Control Technology Corp.

for Model 2700 Registers

R indicates read, W indicates write.

General Purpose Registers

General Purpose registers are 32-bit. They may be accessed for a variety of reasons.
1-8 Internal Counters: R/W, Counters may also be used as general purpose registers.
9-125 General Purpose Registers: R/W, Data in these registers is stored in volatile memory (lost when controller is powered down).
129-130 General Purpose Registers: R/W, (volatile)
133-500 General Purpose Registers: R/W, (volatile)
501-1000 General Purpose Registers: R/W, Data is stored in nonvolatile memory.
32001-36000 Additional non-volatile registers (Model 2700AP only)
Data Table Registers
126 Data Table Pointer: R/W, Used with column reference.
131-132 Data Table Row and Column Pointers: R/W, Used with register 9000
9000 Access to the Data Table: R/W, Phantom - works with 131 \&t 132.

Phantom Register

127-128 Pointer for Phantom Register and Phantom Register
Alternate Access to Resources
1001-1999 Alternate Access to Outputs 1-999: R/W, $0=$ off, $1=$ on.
2001-2999 Alternate Access to Inputs 1-999: R only, $0=$ open, 1 = closed.
3001-3016 Four-Digit Displays, W only, Used with 2204 module.
4001-4016 Eight-Digit Display: W only, Used with 2204 module.
5001-5008 High Speed Counter: R/W, Used with 2208 module.
5501
6001-6016 Decimal Point Position: R/W, Used with Numeric Display on 2204.
Frequency Counter: R/W, Store 1 to place first 2208 in frequency counter mode.

10001-10032 Access Outputs as a 32-bit Number: R/W
10101-10164 Access Outputs as a 16-bit Number: R/W
10201-10328 Access Outputs as a 8-bit Number: R/W
11001-11032 Access Inputs as a 32-bit Number: R only
11101-11164 Access Inputs as a 16-bit Number: R only
11201-11328 Access inputs as a 8-bit Number: R only
$13005 \quad$ Flag Access as 32-bit Number: R/W, Alternate access to Flags 1-32.
13201-13232 Alternative Access to Flags: R/W, $0=$ off, $1=o n$.

Access to Analog Input and Output Points

8001-8128 Alternate Access to Analog Outputs: R/W
8501-8628 Alternate Access to Analog Inputs: R only
9001-9128 Gain Range Select: R/W, Used with 2213 \& 2215 Analog Input modules.
9501-9628 Resolution of Analog Inputs: R/W, Specifies resolution for 2213 \& 2215 analog input modules, $0=11$-bit conversion \&t 1 = 14-bit conversion.
18001-18128 Model 2220 and Multipro Digital Output Access: R/W, Available in 2600 and 2700 series controllers with firmware revision R 2.9 or higher.
18501-18628 Digital Filter Length for Model 2220 and Multipro Analog Inputs: R/W, Available in 2600 and 2700 series controllers with firmware revision R 2.9 or higher.
19001-19128 Analog Input Minimum Threshold Set Point: R/W, Controls on-board digital outputs on model 2220 and Multipro.
19501-19628 Analog Input Maximum Threshold Set Point: R/W, Controls on-board digital outputs on model 2220 and Multipro.

Communications Control Registers

12000 Select Controller Communications Port: W access
12000 Message Transmission Status for Controllers: R access, $0=$ not busy, $1=$ busy.
12001 Transmit Message from Data Table: W only, Store row number to transmit.
12001-12248 Controller Receive Buffer Access, R only, 1 character per location.
12300 Protocol Variation: R/W, Controls RS-232 terminal protocol modes. $0=$ computer,
1 = terminal
12301 Baud Rate Selection: W only, $0=300,1=600,2=1200,3=2400,4=4800,5=9600,6=19.2 \mathrm{~K}, 7=38.4 \mathrm{k}$.
12302 Character Count in Receive Buffer: R access
12302 Clear Input Buffer: W access, Discards incoming message and clears input buffer.
12303 Disable Automatic Parsing, R/W, $0=$ inhibits response, $1=$ resumes normal response to incoming messages.
12304 Extract Number from RS-232 Receive Buffer: R only, Automatically assembles ASCII strings into a numeric value. The result is a signed 32-bit number. Automatically assembles strings of ASCII characters containing numeric information into a numeric value. Number multiplied by 10,000, allowing decimal points to 4 places.
12305 Communications Priority: R/W, When running multiple tasks. $0=$ normal, 1 = priority.
12306 Serial Port Switching: R/W, Initiate and deactivate serial port switching.
12307 Serial Port Switching Delay: R/W, Specifies time delay for the switching relay.
12309 Specify Output for Serial Port Switching: R/W
12310 Data Configuration for On-board Communications Port: R/W, 1 = 7-data bits, Odd parity, $0=$ return to default of 8data bit, no parity mode.
Model 2216 DeviceNet Module Special Registers
13250-13399 I/O Data Registers: R/W, Provides access to specific section of an I/O message. Register reads mapped as inputs and writes mapped as outputs. Mapped registers with nonfunctioning connections return a 0.
13300-13463 Individual Module Status and Retry Time: R/W, Upper 16 bits are individual module status and lower 16 bits give retry time (read). Retry time is in seconds. Writing 0 immediately retrys once if there is an error. Uses hexadecimal notation. See table in Register Reference Guide for hexadecimal to decimal equilivents.
13464 Scanner Status: R/W, Provides status information for the scanner. Uses hexadecimal notation. See table in Register Reference Guide for hexadecimal to decimal equivalents.
13465 Scanner Module Status: R/W, When configured properly and scanning, writing module's MACID is read as $1.0=$ module not configured, not present or has error.
13466 Digital Input Status: R/W, Writing input number (1-1024) to register is read as 1 if input data valid and 0 if invalid. Active connection with no errors.
13467 Digital Output Status: R/W, Writing output number (1-128) to register is read as 1 if output data valid and 0 if invalid. Active connection with no errors.
$13468 \quad$ Analog Input Status: R/W, Writing input number to register is read as 1 if analog input data valid and 0 if invalid. Active connection with no errors.
13469 Analog Output Status: R/W, Writing input number to register is read as 1 if analog output data valid and 0 if invalid.
Active connection with no errors.
$13480 \quad$ Scanner MACID: Read only, Lists current active DeviceNet setting.
13481 Scanner Baud Rate: Read only, Scanner baud rate, $0=125 \mathrm{kBd}, 1=250 \mathrm{kBd}, 2=500 \mathrm{kBd}$
13482 Configuration Switch: Read only, Stores configuration switch settings, MACID lower 8 bits, next bit $=$ baud rate.
13483
13490
13491
13492
13493
13494
13495
13496
$13499 \quad$ Update Cycle (ms) for Slave Mode. R/W, Stores update cycle time (in ms) or scan rate for slave registers 13491-13495. $0=$ disable slave.
13500-13489 Store Explicit Messages, R/W, Stores data to be included in explicit messages or for response to explicit messages.
13590
Module ID for Explicit Message, R/W, Stores module ID for explicit messaging.
Message Number and Register Status, W, Lists message number to send.

13591	Message Number and Register Status, R, Lists register status. $<0=$ busy, $1-254=$ No. of bytes response received (includes protocol and service byte codes), $255=$ no connection.
13592	Requested and Actual Explicit Message Format, R/W, In write mode,specifies the requested explicit message format, 0 $=8 / 8,1=8 / 16,2=16 / 16,3=16 / 8$. In read mode, sets actual messge format in low byte, $8=1,255=$ no connection.
13593	Data Index for Registers 13594-13599, R/W, Index or pointer, works in conjuction with controller's data buffer. If no connection, accessing register results in error.
13594	Service Code - Explicit Messge, R/W, Stores the service code for an explicit message. Works in conjuction with register 13593.
13595	Class ID Value - Explicit Messge, R/W, Stores the class ID value for an explicit message. Size depends on format specified in 13592. Works in conjuction with register 13593.
13596	Instance Value - Explicit Messge, R/W, Stores the instance value for an explicit message. Size depends on format specified in 13592. Works in conjuction with register 13593.
13597	Selected Data as Signed Byte - Extended to 32 bits, R/W, Stores data as a signed byte. In read mode, can be extended to 32 bits. In write mode, only lowest 8 data bits are used. Works in conjuction with register 13593.
13598	Selected Data as Signed Word (16 bits) - Extended to 32 bits, R/W, Stores data as a signed word. In read mode, can be extended to 32 bits. In write mode, only lowest 16 data bits are used. Works in conjuction with register 13593.
13599	Selected Data as Signed Long Integer 32 bits, R/W, Stores data as a signed long integer; can be extended to 32 bits. Works in conjuction with register 13593.

Model 2217 Ethernet Communications Module Special Registers

20000 Node Number: R/W, Controller's node number, 1-999. Requires power cycle after change.
20007 Specify Connection Type: R/W, $0=10$ base2 and $1=10$ baseT. Requires power cycle if connection type changes.
20010 \&t 20014 Communications Baud: R/W, 300, 600, 1200, 2400, 4800, 9600, 19200, \& 38400 baud
20011 \& 20015 Data Length: R/W, 7, 8 \&t 9 data bits.
20012 \&t 20016 Serial Port Parity Select: R/W, 20048 = no parity, 20549 = even parity, 20559 = odd parity
20100 Revision Number: R only, For major revisions
20101 Revision Number: R only, For minor revisions
20102 Millisecond Timer: R only, 2217 module only. Range is $-2,147,483,648$ to $+2,147,483,647$
Model 2217 Ethernet Communications Module Peer to Peer Communications Registers
21000-21999 Peer Node: R/W, Specifies node number of controller to contact, 1-999.
22000-22999 Peer Resource: R/W, Identifies which register to access in controller specified by registers 21000-21999.
23000-23999 Peer Data Access: R/W, Specifies data to be written or read from peer resource identified in registers 22000-22999
24000-24999 Transaction Success: R only, 1 = successful transaction, $0=$ bad transaction.

Pulse Width Modulated Outputs

5901 \& 5905 Pulse Output Configuration for Outputs 1 and 2: R/W, Specifies the number of pulses sent out of output 1 (5901) and output 2 (5905). Store -1 for continuous operation.
5902 \&t 5906 Time Lapse in Current Pulse Interval Period: R Only, Tracks lapsed time (in milliseconds) during the pulse interval period for output 1 (5902) and output 2 (5906).
5903 \&t 5907 Output Pulse On-time: R/W, Maximum $=65535 \mathrm{~ms}$ (or 65.535 seconds) and minimum $=1 \mathrm{~ms}$. Output 1 is 5903 and output 2 is 5907.
5904 \&t 5908 Output Pulse Interval Period: R/W, Maximum $=65535$ ms (or 65.535 seconds) and minimum $=2 \mathrm{~ms}$. Output 1 is 5904 and output 2 is 5908.
PLS Function (Special Option)
5910 Data Table Row Pointer: R/W, Specifies the beginning of the PLS area.
5911, 5921 Servo Number for Reference: R/W, 5911 is for bank 1 and 5921 is for bank 2.
5912, 5922 Current PLS Position: R/W, 5912 is for bank 1 and 5922 is for bank 2.
5913, 5923 Roll over Position for Table: R/W, 5913 is for bank 1 and 5923 is for bank 2.
5914, 5924 Base Position, R only, 5914 is for bank 1 and 5924 is for bank 2.
5951-5958 Output Transition Enable: R/W, $0=$ output ignores PLS control, $1=$ PLS functions controls output state.
5959-5966 5951-5958 are for bank 1 and 5959-5966 are for bank 2.
5971-5978 Active Column Pointer: R only, Indicates the active column number in the Data Table for each row and output.
5979-5986 1 per row. 5971-5958 are for bank 1 and 5979-5986 are for bank 2.

Model 2700 Controller Real Time Clock	
13014	Seconds: R/W
13015	Minutes: R/W
13016	Hours: R/W, 24 hour clock
13017	Day of Month: R/W
13018	Month of Year: R/W, 1-12
13019	Year: R/W, Two fields
13020	Day of Week: R/W, 1-7, where Sunday = 1
Model 2700 Controller 2701E CPU	
5821-5828	Digital Input Software Counters: R/W
5831-5838	Counter Input Registers: W only
Model 2700 Controller 2703AP CPU	
5001	Master encoder position
5101	Time period (in msec) for frequency counter based on master encoder
5102	Frequency based on specified time period
Miscellaneous Special Functions	
5801-5808	Output Trigger Thresholds for Counters: R/W, Triggers an output when a counter reaches a specified value. Register 5801 is associated with counter 1 and output 1, register 5802 is associated with counter 2 and output 2, etc. Available in controllers with firmware revision R 2.8 or higher..
6500	Snapshot of Controller's Step Status: W only, Writing any value triggers snapshot.
6500	Number of Active Tasks: R only, Must write to this register before reading it. (See above.)
6501-6564	Step Number of Active Tasks: R only, Lists the step numbers of active tasks.
6599	Step Number Scanned: R only
13002	Continuous millisecond counter: R/W, Increments every 1 millisecond. Range is -2,147,483,648 to +2,147,483,647.
13003	Revision level of Firmware: R only, Multiplied x 100.
13004	Controller Architecture: R only, 1 indicates CTC's expanded architecture.
13008	Controller Model Code: R/W, Must be set to 3 to use CT Utilities. (DOS version)
13009	Automatically Turn Off Output at Software Fault: R/W, Storing an output number to this register and then turning that output ON in your program will cause that output to turn OFF in the event of any program software fault. This is commonly used to control a relay circuit that will drop out field power if a software fault occurs, for any reason.
13010	Analog Input Range: R/W, Storing 1 sets all analog inputs to 1 millivolt level (2220 only).
13011	Task Priority: R/W, Specifies Super Task serviced on a priority basis.
13012	Current Task Number: R only
Motion Control Modules Special Functions	
For Model 2205 Stepping Motor Control Module Only	
7001-7016	Current Stepping Motor Position: R only, Access when motor is stopped
For Model 2206 Stepping Motor Control Module Only	
13701-13716	Soft Stop Position: R Only, Stores position where a soft stop input (to a dedicated input) occurred.
13801-13816	Soft Stop Option: R/W, Storing 1 activates soft stop registration option. (2206 uses servo instructions.).

Special Functions for 2206 Stepping Motor and 2214 and 2219 Servo Modules

14001-14016	Current Stepping Motor Position: R/W, Gives you the current position for 2206 module. Storing a value establishes a new position for the stepping motor; can write only when motor is stopped. Current Servo Position: R/W, Lists current position of servos 1-16.
14101-14116	Servo Position Error: R only, Position error of servos 1-16.
14201-14216	Current Velocity: R Only, Lists the current theoretical velocity
	Velocity: R only, Velocity of servos 1-16. Theoretical velocity for 2214 \& actual for 2219.
14301-14316	2206 Stepping Motor Status: R Only, $0=$ axis not initialized, $1=$ stopped, $2=$ motion imminent: waiting for start, $3=$ accel, $4=$ at max speed, $5=$ decel to new max speed, $6=$ decel to stop, $7=$ soft stop.
	Status for 2214 \& 2219 Modules: R/W, $0=$ axis not initialized, $1=$ stopped, $2=$ motion waiting for start input, $3=$ accelerating, $4=$ at maximum speed, $5=$ decelerating to new speed, $6=$ decelerating to stop, $7=$ soft stop.
	2219 only, $8=$ begin registration move, $9=$ searching for home, $10=$ following, at ratio from leader, $12=$ command accepted, 128-255 = errors.
14401-14416	Integrated servo error: R only, Error of servos 1-16
14501-14516	Response Bandwidth: 2214 module, servo response bandwidth, 1-1000 Hz, of servos 1-16. 2219 module, velocity feed-forward constant.
14601-14616	Deceleration Velocity: R/W, Specifies a separate deceleration velocity (steps/sec ${ }^{2}$).
14701-14716	Dedicated Inputs for 2206 : R/W, Uses bit map, $2=$ home, $4=$ jog CCW, $8=$ soft limit for soft stop, $16=$ reverse limit, 32 = forward limit, $64=$ jog CW.
	Dedicated Inputs for 2214 and 2219: R/W, $1=$ home, $2=$ start, $3=$ kill command (2219 only), $4=$ reverse limit, $5=$ forward limit. 6 = index (2219 only).

Special-Purpose Registers used with Model 2219 Servo Control Module

14901-14916 Analog Output Value: R only, For commanding servo drive, servos 1-16. Range $= \pm 10000$. Revision 2.10 or higher.

Leader On-Start Feature

13801-13816 Leader On-Start Enable: R/W, $0=$ disabled, 1 = enabled.
13901-13916 Leader Position Set Point: R/W, For triggering armed axis.

Axis Status and Feed Forward Parameters

14501-14516 Velocity Feed-forward Constant: R/W, 16-bit unsigned, normal values 0 to 65535.
14801-14816 Acceleration Feed-Forward Constant: R/W, 16-bit unsigned, normal values 0 to 65535.

Registration Feature

16000, 16010 Registration Begin: R/W, Specifies beginning of registration window. Absolute position. 16000 is for servo 1, to $16150 \quad 16010$ is for servo 2, etc.
16001, 16011 Registration Window: R/W, Specifies the width of the registration window. Relative position. 16001 is for servo 1,
$16151 \quad 16011$ is for servo 2, etc.
16002, 16012 Registration Position: R only, Indicates position where registration occurred. Absolute position. 16002 is for to 16152 servo 1, 16012 is for servo 2, etc.
16003, 16013, Registration Offset: R/W, Modifies offset location; uses current move where registration occurred. Relative to 16153 position. 16003 is for servo 1, 16013 is for servo 2, etc.
16004, 16014, Registration Status: R/W, Indicates if registration occurred. $0=$ waiting for trigger, $1=$ registration triggered.
to $16154 \quad 16004$ is for servo 1, 16014 is for servo 2, etc.

Axis Following Feature

16005, 16015, Ratio Numerator: R/W, 16-bit signed number, range ± 32767.16005 is for servo 1,16015 is for servo 2 , etc. to 16155
16006, 1601
Ratio Denominator: R/W, 15-bit signed number, range ± 32767.16006 is for servo 1,16016 is for servo 2 , etc.
to 16156
16007, 16017
Leader Position: R, 32-bit signed. 16007 is for servo 1, 16017 is for servo 2, etc.
to 16157
16008, 16018
to 16158
16009, 16019
to 16159
16009, 16019
to 16159
17005, 17015
to 17155

Transfer Data to Cam Table Row: W only, Transfers values in a data table row to cam table row. 16009 is for servo 1, 16019 is for servo 2, etc. For 2219-CF Module only.
Read Cam Table Row, R only, Identifies cam table row being executed. 16009 is for servo 1, 16019 is for servo 2, etc. For 2219-CF Module only.
Number of Bytes per Row in Cam Table: R only, 17005 is for servo 1, 17015 is for servo 2, etc.
For 2219-CF Module only.

Additional Special Purpose Registers Available on the Model 2219

17000, 17010, Servo Firm Ware Version Number: R only, (byte * 100) + byte. 17000 is for servo 1, 17010 is for servo 2, etc.
to 17150
17001, 17011 Servo Filter Selection: R/W, (byte), $0=$ default PID, $1=$ Direct CCW, $2=$ Direct CW, $3=$ PID, $5=$ PAV,
to $17151 \quad 7=$ virtual master. 17001 is for servo 1,17011 is for servo 2, etc.
17002, 17012 Reverse Dedicated Input Polarity: R/W, Uses a mask. Default is normally open. Setting the corresponding bit to 1
to 17152
inverts the active input state. Bit $0=$ Not used, bit $1=$ Home, bit $2=$ Start, bit $3=$ Kill Command fixed,
bit $4=$ Reverse Limit, bit $5=$ Forward Limit, bit $6=$ Index fixed, bit $7=$ Not used. 17002 is for servo 1,17012 is for servo 2, etc.
17003, 17013 Direction of Home: R/W, $0=$ default CCW, $1=C W, 3=$ CW index home only, $-3=$ CCW index home only.
to 17153
17003 is for servo 1,17013 is for servo 2, etc. Revision 2.8 or later
17004, 170142219 Options: R only, $0=$ Standard 2219, 1 = Cam Follower. 17004 is for servo 1, 17014 is for servo 2, etc.
to 17154
17006
Error limit register. If error is larger than value in this register, servo axis will become un-initialized, any motion stop, and output will be set to zero. Default value $=32767$.

Alternate Access to Motion Control Module Functions

15000-15159 The alternate access registers contain the same information as the 14000-series, but are grouped by axis.
15000 R/W, Stepping Motor/Servo 1 Position (same as 14001)
15001 R only, Stepping Motor/Servo 1 Error (same as 14101). Not used with stepping motors.
15002 R only, Stepping Motor/Servo 1 Velocity (same as 14201)
15003 R only, Stepping Motor/Servo 1 Status (same as 14301)
15004 R only, Servo 1 Internal Error (same as 14401)
15005 R/W, Servo 1 Bandwidth for model 2214, servo 1 feed-forward velocity for model 2219
15006 R/W, Stepping Motor/Servo 1 axis Deceleration rate (same as 14601)
15007 R only, Stepping Motor/Servo 1 Monitoring Dedicated Inputs
15008 R/W, Servo 1 Acceleration Feed-forward Constant (same as 14801,
Model 2219 only)
15009 R only, Analog Output Value for Servo Command (same as 14901, Model 2219 only)
15010-15019 Stepping motor/servo axis 2 15090-15099 Stepping motor/servo axis 10
15020-15029 Stepping motor/servo axis 3 15100-15109 Stepping motor/servo axis 11
15030-15039 Stepping motor/servo axis 4 15110-15119 Stepping motor/servo axis 12
15040-15049 Stepping motor/servo axis 5 15120-15129 Stepping motor/servo axis 13
15050-15059 Stepping motor/servo axis $6 \quad$ 15130-15139 Stepping motor/servo axis 14
15060-15069 Stepping motor/servo axis $7 \quad$ 15140-15149 Stepping motor/servo axis 15

2703AP I/O Mapping

| 2703AP Input | QS Input Register \# | 2703AP Output | QS Output Register \# |
| :--- | :---: | :--- | :--- | :---: |
| 1 | 993 | 1 | 993 |
| 2 | 994 | 2 | 994 |
| 3 | 995 | 3 | 995 |
| 4 | 996 | 4 | 996 |
| Reserved | 998 | Status LED1 | 998 |
| Registration Input 1 | 999 | Status LED 2 | 999 |
| Registration Input 2 | 1000 | Status LED 3 | 1000 |

