasks are being shutdown by a Quickstep Cancel command
USER_SHUTDOWN userShutdown; // Invoked when a new 'C' module is being loaded for cleanup purposes

} VTABLE_USER;

The function definitions and calling parameters are discussed in the VTABLE_QS
Function Prototypes and Definitions section. The VTABLE_USER contains entries
which are previously set up and may be modified by the user. The table exists at the end
of the CoreFunc.c file:

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

25

// Below is main table referenced by the Quickstep Operating System, tread carefully when changing
// as it must match that of the OS... NOTE: Change version and entries number in table!!!
const VTABLE_USER localUserCommand __attribute__ ((section (".ftable"))) = {
 VALID_USER_SIGNATURE, // signature
 0x00010008, // version 00.01, 8 entries
 main, // initialize
 NULL, // function unused
 NULL, // timerTic;
 taskLoop, // taskLoop;
 NULL, // superTaskLoop;
 NULL, // serviceLoopHook;
 NULL, // endAllTasks;
 userShutdown // userShutdown;
 };

Seven 5200 OS hooks are available for user modification. If a NULL is present then
no operation will be performed for that particular function call.

main

'C' user Program entry point upon being loaded. Any initialization should be
done here and control promptly returned to the calling functions.

timerTic

This function will be called once per 5200 timer tic, from the interrupt
level, approximately 1 millisecond/tic. Control must be returned to the 5200
immediately.

taskLoop

This function will be called once per Quickstep step loop, just like any
other task. Quickstep steps are executed round-robin. Upon return the first
Quickstep task will have a step executed since the 'C' user function taskLoop is
always the last task called. Note that step atomicity is maintained.

superTaskLoop

Same as taskLoop, except this function is called after each
Quickstep task executes a step.

endAllTasks

This function is called to notify the user function that there has
been a task Cancel command executed by Quickstep, causing task execution to
stop, and that any cleanup that should be done needs to be done now.

UserShutdown

This function is provided in CoreFunc.c and is called
whenever a user program is about to be unloaded from memory and a new one
loaded. Frees all resources that have been allocated and returns control.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

26

VTABLE_QS Function Prototypes and Definitions

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* main PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function is the main input function called after a User */
/* C file is loaded into memory for execution. Any initialization */
/* required should be done and control returned. */
/* */
/* MAKE SURE TO RETURN CONTROL AND DON"T TAKE LONG!!! IF CALLED BY */
/* A QUICKSTEP RUNNING A SCRIPT, YOU MAY HAVE TO INVOKE A WATCHDOG */
/* RESET FUNCTION IF SPEND MORE THAN 40 MS HERE (fireWatchdog()) */
/* */
/* INPUT */
/* */
/* none */
/* */
/* OUTPUT */
/* */
/* 0 = Initialization successful, allow User functions to execute */
/* non-zero = Init failed, do not run User functions */
/* */
/* CALLS */
/* - __main() call inserted by the compiler prior to any other code */
/* - user define initialization routines, as required */
/* */
/* CALLED BY */
/* */
/* C User Function file loader (Quickstep OS) */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

int main (void);

Register Access

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* regRead PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* Read a Quickstep Register value. */
/* */
/* INPUT */
/* UINT16 RegNum - Register number from 1 to 64535 to read */
/* INT32 *RegVal - Pointer to a 32 bit wide Integer to store the result*/
/* */
/* OUTPUT */
/* RETVAL - */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

27

/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

RETVAL regRead(UINT16 RegNum, INT32 *RegVal);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* regWrite PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* Write a value to a Quickstep Register */
/* */
/* INPUT */
/* UINT16 RegNum - Register number from 1 to 64535 to read */
/* INT32 RegVal - 32 bit wide Integer value to store */
/* */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* */
/**/

RETVAL regWrite(UINT16 RegNum, INT32 RegVal);

Communications

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* commSendMsg PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* Send a buffer of characters out a serial communications port */
/* */
/* INPUT */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

28

/* INDX port - Serial port to send buffer out on, 1 is COM1, 2 is COM2,*/
/* virtual TCP connections are 3 to 7 */
/* UINT8 *msg - Pointer to unsigned character buffer containing message*/
/* UINT16 size - Length of message to send */
/* */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

RETVAL commSendMsg(INDX port, UINT8 *msg, UINT16 size);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* commGenericCmd PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function sends a generic message command (undefined format) of*/
/* length "size" to the specified "port" using the appropriate driver.*/
/* Any response is copied back to "msg"; the size of the of the */
/* response it copies back to "size". */
/* Messages can be used to change baud rate, etc... */
/* */
/* INPUT */
/* INDX port - Serial port to send buffer out on, 1 is COM1, 2 is COM2,*/
/* virtual TCP connections are 3 to 7 */
/* UINT8 *msg - Pointer to unsigned character buffer containing message*/
/* UINT16 *size - Pointer to unsigned short to store result length in */
/* */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/
/* Below are msg[] contents commands for each available. The command
must*/

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

29

/* be the first byte of msg[] upon calling the function.
COMMCMD_RQST_QUERY - READ

Check if the transmitter is free for message sending.
Upon return:
msg[0] = 0x00 if free.
msg[1] = 0x01 if busy.
*size = 1.

COMMCMD_RQST_CLRBUF - WRITE
Clear the communications receive buffer.
Upon return:
msg[0] = COMMCMD_RSPN_ACK;
*size = 1;

COMMCMD_RQST_PARSING - WRITE
Turn parsing on or off based on the third byte of the message.
Set msg to:
msg[2] = 0 then disable parsing
msg[2] = 1 then enable parsing
Upon return:
msg[0] = COMMCMD_RSPN_ACK;
*size = 1;

COMMCMD_RQST_GETCNT - READ
Return the current receive buffer count.
Upon return:
msg[0] = current count
*size = 1;

COMMCMD_RQST_GETCH - READ
Retrieve the nth character in the receive buffer.
Set msg to:
msg[2] = offset in buffer with 0 being first character
Upon return:
msg[0] = character at position requested
*size = 1;

COMMCMD_RQST_SET_MODBUS - WRITE
Activate/Deactivate Serial port modbus and set global port to use.
Set msg to:
msg[2] = Modbus RTU serial port address 1 to 254, also enables, 0

disables
Upon return:
msg[0] = COMMCMD_RSPN_ACK;
*size = 1;

COMMCMD_RQST_NEWBAUD - WRITE
Change the baud rate on the serial port (only physical, not virtual

work)
msg[2] = baud rate desired where 1 = 600, 2 = 1200, 3 = 2400, 4 =

4800,
5 = 9600, 6 = 19200 (default at powerup), 7 = 38400.

Upon return:
msg[0] = COMMCMD_RSPN_NACK if bad value, or COMMCMD_RSPN_ACK if OK
*size = 1;

*/

RETVAL commGenericCmd(INDX port, UINT8 *msg, UINT16 *size);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* commReadMsg PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function invokes the driver associated with "port" and */
/* returns a pointer to the buffer that contains the request message. */
/* The message contents are NOT copied. If a request message from */
/* the port is not available, the "buf" pointer is set to NULL. The */
/* message contents are assumed to be encoded in one of the standard */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

30

/* protocols. Size is set to the number of received bytes in the */
/* buffer, not the number of bytes in the message. */
/* */
/* INPUT */
/* INDX port - Serial port to send buffer out on, 1 is COM1, 2 is COM2,*/
/* virtual TCP connections are 3 to 7 */
/* UINT8 **buf - Pointer to unsigned character buffer stored here or */
/* NULL if no message */
/* UINT16 *size - Number of bytes in buffer */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* (also register specific return values defined in Errors.h) */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

RETVAL commReadMsg(INDX port, UINT8 **buf,UINT16 *size);

Diagnostics

RETVAL logEvent(EventCode event, long parameter);

Motor Control
TBD functions available in distribution but being further defined.

UINT16 Motion_GetNumMotors(void);

RETVAL Motion_Get_Attribute(UINT8 MotorNum, UINT8 Attribute, STDVAL
*value);

RETVAL Motion_Put_Attribute(UINT8 MotorNum, UINT8 Attribute, STDVAL
value);

RETVAL Motion_Ready(UINT8 MotorNum, STDVAL *value);

RETVAL Motion_Simple_Command(UINT8 MotorNum, UINT8 Command);

Resource Filters

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* addResourceFilter PORTABLE C */
/* 1.0 */
/* DESCRIPTION */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

31

/* This function is called to add a resource filter to the Quickstep */
/* list. The resource to monitor is defined in the RESOURCE_INFO */
/* structure and passed as a parameter. A pointer to the 'C' function */
/* to call upon access is also passed */
/* */
/* INPUT */
/* RESOURCE_INFO *rsc - Pointer to structure defining resource and */
/* access method upon which to invoke the passed function */
/* FILTER_FUNCTION func - Pointer to 'C' function to call when the */
/* parameters of the RESOURCE_INFO structure are satisfied */
/* */
/* OUTPUT */
/* void *handle - Handle returned by addResourceFilter or NULL if */
/* failed */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**
* RESOURCE_INFO rsc - addResourceFilter parameter block *
* *
* This parameter block must be filled out prior to registering *
* a callback function for a Quickstep resource. A pointer to *
* it is passed to the addResourceFilter() function *
**/
/*
typedef struct resourceInfo {

int type; // Type of resource to add filter to,
RESOURCE_ANALOGIN, RESOURCE_ANALOGOUT, etc...

int mode; // Type of access to invoke filter on when accessed,
RESOURCE_READ, RESOURCE_WRITE

int start; // Start number of resource (setting a range)
int end; // End number of resource, make same as start if

only one (setting a range).
} RESOURCE_INFO;
*/
/**
* FILTER_FUNCTION func *
* *
* Type definition for Resource Callback function *
* *
* PARAMETERS: *
* void *handle - handle returned by addUserResourceFilter when *
* function was registered *
* FILTERPARAMS *params - Access information block to detail *
* what is being done *
* STDVAL value - Current value being read or written. *
* RETVAL *status - pointer to status code that will be returned *
* to Quickstep. Leaving it unchanged will *
* default to SUCCESS. Use only for defined *
* errors. *
* *
* RETURNS: *
* int - new value to return to Quickstep on a read or value to *
* write, if no change then return passed "value" *

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

32

***/

void *addResourceFilter(RESOURCE_INFO *rsc, FILTER_FUNCTION func);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* removeResourceFilter PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function is called to remove a resource filter from the */
/* Quickstep list. A filter is removed by passing the handle that */
/* was returned when it was first added. */
/* */
/* INPUT */
/* void *handle - Handle returned by addResourceFilter */
/* */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

RETVAL removeResourceFilter(void *handle);

System Functions

RETVAL enterStepAtomicity(void);

RETVAL exitStepAtomicity(void);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* systemTics PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function is called to reset the watchdog system timer that */
/* will cause a system reset and fault if not invoked every 86 ms. */
/* Quickstep OS will automatically call this function as required */
/* but if a User Function runs as a step it must make the call if it */
/* maintains control too long, preventing Quickstep OS from calling */
/* the function. */
/* */
/* INPUT */
/* none */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

33

/* */
/* OUTPUT */
/* unsigned long - number of system tics, in milliseconds since powerup*/
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

unsigned long systemTics(void); // number of timer tics since
powerup, 1ms/tic currently

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* fireWatchdog PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function is called to reset the watchdog system timer that */
/* will cause a system reset and fault if not invoked every 86 ms. */
/* Quickstep OS will automatically call this function as required */
/* but if a User Function runs as a step it must make the call if it */
/* maintains control too long, preventing Quickstep OS from calling */
/* the function. */
/* */
/* INPUT */
/* none */
/* */
/* OUTPUT */
/* RETVAL - */
/* SUCCESS = function called properly */
/* ERROR_NOT_DEFINED = Quickstep OS table not found */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

RETVAL fireWatchdog(void);

Threading

/**/
/* */
/* FUNCTION RELEASE */
/* */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

34

/* _tx_thread_create PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function creates a thread and places it on the list of created */
/* threads. */
/* */
/* INPUT */
/* */
/* thread_ptr Thread control block pointer */
/* name Pointer to thread name string */
/* entry_function Entry function of the thread */
/* entry_input 32-bit input value to thread */
/* stack_start Pointer to start of stack */
/* stack_size Stack size in bytes */
/* priority Priority of thread (0-31) */
/* preempt_threshold Preemption threshold */
/* time_slice Thread time-slice value */
/* auto_start Automatic start selection */
/* */
/* OUTPUT */
/* */
/* return status Thread create return status */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Application Code */
/* _tx_timer_initialize Create system timer thread */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _tx_thread_create(TX_THREAD *thread_ptr,
/* Task Name */
char *name_ptr,
/* Routine and Parameter to pass */
void (*entry_function)(unsigned long), unsigned long entry_input,

/* Stack start and length */
void *stack_start, unsigned long stack_size,

/* Priority and Threshold */
unsigned int priority, unsigned int preempt_threshold,
/* time slice */
unsigned long time_slice, unsigned int auto_start);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_thread_suspend PORTABLE C
*/
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function handles application suspend requests. If the suspend */
/* requires actual processing, this function calls the actual suspend */
/* thread routine. */
/* */
/* INPUT */
/* */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

35

/* thread_ptr Pointer to thread to suspend */
/* */
/* OUTPUT */
/* */
/* status Return completion status */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Application code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _tx_thread_suspend(TX_THREAD *thread_ptr);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_thread_resume PORTABLE C */
/* */
/* DESCRIPTION */
/* */
/* This function processes application resume thread services. Actual */
/* thread resumption is performed in the core service. */
/* */
/* INPUT */
/* */
/* thread_ptr Pointer to thread to resume */
/* */
/* OUTPUT */
/* */
/* status Service return status */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* Application Code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _tx_thread_resume(TX_THREAD *thread_ptr);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_thread_sleep PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function handles application thread sleep requests. If the */
/* sleep request was called from a non-thread, an error is returned. */
/* */
/* INPUT */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

36

/* */
/* timer_ticks Number of timer ticks to sleep*/
/* */
/* OUTPUT */
/* */
/* status Return completion status */
/* */
/* CALLS */
/* _tx_timer_activate Activate sleep timer */
/* _tx_thread_suspend Actual thread suspension */
/* */
/* CALLED BY */
/* */
/* Application code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _tx_thread_sleep(unsigned long tics);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_mutex_create PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function creates a mutex with optional priority inheritance as */
/* specified in this call. */
/* */
/* INPUT */
/* mutex_ptr Pointer to mutex control block*/
/* name_ptr Pointer to mutex name */
/* inherit Priority inheritance option */
/* */
/* OUTPUT */
/* TX_SUCCESS Successful completion status */
/* */
/* CALLS */
/* */
/* None */
/* */
/* CALLED BY */
/* Application Code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _txe_mutex_create(TX_MUTEX *mutex_ptr, char *name, unsigned
int inherit);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_mutex_get PORTABLE C */
/* 1.0 */
/* DESCRIPTION */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

37

/* */
/* This function gets the specified mutex. If the calling thread */
/* already owns the mutex, an ownership count is simply increased. */
/* */
/* INPUT */
/* mutex_ptr Pointer to mutex control block */
/* wait_option Suspension option */
/* */
/* OUTPUT */
/* status Completion status */
/* */
/* CALLS */
/* _tx_timer_activate Activate timer routine */
/* _tx_thread_suspend Suspend thread service */
/* _tx_mutex_priority_change Inherit thread priority */
/* */
/* CALLED BY */
/* Application Code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _txe_mutex_get(TX_MUTEX *mutex_ptr, unsigned long
wait_option);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _tx_mutex_put PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function puts back an instance of the specified mutex. */
/* */
/* INPUT */
/* mutex_ptr Pointer to mutex control block */
/* */
/* OUTPUT */
/* TX_SUCCESS Success completion status */
/* */
/* CALLS */
/* _tx_timer_deactivate Deactivate timer routine */
/* _tx_thread_resume Resume thread service */
/* _tx_thread_system_return Return to system routine */
/* _tx_mutex_priority_change Restore previous thread priority */
/* _tx_mutex_prioritize Prioritize the mutex suspension */
/* */
/* CALLED BY */
/* Application Code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _txe_mutex_put(TX_MUTEX *mutex_ptr);

/**/
/* */
/* FUNCTION RELEASE */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

38

/* */
/* _tx_mutex_delete PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function deletes the specified mutex. All threads */
/* suspended on the mutex are resumed with the TX_DELETED status */
/* code. */
/* */
/* INPUT */
/* mutex_ptr Pointer to mutex control block */
/* */
/* OUTPUT */
/* TX_SUCCESS Successful completion status */
/* */
/* CALLS */
/* _tx_timer_deactivate Deactivate timer routine */
/* _tx_thread_resume Resume thread service */
/* */
/* CALLED BY */
/* Application Code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/**/

unsigned int _txe_mutex_delete(TX_MUTEX *mutex_ptr);

UDP Networking

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* commNetworkOpen PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function requests that a Network UDP or TCP port be openned. */
/* A RX thread will be spawned to automatically monitor the socket */
/* state. This functions a USERCONNECTION control block that must */
/* not be modfied after a successful call and should be treated as */
/* a connection HANDLE on other Network calls. A callback routine */
/* must be suppled as one of the USERCONNECTION parameters which will */
/* be invoked whenever a change of state occurs, including packet */
/* reception. */
/* */
/* INPUT */
/* USERCONNECTION *user - Structure used to pass connection/socket */
/* information, must be initialized prior to call. Only */
/* network type NETWORK_TYPE_UDP currently supported */
/* OUTPUT */
/* int - 0 if success and -1 if failed */
/* user->state set to USER_FAILED or USER_CONNECTING */
/* NOTE: Once user->state becomes USER_CONNECTED this structure */
/* may be modifed and used for commNetworkSend operations */
/* It is cloned by the network thread. The copy is what is */
/* modified and supplied to the callback function. */
/* CALLS */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

39

/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

int commNetworkOpen(USERCONNECTION *user);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* commNetworkClose PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* This function requests that an existing network connection/socket */
/* created with a call to commNetworkOpen, be closed. The same */
/* USERCONNECTION structure passed to the commNetworkOpen call should */
/* be passed to this function. */
/* */
/* INPUT */
/* USERCONNECTION *user - Structure used to pass connection/socket */
/* information, must be initialized prior to call. Only */
/* network type NETWORK_TYPE_UDP currently supported */
/* Should be same USERCONNECTION passed to commNetworkOpen */
/* */
/* OUTPUT */
/* NONE */
/* user->state modified to either USER_FAILED or USER_DISCONNECTED */
/* */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

void commNetworkClose(USERCONNECTION *user);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* commNetworkSend PORTABLE C */
/* 1.0 */
/* DESCRIPTION */

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

40

/* This function requests that a packet be sent on a connection */
/* openned by commNetworkOpen. The USERCONNECTION control block */
/* must contain the proper information. */
/* */
/* INPUT */
/* USERCONNECTION *user - Structure returned by commNetworkOpen with */
/* following parameters set as desired: */
/* packetBuf - pointer to buffer to send */
/* length - number of bytes to send */
/* destIp - If UDP, destination IP address */
/* destPort - if UDP, destination port address */
/* */
/* OUTPUT */
/* int - number of bytes queued */
/* user->state set to USER_FAILED or USER_DATAQUEUED */
/* NOTE: Limited queuing is available at the network stack level */
/* exceeding this will result in packet loss. Do not send */
/* a large number of packets to the host without using a */
/* protocol that can verify packets have been transfered. */
/* This is typically only a problem if you attempt to sit in a*/
/* loop continually transmitting data. */
/* CALLS */
/* Quickstep OS virtual table function pointer */
/* */
/* CALLED BY */
/* As required by user code */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/

int commNetworkSend(USERCONNECTION *user)

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

41

Blank

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

42

UDPTERM/logEvent Utilities

UDPTerm is an unsupported tool which executes on your PC. It is
extremely useful while trying to debug 'C' User programs. It
communicates with the controller using UDP packets and listens for
output, such as that from 'printf' statements.

LogEvent is a function call that can be used to write unsigned long
values to a log buffer, for display from within UDPTerm. This is useful for low level
debugging where slowing the processor down with a printf statement could cause a
problem. In addition, logEvent is helpful when numerous writes are useful. It is also
used internally by CTC to log any exceptions that may occur or network connections,
reboots, and other helpful debugging information. A circular buffer is used. The
function call consists of:

logEvent(EVENT_DEBUG,unsigned long); // where user supplies supply the unsigned long

When the controller is busy, 'printf' output may not always appear so if there is
any question you will want to use the logEvent(EVENT_DEBUG,####); routine.

Invoking UDPTerm

To invoke UDPTerm, on your PC the IP address of the terminal and the port to send and
listen on is required. Only port 1202 is supported by the controller. The following
example shows how to connect to a controller with the IP address of 12.40.53.158:

UDPTerm 12.40.53.158 1202 1202

After contact is made press the Enter key a few times and the Command: prompt will
appear. There are numerous commands, some of the useful ones are:

CHAPTER

4

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

43

l - list log, logEvent values can be viewed with this command. For example in the
Network Startup thread the #00009 log was done with a

logEvent(EVENT_DEBUG,3015); function call.

L X - clear log

o ? - thread help

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

44

o - list threads running summary

o m - list mutexs and what is pending

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

45

o t - list threads and detailed information

Net ? network help

net - network state and information, IP, MAC...

dhcp - dhcp information

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

46

m ?

m 0xaddress - dump memory starting at 0x######## in hex

All of these commands are the same as used when using telnet and run the 'enable
debug' command. Also only one instance may run at a time on the PC.

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

47

Blank

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

48

UserApp.c Sample Program

This section includes sample code which is distributed within the C
Development kit for the controller. This program introduces the
concepts of register filters, serial and network communications.

/**/
/* MODULE: userApp.c */
/* */
/* MODULE DESCRIPTION: */
/* */
/* This module is provided as an example for accessing the Quickstep OS */
/* from a C programming environment. The supplied main() example is for */
/* reference only and must exist somewhere in the users code and it must */
/* return control in a timely fashion. */
/* */
/* REVISION HISTORY: */
/* */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <math.h>

// Always include CoreFunc.h in any module that will access the Quickstep OS
#include "CoreFunc.h"

#define ESC "\x1B"

// Function prototype
int sampleFilter(void *handle, FILTERPARAMS *params, STDVAL value, RETVAL *status);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* main PORTABLE C */
/* 1.0 */
/* DESCRIPTION */
/* */
/* This function is the main input function called after a User */
/* C file is loaded into memory for execution. Any initialization */
/* required should be done and control returned. */
/* */
/* MAKE SURE TO RETURN CONTROL AND DON"T TAKE LONG!!! IF CALLED BY */
/* A QUICKSTEP RUNNING A SCRIPT, YOU MAY HAVE TO INVOKE A WATCHDOG */

CHAPTER

5

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

49

/* RESET FUNCTION IF SPEND MORE THAN 40 MS HERE (fireWatchdog()) */
/* */
/* INPUT */
/* */
/* none */
/* */
/* OUTPUT */
/* */
/* 0 = Initialization successful, allow User functions to execute */
/* non-zero = Init failed, do not run User functions */
/* */
/* CALLS */
/* - __main() call must be madie prior to any other code */
/* - user define initialization routines, as required */
/* */
/* CALLED BY */
/* */
/* C User Function file loader (Quickstep OS) */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* */
/**/
int __main();

int main (void)
{

RESOURCE_INFO resource;
void *handle;

__main();

// Log Event Code to signal we made it here successfully. This is not
// required but placed here as test code. Note all user Events should
// start at 50000, below that is reserved for Quickstep OS
logEvent(EVENT_DEBUG, 50000);

// Send a message to the UDP Debugger screen as though it was our STDIO output
printf("Hello World.\r\n");

// Lets install a filter function as a sample
resource.type = RESOURCE_REGISTER;
resource.start = 2; // lets filter register 2
resource.end = 6; // no range, only 2 for now
resource.mode = RESOURCE_READ; // read operation only, if write too would |

RESOURCE_WRITE
// Now add the filter...
handle = addResourceFilter(&resource,sampleFilter);

// if error occurs return non-zero and User functions will not run...
return(0);

}

// User Filter Example, register 2 to 6 will be divided by 2 when written
int sampleFilter(void *handle, FILTERPARAMS *params, STDVAL value, RETVAL *status)
{

// This sample filter simply processes a read or write operation on a register
switch(params->mode)
{
case RESOURCE_READ:

// Someone is attempting to read the register, actual value in in "value"
// Let's divide it by 2 just for test purposes
if (value) // don't divide by 0...

value = value/2;
break;

case RESOURCE_WRITE:
// Let's not do anything on a write operation, we could have added filter
// so only reads called this funtion also but this is for future reference
// on how to process a write

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

50

break;

}
// Return new or same value to use
return value;

}

// User taskLoop Function Example invoked on main Quickstep loop after all steps execute
// NOTE: THIS ONLY RUNS WHEN CONTROLLER IS NOT FAULTED!!!
// EVEN IF QUICKSET IS NOT USED NEED A SINGLE INSTRUCTION QUICKSTEP PROGRAM IN THE
CONTROLLER!
// userServiceLoopHook is called when faulted and also after every task step
// you may use the SYSMODE state to determine when taskLoop is not running, possibly only
running
// certain tasks when in FAULT mode, like communications. Note that if faulted power is
// is turned off on the outputs (VBIAS).
int taskLoop(SYSMODE state)
{

void testSerial(int);
void testNetwork();
// Note spending more than 40 ms in this loop will cause a watchdog fault! Not
// including time may be pre-empted by interrupts and communication threads
// fireWatchdog(); will need to be called to reset timer if do.
// (Watchdog reset upon entry and exit of this function, automatically)
testSerial(COM1);
testNetwork();
return 0; // always return 0, not used but may be some day

}

// Serial port test function
// commPort = COM1 or COM2 for hardware serial ports
// Register 1 = transmit status/results
// Register 2 = loop counter
void testSerial(int commPort)
{
static int initialized = 0;
static int i = 1;
static int txcnt = 1;
static int errcnt = 0;
RETVAL r;
UINT8 szMsg[3];
UINT16 wSize;
char buf[70];

if (!initialized)
{

initialized = 1;
// first must disable parsing so get raw data on receiver
szMsg[0] = COMMCMD_RQST_PARSING;
szMsg[1] = 0; /*dummy for port value*/
szMsg[2] = 0;
wSize = 3;
commGenericCmd(commPort, szMsg, &wSize);

}

// Invoked here on each loop of quickstep execution
// Check to see if transmitter is ready
szMsg[0] = COMMCMD_RQST_QUERY;
szMsg[1] = 0; /*dummy for port value*/
wSize = 2;
commGenericCmd(commPort, szMsg, &wSize);

if (szMsg[0] == COMMCMD_RSPN_OK)
{

// Serial port ready
sprintf(buf,"Control Technology Serial Port Test #%d, errors -

%d.\r\n",txcnt,errcnt);
r = commSendMsg(commPort, buf,strlen(buf));
if (r != SUCCESS)
{

// error occured, r = 35 ERROR_NO_COMM_PORT
errcnt++;

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

51

regWrite(1, r);

}
else
{

txcnt++;
regWrite(1, 0);

}
}
else if (szMsg[0] == COMMCMD_RSPN_BUSY)
{

// port is busy
regWrite(1, 999);

}
else
{

// unknown response
regWrite(1,888);

}
// set loop counter, using register 18
regWrite(2, i++);

}

/******************* BELOW FOR NETWORK OPERATION **********************/
USERCONNECTION user; // Structure to define network connections

// must not be stack variable and must be passed
// to Open, Send, and Close routines

// Maximum number of packets that can be queued
#define MAX_USER_PACKETS_QUEUED 5
#define MAX_USER_MESSAGE_SIZE 400 // set this to largest message size
// Packet structure for queue
typedef struct
{

unsigned char packet[MAX_USER_MESSAGE_SIZE+1];
int length;
unsigned long hostIp;
int hostPort;

} NETWORKPACKET;

// When counts -1 there are no packets to process, when same full
int incount; // storage count
int outcount; // retrieval count
NETWORKPACKET packets[MAX_USER_PACKETS_QUEUED];

TX_MUTEX packetMutex; // Need to mutex joint resources with main Quickstep thread

// Network Function test program to create a thread to monitor UDP port 7000
// also sends a sample message upon connection
void testNetwork()
{
static int state = 0;
void networkStateChange(void *ptr);

if (state == 0)
{

// first time called therefore open a UDP port, 7000
// clear everything out
memset((void *)&user,0,sizeof(USERCONNECTION));
user.srcPort = 7000;
user.type = NETWORK_TYPE_UDP;
incount = outcount = -1; // set to empty
// define the function to be invoked by network thread when change of state
// Note that mutexes must be used within this function if common resources

accessed
user.StateCallback = networkStateChange;
printf("attempt open.\r\n");
// Create a mutex since this thread and network callback are different threads
_txe_mutex_create(&packetMutex,"USER C UDP",TX_INHERIT);

if (commNetworkOpen((USERCONNECTION *)&user))
{

// error occurred, cleanup

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

52

printf("Network Open failed\r\n");
_txe_mutex_delete(&packetMutex);
return;

}
printf("open occurred.\r\n");
// Network thread spawned so now await callback with change of state
// saying connected. Can also watch our Control Block.
state++;

}
else if (state == 1)
{

// await Network thread to be operational
if (user.state == USER_CONNECTED)
{

printf("got connection.\r\n");
// we are now ready to run
state++;

}
else if (user.state == USER_DISCONNECTED)
{

// connection failed, abort, already closed
state--;

}
else if (user.state == USER_CONNECTING)
{

// thread still starting up
}
else
{

// undefined?????????
}

}
else if (state == 2)
{

// lets idle since running, wait for Network data to process
if (outcount == -1)
{

// nothing to do
return;

}
// make sure it is null terminated
packets[outcount].packet[packets[outcount].length] = 0x00;
// get next buffer to use, do something
printf("%s\r\n",packets[outcount].packet); // this sent to UDPterm last heard

from on port 1202

// Test sending a response to the packet
user.packetBuf = "UDP Packet reception Successful";
user.length = strlen(user.packetBuf);
// set response destination to originator of packet
user.destIp = packets[outcount].hostIp;
user.destPort = packets[outcount].hostPort;
commNetworkSend((USERCONNECTION *)&user);

// must set mutex when bump counter but not needed to process data
_txe_mutex_get((TX_MUTEX *)&packetMutex, TX_WAIT_FOREVER);
outcount++;
if (outcount == MAX_USER_PACKETS_QUEUED)
{

outcount = 0;
}
if (outcount == incount)
{

// we are empty now
outcount = incount = -1;

}
// unlock resource
_txe_mutex_put((TX_MUTEX *)&packetMutex);

}
}

5100/5200 C User Programming Guide

Control Technology Corporation
Document 951-520004-0002 10/04 (Preliminary)

53

// Callback function to process RX thread state change
void networkStateChange(void *ptr)
{

// It is left to the user to modify the below code for their application

USERCONNECTION *user = (USERCONNECTION *)ptr;

switch(user->state)
{

case USER_CONNECTED:
// OK to send now
printf("Got USER_CONNECTED\r\n");
break;

case USER_DISCONNECTED:
// this connection is has been broken
printf("Got USER_DISCONNECTED\r\n");
break;

case USER_DATA_AVAILABLE:
// offload data packet, do not access serial ports except on may

Quickstep loop
// the routines is not thread safe
printf("Got USER_DATA_AVAILABLE, length %d\r\n",user->length);
// move data to buffers
_txe_mutex_get((TX_MUTEX *)&packetMutex, TX_WAIT_FOREVER);
if (incount == -1)
{

// this is the first packet
outcount = 0;
incount = 0;

}
else if (incount == outcount)
{

_txe_mutex_put((TX_MUTEX *)&packetMutex);
return; // ignore packet, buffers full

}
// Move the packet data into our local queues for processing
memcpy(packets[incount].packet,user->packetBuf,user->length);
packets[incount].length = user->length;
packets[incount].hostIp = user->destIp;
packets[incount].hostPort = user->destPort;
incount++;
if (incount == MAX_USER_PACKETS_QUEUED)
{

// wrap it
incount = 0;

}
_txe_mutex_put((TX_MUTEX *)&packetMutex);
break;

default:
printf("Got undefined state\r\n");
return;

}
}

// Function called when program is being unloaded, possibly new being loaded
void userCleanUp()
{
// must return any allocated memory to system or close network connections if open so threads
stop

if (user.state == USER_CONNECTED)
{

commNetworkClose((USERCONNECTION *)&user);
}
_txe_mutex_delete((TX_MUTEX *)&packetMutex);

}

